Properties

Label 816.4.c.b.577.3
Level $816$
Weight $4$
Character 816.577
Analytic conductor $48.146$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [816,4,Mod(577,816)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("816.577"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(816, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 816.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-36,0,0,0,74] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.1455585647\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{569})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 285x^{2} + 20164 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.3
Root \(-12.4269i\) of defining polynomial
Character \(\chi\) \(=\) 816.577
Dual form 816.4.c.b.577.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} -16.4269i q^{5} -6.00000i q^{7} -9.00000 q^{9} -1.57314i q^{11} -17.2806 q^{13} +49.2806 q^{15} +(-28.2806 - 64.1343i) q^{17} +145.842 q^{19} +18.0000 q^{21} +30.9880i q^{23} -144.842 q^{25} -27.0000i q^{27} -59.7074i q^{29} -30.0000i q^{31} +4.71942 q^{33} -98.5612 q^{35} +47.1223i q^{37} -51.8417i q^{39} -228.988i q^{41} -376.086 q^{43} +147.842i q^{45} -456.806 q^{47} +307.000 q^{49} +(192.403 - 84.8417i) q^{51} -563.122 q^{53} -25.8417 q^{55} +437.525i q^{57} +120.000 q^{59} +408.878i q^{61} +54.0000i q^{63} +283.866i q^{65} -205.122 q^{67} -92.9641 q^{69} +895.391i q^{71} -1067.05i q^{73} -434.525i q^{75} -9.43884 q^{77} +1038.81i q^{79} +81.0000 q^{81} -1099.68 q^{83} +(-1053.53 + 464.561i) q^{85} +179.122 q^{87} -794.489 q^{89} +103.683i q^{91} +90.0000 q^{93} -2395.72i q^{95} -1006.24i q^{97} +14.1583i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{9} + 74 q^{13} + 54 q^{15} + 30 q^{17} + 154 q^{19} + 72 q^{21} - 150 q^{25} + 162 q^{33} - 108 q^{35} + 70 q^{43} - 396 q^{47} + 1228 q^{49} + 54 q^{51} - 1680 q^{53} + 326 q^{55} + 480 q^{59}+ \cdots + 360 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/816\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(545\) \(613\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) 16.4269i 1.46926i −0.678466 0.734632i \(-0.737355\pi\)
0.678466 0.734632i \(-0.262645\pi\)
\(6\) 0 0
\(7\) 6.00000i 0.323970i −0.986793 0.161985i \(-0.948210\pi\)
0.986793 0.161985i \(-0.0517895\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 1.57314i 0.0431199i −0.999768 0.0215600i \(-0.993137\pi\)
0.999768 0.0215600i \(-0.00686328\pi\)
\(12\) 0 0
\(13\) −17.2806 −0.368675 −0.184337 0.982863i \(-0.559014\pi\)
−0.184337 + 0.982863i \(0.559014\pi\)
\(14\) 0 0
\(15\) 49.2806 0.848279
\(16\) 0 0
\(17\) −28.2806 64.1343i −0.403473 0.914991i
\(18\) 0 0
\(19\) 145.842 1.76097 0.880484 0.474076i \(-0.157218\pi\)
0.880484 + 0.474076i \(0.157218\pi\)
\(20\) 0 0
\(21\) 18.0000 0.187044
\(22\) 0 0
\(23\) 30.9880i 0.280933i 0.990085 + 0.140466i \(0.0448602\pi\)
−0.990085 + 0.140466i \(0.955140\pi\)
\(24\) 0 0
\(25\) −144.842 −1.15873
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 59.7074i 0.382324i −0.981559 0.191162i \(-0.938774\pi\)
0.981559 0.191162i \(-0.0612256\pi\)
\(30\) 0 0
\(31\) 30.0000i 0.173812i −0.996217 0.0869058i \(-0.972302\pi\)
0.996217 0.0869058i \(-0.0276979\pi\)
\(32\) 0 0
\(33\) 4.71942 0.0248953
\(34\) 0 0
\(35\) −98.5612 −0.475996
\(36\) 0 0
\(37\) 47.1223i 0.209375i 0.994505 + 0.104687i \(0.0333842\pi\)
−0.994505 + 0.104687i \(0.966616\pi\)
\(38\) 0 0
\(39\) 51.8417i 0.212854i
\(40\) 0 0
\(41\) 228.988i 0.872242i −0.899888 0.436121i \(-0.856352\pi\)
0.899888 0.436121i \(-0.143648\pi\)
\(42\) 0 0
\(43\) −376.086 −1.33378 −0.666891 0.745155i \(-0.732375\pi\)
−0.666891 + 0.745155i \(0.732375\pi\)
\(44\) 0 0
\(45\) 147.842i 0.489754i
\(46\) 0 0
\(47\) −456.806 −1.41770 −0.708851 0.705358i \(-0.750786\pi\)
−0.708851 + 0.705358i \(0.750786\pi\)
\(48\) 0 0
\(49\) 307.000 0.895044
\(50\) 0 0
\(51\) 192.403 84.8417i 0.528271 0.232945i
\(52\) 0 0
\(53\) −563.122 −1.45945 −0.729725 0.683741i \(-0.760352\pi\)
−0.729725 + 0.683741i \(0.760352\pi\)
\(54\) 0 0
\(55\) −25.8417 −0.0633545
\(56\) 0 0
\(57\) 437.525i 1.01670i
\(58\) 0 0
\(59\) 120.000 0.264791 0.132396 0.991197i \(-0.457733\pi\)
0.132396 + 0.991197i \(0.457733\pi\)
\(60\) 0 0
\(61\) 408.878i 0.858220i 0.903252 + 0.429110i \(0.141173\pi\)
−0.903252 + 0.429110i \(0.858827\pi\)
\(62\) 0 0
\(63\) 54.0000i 0.107990i
\(64\) 0 0
\(65\) 283.866i 0.541680i
\(66\) 0 0
\(67\) −205.122 −0.374025 −0.187013 0.982358i \(-0.559881\pi\)
−0.187013 + 0.982358i \(0.559881\pi\)
\(68\) 0 0
\(69\) −92.9641 −0.162197
\(70\) 0 0
\(71\) 895.391i 1.49667i 0.663323 + 0.748333i \(0.269146\pi\)
−0.663323 + 0.748333i \(0.730854\pi\)
\(72\) 0 0
\(73\) 1067.05i 1.71081i −0.517963 0.855403i \(-0.673310\pi\)
0.517963 0.855403i \(-0.326690\pi\)
\(74\) 0 0
\(75\) 434.525i 0.668995i
\(76\) 0 0
\(77\) −9.43884 −0.0139695
\(78\) 0 0
\(79\) 1038.81i 1.47943i 0.672922 + 0.739714i \(0.265039\pi\)
−0.672922 + 0.739714i \(0.734961\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −1099.68 −1.45429 −0.727144 0.686485i \(-0.759153\pi\)
−0.727144 + 0.686485i \(0.759153\pi\)
\(84\) 0 0
\(85\) −1053.53 + 464.561i −1.34436 + 0.592809i
\(86\) 0 0
\(87\) 179.122 0.220735
\(88\) 0 0
\(89\) −794.489 −0.946244 −0.473122 0.880997i \(-0.656873\pi\)
−0.473122 + 0.880997i \(0.656873\pi\)
\(90\) 0 0
\(91\) 103.683i 0.119439i
\(92\) 0 0
\(93\) 90.0000 0.100350
\(94\) 0 0
\(95\) 2395.72i 2.58733i
\(96\) 0 0
\(97\) 1006.24i 1.05329i −0.850087 0.526643i \(-0.823451\pi\)
0.850087 0.526643i \(-0.176549\pi\)
\(98\) 0 0
\(99\) 14.1583i 0.0143733i
\(100\) 0 0
\(101\) −394.173 −0.388333 −0.194167 0.980969i \(-0.562200\pi\)
−0.194167 + 0.980969i \(0.562200\pi\)
\(102\) 0 0
\(103\) −748.892 −0.716413 −0.358207 0.933642i \(-0.616612\pi\)
−0.358207 + 0.933642i \(0.616612\pi\)
\(104\) 0 0
\(105\) 295.683i 0.274817i
\(106\) 0 0
\(107\) 1200.48i 1.08462i −0.840177 0.542312i \(-0.817549\pi\)
0.840177 0.542312i \(-0.182451\pi\)
\(108\) 0 0
\(109\) 1083.44i 0.952061i 0.879429 + 0.476030i \(0.157925\pi\)
−0.879429 + 0.476030i \(0.842075\pi\)
\(110\) 0 0
\(111\) −141.367 −0.120883
\(112\) 0 0
\(113\) 1027.06i 0.855024i −0.904010 0.427512i \(-0.859390\pi\)
0.904010 0.427512i \(-0.140610\pi\)
\(114\) 0 0
\(115\) 509.036 0.412764
\(116\) 0 0
\(117\) 155.525 0.122892
\(118\) 0 0
\(119\) −384.806 + 169.683i −0.296429 + 0.130713i
\(120\) 0 0
\(121\) 1328.53 0.998141
\(122\) 0 0
\(123\) 686.964 0.503589
\(124\) 0 0
\(125\) 325.938i 0.233222i
\(126\) 0 0
\(127\) −2291.63 −1.60117 −0.800586 0.599217i \(-0.795479\pi\)
−0.800586 + 0.599217i \(0.795479\pi\)
\(128\) 0 0
\(129\) 1128.26i 0.770060i
\(130\) 0 0
\(131\) 1935.04i 1.29057i −0.763940 0.645287i \(-0.776738\pi\)
0.763940 0.645287i \(-0.223262\pi\)
\(132\) 0 0
\(133\) 875.050i 0.570500i
\(134\) 0 0
\(135\) −443.525 −0.282760
\(136\) 0 0
\(137\) 973.540 0.607118 0.303559 0.952813i \(-0.401825\pi\)
0.303559 + 0.952813i \(0.401825\pi\)
\(138\) 0 0
\(139\) 310.388i 0.189401i 0.995506 + 0.0947007i \(0.0301894\pi\)
−0.995506 + 0.0947007i \(0.969811\pi\)
\(140\) 0 0
\(141\) 1370.42i 0.818510i
\(142\) 0 0
\(143\) 27.1848i 0.0158972i
\(144\) 0 0
\(145\) −980.806 −0.561734
\(146\) 0 0
\(147\) 921.000i 0.516754i
\(148\) 0 0
\(149\) −2680.76 −1.47394 −0.736969 0.675927i \(-0.763743\pi\)
−0.736969 + 0.675927i \(0.763743\pi\)
\(150\) 0 0
\(151\) 226.878 0.122272 0.0611359 0.998129i \(-0.480528\pi\)
0.0611359 + 0.998129i \(0.480528\pi\)
\(152\) 0 0
\(153\) 254.525 + 577.209i 0.134491 + 0.304997i
\(154\) 0 0
\(155\) −492.806 −0.255375
\(156\) 0 0
\(157\) 353.108 0.179497 0.0897486 0.995964i \(-0.471394\pi\)
0.0897486 + 0.995964i \(0.471394\pi\)
\(158\) 0 0
\(159\) 1689.37i 0.842613i
\(160\) 0 0
\(161\) 185.928 0.0910136
\(162\) 0 0
\(163\) 1070.70i 0.514504i −0.966344 0.257252i \(-0.917183\pi\)
0.966344 0.257252i \(-0.0828170\pi\)
\(164\) 0 0
\(165\) 77.5252i 0.0365778i
\(166\) 0 0
\(167\) 744.408i 0.344934i −0.985015 0.172467i \(-0.944826\pi\)
0.985015 0.172467i \(-0.0551739\pi\)
\(168\) 0 0
\(169\) −1898.38 −0.864079
\(170\) 0 0
\(171\) −1312.58 −0.586989
\(172\) 0 0
\(173\) 2870.53i 1.26152i −0.775980 0.630758i \(-0.782744\pi\)
0.775980 0.630758i \(-0.217256\pi\)
\(174\) 0 0
\(175\) 869.050i 0.375395i
\(176\) 0 0
\(177\) 360.000i 0.152877i
\(178\) 0 0
\(179\) 1144.03 0.477702 0.238851 0.971056i \(-0.423229\pi\)
0.238851 + 0.971056i \(0.423229\pi\)
\(180\) 0 0
\(181\) 3516.07i 1.44391i −0.691940 0.721955i \(-0.743244\pi\)
0.691940 0.721955i \(-0.256756\pi\)
\(182\) 0 0
\(183\) −1226.63 −0.495494
\(184\) 0 0
\(185\) 774.072 0.307626
\(186\) 0 0
\(187\) −100.892 + 44.4893i −0.0394544 + 0.0173978i
\(188\) 0 0
\(189\) −162.000 −0.0623480
\(190\) 0 0
\(191\) 4153.61 1.57353 0.786766 0.617251i \(-0.211754\pi\)
0.786766 + 0.617251i \(0.211754\pi\)
\(192\) 0 0
\(193\) 4090.91i 1.52575i 0.646546 + 0.762875i \(0.276213\pi\)
−0.646546 + 0.762875i \(0.723787\pi\)
\(194\) 0 0
\(195\) −851.597 −0.312739
\(196\) 0 0
\(197\) 4823.75i 1.74456i 0.489010 + 0.872278i \(0.337358\pi\)
−0.489010 + 0.872278i \(0.662642\pi\)
\(198\) 0 0
\(199\) 2985.74i 1.06359i 0.846874 + 0.531793i \(0.178482\pi\)
−0.846874 + 0.531793i \(0.821518\pi\)
\(200\) 0 0
\(201\) 615.367i 0.215943i
\(202\) 0 0
\(203\) −358.245 −0.123861
\(204\) 0 0
\(205\) −3761.55 −1.28155
\(206\) 0 0
\(207\) 278.892i 0.0936442i
\(208\) 0 0
\(209\) 229.429i 0.0759328i
\(210\) 0 0
\(211\) 4387.40i 1.43147i −0.698370 0.715736i \(-0.746091\pi\)
0.698370 0.715736i \(-0.253909\pi\)
\(212\) 0 0
\(213\) −2686.17 −0.864101
\(214\) 0 0
\(215\) 6177.92i 1.95968i
\(216\) 0 0
\(217\) −180.000 −0.0563097
\(218\) 0 0
\(219\) 3201.15 0.987734
\(220\) 0 0
\(221\) 488.705 + 1108.28i 0.148750 + 0.337334i
\(222\) 0 0
\(223\) −918.791 −0.275905 −0.137952 0.990439i \(-0.544052\pi\)
−0.137952 + 0.990439i \(0.544052\pi\)
\(224\) 0 0
\(225\) 1303.58 0.386245
\(226\) 0 0
\(227\) 1754.31i 0.512942i 0.966552 + 0.256471i \(0.0825598\pi\)
−0.966552 + 0.256471i \(0.917440\pi\)
\(228\) 0 0
\(229\) −1859.18 −0.536498 −0.268249 0.963350i \(-0.586445\pi\)
−0.268249 + 0.963350i \(0.586445\pi\)
\(230\) 0 0
\(231\) 28.3165i 0.00806532i
\(232\) 0 0
\(233\) 1537.43i 0.432276i 0.976363 + 0.216138i \(0.0693461\pi\)
−0.976363 + 0.216138i \(0.930654\pi\)
\(234\) 0 0
\(235\) 7503.89i 2.08298i
\(236\) 0 0
\(237\) −3116.42 −0.854148
\(238\) 0 0
\(239\) 3904.69 1.05679 0.528396 0.848998i \(-0.322794\pi\)
0.528396 + 0.848998i \(0.322794\pi\)
\(240\) 0 0
\(241\) 2369.64i 0.633369i 0.948531 + 0.316685i \(0.102570\pi\)
−0.948531 + 0.316685i \(0.897430\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) 5043.05i 1.31505i
\(246\) 0 0
\(247\) −2520.23 −0.649224
\(248\) 0 0
\(249\) 3299.05i 0.839634i
\(250\) 0 0
\(251\) −7356.23 −1.84989 −0.924943 0.380107i \(-0.875887\pi\)
−0.924943 + 0.380107i \(0.875887\pi\)
\(252\) 0 0
\(253\) 48.7485 0.0121138
\(254\) 0 0
\(255\) −1393.68 3160.58i −0.342258 0.776168i
\(256\) 0 0
\(257\) 3415.32 0.828957 0.414479 0.910059i \(-0.363964\pi\)
0.414479 + 0.910059i \(0.363964\pi\)
\(258\) 0 0
\(259\) 282.734 0.0678310
\(260\) 0 0
\(261\) 537.367i 0.127441i
\(262\) 0 0
\(263\) 3030.22 0.710460 0.355230 0.934779i \(-0.384402\pi\)
0.355230 + 0.934779i \(0.384402\pi\)
\(264\) 0 0
\(265\) 9250.33i 2.14431i
\(266\) 0 0
\(267\) 2383.47i 0.546314i
\(268\) 0 0
\(269\) 5449.58i 1.23519i −0.786496 0.617596i \(-0.788107\pi\)
0.786496 0.617596i \(-0.211893\pi\)
\(270\) 0 0
\(271\) −2628.14 −0.589109 −0.294554 0.955635i \(-0.595171\pi\)
−0.294554 + 0.955635i \(0.595171\pi\)
\(272\) 0 0
\(273\) −311.050 −0.0689584
\(274\) 0 0
\(275\) 227.856i 0.0499645i
\(276\) 0 0
\(277\) 7133.14i 1.54725i 0.633643 + 0.773626i \(0.281559\pi\)
−0.633643 + 0.773626i \(0.718441\pi\)
\(278\) 0 0
\(279\) 270.000i 0.0579372i
\(280\) 0 0
\(281\) 6010.26 1.27595 0.637975 0.770057i \(-0.279772\pi\)
0.637975 + 0.770057i \(0.279772\pi\)
\(282\) 0 0
\(283\) 1226.19i 0.257559i 0.991673 + 0.128780i \(0.0411060\pi\)
−0.991673 + 0.128780i \(0.958894\pi\)
\(284\) 0 0
\(285\) 7187.17 1.49379
\(286\) 0 0
\(287\) −1373.93 −0.282580
\(288\) 0 0
\(289\) −3313.42 + 3627.51i −0.674418 + 0.738349i
\(290\) 0 0
\(291\) 3018.73 0.608114
\(292\) 0 0
\(293\) 8459.73 1.68677 0.843383 0.537312i \(-0.180560\pi\)
0.843383 + 0.537312i \(0.180560\pi\)
\(294\) 0 0
\(295\) 1971.22i 0.389048i
\(296\) 0 0
\(297\) −42.4748 −0.00829844
\(298\) 0 0
\(299\) 535.491i 0.103573i
\(300\) 0 0
\(301\) 2256.52i 0.432105i
\(302\) 0 0
\(303\) 1182.52i 0.224204i
\(304\) 0 0
\(305\) 6716.58 1.26095
\(306\) 0 0
\(307\) 3384.78 0.629249 0.314624 0.949216i \(-0.398121\pi\)
0.314624 + 0.949216i \(0.398121\pi\)
\(308\) 0 0
\(309\) 2246.68i 0.413621i
\(310\) 0 0
\(311\) 861.003i 0.156987i 0.996915 + 0.0784935i \(0.0250110\pi\)
−0.996915 + 0.0784935i \(0.974989\pi\)
\(312\) 0 0
\(313\) 950.648i 0.171674i 0.996309 + 0.0858368i \(0.0273564\pi\)
−0.996309 + 0.0858368i \(0.972644\pi\)
\(314\) 0 0
\(315\) 887.050 0.158665
\(316\) 0 0
\(317\) 8401.18i 1.48851i −0.667897 0.744254i \(-0.732805\pi\)
0.667897 0.744254i \(-0.267195\pi\)
\(318\) 0 0
\(319\) −93.9281 −0.0164858
\(320\) 0 0
\(321\) 3601.44 0.626208
\(322\) 0 0
\(323\) −4124.49 9353.46i −0.710504 1.61127i
\(324\) 0 0
\(325\) 2502.95 0.427196
\(326\) 0 0
\(327\) −3250.32 −0.549673
\(328\) 0 0
\(329\) 2740.83i 0.459292i
\(330\) 0 0
\(331\) −4128.20 −0.685518 −0.342759 0.939423i \(-0.611361\pi\)
−0.342759 + 0.939423i \(0.611361\pi\)
\(332\) 0 0
\(333\) 424.101i 0.0697916i
\(334\) 0 0
\(335\) 3369.52i 0.549541i
\(336\) 0 0
\(337\) 40.2293i 0.00650276i −0.999995 0.00325138i \(-0.998965\pi\)
0.999995 0.00325138i \(-0.00103495\pi\)
\(338\) 0 0
\(339\) 3081.18 0.493648
\(340\) 0 0
\(341\) −47.1942 −0.00749475
\(342\) 0 0
\(343\) 3900.00i 0.613936i
\(344\) 0 0
\(345\) 1527.11i 0.238309i
\(346\) 0 0
\(347\) 1137.51i 0.175978i 0.996121 + 0.0879892i \(0.0280441\pi\)
−0.996121 + 0.0879892i \(0.971956\pi\)
\(348\) 0 0
\(349\) 625.741 0.0959746 0.0479873 0.998848i \(-0.484719\pi\)
0.0479873 + 0.998848i \(0.484719\pi\)
\(350\) 0 0
\(351\) 466.576i 0.0709515i
\(352\) 0 0
\(353\) −6354.81 −0.958165 −0.479082 0.877770i \(-0.659031\pi\)
−0.479082 + 0.877770i \(0.659031\pi\)
\(354\) 0 0
\(355\) 14708.5 2.19900
\(356\) 0 0
\(357\) −509.050 1154.42i −0.0754672 0.171144i
\(358\) 0 0
\(359\) 10466.9 1.53878 0.769388 0.638781i \(-0.220561\pi\)
0.769388 + 0.638781i \(0.220561\pi\)
\(360\) 0 0
\(361\) 14410.8 2.10101
\(362\) 0 0
\(363\) 3985.58i 0.576277i
\(364\) 0 0
\(365\) −17528.3 −2.51362
\(366\) 0 0
\(367\) 8320.39i 1.18344i −0.806145 0.591718i \(-0.798450\pi\)
0.806145 0.591718i \(-0.201550\pi\)
\(368\) 0 0
\(369\) 2060.89i 0.290747i
\(370\) 0 0
\(371\) 3378.73i 0.472817i
\(372\) 0 0
\(373\) 265.251 0.0368208 0.0184104 0.999831i \(-0.494139\pi\)
0.0184104 + 0.999831i \(0.494139\pi\)
\(374\) 0 0
\(375\) −977.813 −0.134651
\(376\) 0 0
\(377\) 1031.78i 0.140953i
\(378\) 0 0
\(379\) 10168.5i 1.37815i 0.724688 + 0.689077i \(0.241984\pi\)
−0.724688 + 0.689077i \(0.758016\pi\)
\(380\) 0 0
\(381\) 6874.88i 0.924438i
\(382\) 0 0
\(383\) 1646.79 0.219705 0.109853 0.993948i \(-0.464962\pi\)
0.109853 + 0.993948i \(0.464962\pi\)
\(384\) 0 0
\(385\) 155.050i 0.0205249i
\(386\) 0 0
\(387\) 3384.78 0.444594
\(388\) 0 0
\(389\) 6268.68 0.817055 0.408528 0.912746i \(-0.366042\pi\)
0.408528 + 0.912746i \(0.366042\pi\)
\(390\) 0 0
\(391\) 1987.40 876.359i 0.257051 0.113349i
\(392\) 0 0
\(393\) 5805.12 0.745114
\(394\) 0 0
\(395\) 17064.3 2.17367
\(396\) 0 0
\(397\) 13537.7i 1.71143i −0.517446 0.855716i \(-0.673117\pi\)
0.517446 0.855716i \(-0.326883\pi\)
\(398\) 0 0
\(399\) 2625.15 0.329378
\(400\) 0 0
\(401\) 6490.51i 0.808281i −0.914697 0.404141i \(-0.867571\pi\)
0.914697 0.404141i \(-0.132429\pi\)
\(402\) 0 0
\(403\) 518.417i 0.0640799i
\(404\) 0 0
\(405\) 1330.58i 0.163251i
\(406\) 0 0
\(407\) 74.1300 0.00902822
\(408\) 0 0
\(409\) −7733.80 −0.934992 −0.467496 0.883995i \(-0.654844\pi\)
−0.467496 + 0.883995i \(0.654844\pi\)
\(410\) 0 0
\(411\) 2920.62i 0.350520i
\(412\) 0 0
\(413\) 720.000i 0.0857842i
\(414\) 0 0
\(415\) 18064.3i 2.13673i
\(416\) 0 0
\(417\) −931.165 −0.109351
\(418\) 0 0
\(419\) 8170.70i 0.952660i −0.879267 0.476330i \(-0.841967\pi\)
0.879267 0.476330i \(-0.158033\pi\)
\(420\) 0 0
\(421\) −13732.6 −1.58975 −0.794874 0.606774i \(-0.792463\pi\)
−0.794874 + 0.606774i \(0.792463\pi\)
\(422\) 0 0
\(423\) 4111.25 0.472567
\(424\) 0 0
\(425\) 4096.21 + 9289.32i 0.467518 + 1.06023i
\(426\) 0 0
\(427\) 2453.27 0.278037
\(428\) 0 0
\(429\) −81.5543 −0.00917827
\(430\) 0 0
\(431\) 13075.7i 1.46133i −0.682734 0.730667i \(-0.739209\pi\)
0.682734 0.730667i \(-0.260791\pi\)
\(432\) 0 0
\(433\) 16873.0 1.87266 0.936331 0.351118i \(-0.114198\pi\)
0.936331 + 0.351118i \(0.114198\pi\)
\(434\) 0 0
\(435\) 2942.42i 0.324318i
\(436\) 0 0
\(437\) 4519.35i 0.494713i
\(438\) 0 0
\(439\) 16207.3i 1.76203i 0.473089 + 0.881014i \(0.343139\pi\)
−0.473089 + 0.881014i \(0.656861\pi\)
\(440\) 0 0
\(441\) −2763.00 −0.298348
\(442\) 0 0
\(443\) −8022.65 −0.860423 −0.430212 0.902728i \(-0.641561\pi\)
−0.430212 + 0.902728i \(0.641561\pi\)
\(444\) 0 0
\(445\) 13051.0i 1.39028i
\(446\) 0 0
\(447\) 8042.29i 0.850978i
\(448\) 0 0
\(449\) 4730.44i 0.497201i 0.968606 + 0.248600i \(0.0799706\pi\)
−0.968606 + 0.248600i \(0.920029\pi\)
\(450\) 0 0
\(451\) −360.230 −0.0376110
\(452\) 0 0
\(453\) 680.633i 0.0705937i
\(454\) 0 0
\(455\) 1703.19 0.175488
\(456\) 0 0
\(457\) 840.447 0.0860273 0.0430136 0.999074i \(-0.486304\pi\)
0.0430136 + 0.999074i \(0.486304\pi\)
\(458\) 0 0
\(459\) −1731.63 + 763.576i −0.176090 + 0.0776485i
\(460\) 0 0
\(461\) 6788.88 0.685878 0.342939 0.939358i \(-0.388578\pi\)
0.342939 + 0.939358i \(0.388578\pi\)
\(462\) 0 0
\(463\) 11545.7 1.15890 0.579452 0.815006i \(-0.303267\pi\)
0.579452 + 0.815006i \(0.303267\pi\)
\(464\) 0 0
\(465\) 1478.42i 0.147441i
\(466\) 0 0
\(467\) −174.303 −0.0172715 −0.00863573 0.999963i \(-0.502749\pi\)
−0.00863573 + 0.999963i \(0.502749\pi\)
\(468\) 0 0
\(469\) 1230.73i 0.121173i
\(470\) 0 0
\(471\) 1059.32i 0.103633i
\(472\) 0 0
\(473\) 591.636i 0.0575126i
\(474\) 0 0
\(475\) −21124.0 −2.04049
\(476\) 0 0
\(477\) 5068.10 0.486483
\(478\) 0 0
\(479\) 16182.7i 1.54365i −0.635837 0.771824i \(-0.719345\pi\)
0.635837 0.771824i \(-0.280655\pi\)
\(480\) 0 0
\(481\) 814.301i 0.0771911i
\(482\) 0 0
\(483\) 557.784i 0.0525467i
\(484\) 0 0
\(485\) −16529.4 −1.54755
\(486\) 0 0
\(487\) 17815.3i 1.65767i 0.559491 + 0.828837i \(0.310997\pi\)
−0.559491 + 0.828837i \(0.689003\pi\)
\(488\) 0 0
\(489\) 3212.11 0.297049
\(490\) 0 0
\(491\) −19445.2 −1.78727 −0.893635 0.448794i \(-0.851854\pi\)
−0.893635 + 0.448794i \(0.851854\pi\)
\(492\) 0 0
\(493\) −3829.30 + 1688.56i −0.349823 + 0.154258i
\(494\) 0 0
\(495\) 232.576 0.0211182
\(496\) 0 0
\(497\) 5372.35 0.484875
\(498\) 0 0
\(499\) 9524.72i 0.854479i 0.904138 + 0.427240i \(0.140514\pi\)
−0.904138 + 0.427240i \(0.859486\pi\)
\(500\) 0 0
\(501\) 2233.22 0.199148
\(502\) 0 0
\(503\) 1592.37i 0.141154i 0.997506 + 0.0705768i \(0.0224840\pi\)
−0.997506 + 0.0705768i \(0.977516\pi\)
\(504\) 0 0
\(505\) 6475.02i 0.570564i
\(506\) 0 0
\(507\) 5695.14i 0.498876i
\(508\) 0 0
\(509\) −14893.7 −1.29696 −0.648480 0.761232i \(-0.724595\pi\)
−0.648480 + 0.761232i \(0.724595\pi\)
\(510\) 0 0
\(511\) −6402.30 −0.554249
\(512\) 0 0
\(513\) 3937.73i 0.338898i
\(514\) 0 0
\(515\) 12301.9i 1.05260i
\(516\) 0 0
\(517\) 718.619i 0.0611312i
\(518\) 0 0
\(519\) 8611.58 0.728336
\(520\) 0 0
\(521\) 4403.38i 0.370279i −0.982712 0.185140i \(-0.940726\pi\)
0.982712 0.185140i \(-0.0592737\pi\)
\(522\) 0 0
\(523\) 6728.23 0.562533 0.281267 0.959630i \(-0.409245\pi\)
0.281267 + 0.959630i \(0.409245\pi\)
\(524\) 0 0
\(525\) −2607.15 −0.216734
\(526\) 0 0
\(527\) −1924.03 + 848.417i −0.159036 + 0.0701284i
\(528\) 0 0
\(529\) 11206.7 0.921077
\(530\) 0 0
\(531\) −1080.00 −0.0882637
\(532\) 0 0
\(533\) 3957.05i 0.321574i
\(534\) 0 0
\(535\) −19720.1 −1.59360
\(536\) 0 0
\(537\) 3432.09i 0.275802i
\(538\) 0 0
\(539\) 482.954i 0.0385942i
\(540\) 0 0
\(541\) 13624.4i 1.08273i 0.840787 + 0.541366i \(0.182093\pi\)
−0.840787 + 0.541366i \(0.817907\pi\)
\(542\) 0 0
\(543\) 10548.2 0.833641
\(544\) 0 0
\(545\) 17797.5 1.39883
\(546\) 0 0
\(547\) 3158.10i 0.246857i −0.992353 0.123428i \(-0.960611\pi\)
0.992353 0.123428i \(-0.0393889\pi\)
\(548\) 0 0
\(549\) 3679.90i 0.286073i
\(550\) 0 0
\(551\) 8707.84i 0.673260i
\(552\) 0 0
\(553\) 6232.83 0.479290
\(554\) 0 0
\(555\) 2322.22i 0.177608i
\(556\) 0 0
\(557\) −5831.35 −0.443595 −0.221797 0.975093i \(-0.571192\pi\)
−0.221797 + 0.975093i \(0.571192\pi\)
\(558\) 0 0
\(559\) 6498.99 0.491732
\(560\) 0 0
\(561\) −133.468 302.677i −0.0100446 0.0227790i
\(562\) 0 0
\(563\) 12511.5 0.936587 0.468294 0.883573i \(-0.344869\pi\)
0.468294 + 0.883573i \(0.344869\pi\)
\(564\) 0 0
\(565\) −16871.4 −1.25625
\(566\) 0 0
\(567\) 486.000i 0.0359966i
\(568\) 0 0
\(569\) −8469.14 −0.623980 −0.311990 0.950085i \(-0.600996\pi\)
−0.311990 + 0.950085i \(0.600996\pi\)
\(570\) 0 0
\(571\) 5857.64i 0.429308i −0.976690 0.214654i \(-0.931138\pi\)
0.976690 0.214654i \(-0.0688623\pi\)
\(572\) 0 0
\(573\) 12460.8i 0.908480i
\(574\) 0 0
\(575\) 4488.36i 0.325526i
\(576\) 0 0
\(577\) 15537.9 1.12106 0.560528 0.828135i \(-0.310598\pi\)
0.560528 + 0.828135i \(0.310598\pi\)
\(578\) 0 0
\(579\) −12272.7 −0.880893
\(580\) 0 0
\(581\) 6598.10i 0.471145i
\(582\) 0 0
\(583\) 885.870i 0.0629314i
\(584\) 0 0
\(585\) 2554.79i 0.180560i
\(586\) 0 0
\(587\) −1491.54 −0.104876 −0.0524382 0.998624i \(-0.516699\pi\)
−0.0524382 + 0.998624i \(0.516699\pi\)
\(588\) 0 0
\(589\) 4375.25i 0.306077i
\(590\) 0 0
\(591\) −14471.2 −1.00722
\(592\) 0 0
\(593\) 14418.0 0.998442 0.499221 0.866475i \(-0.333620\pi\)
0.499221 + 0.866475i \(0.333620\pi\)
\(594\) 0 0
\(595\) 2787.37 + 6321.15i 0.192052 + 0.435533i
\(596\) 0 0
\(597\) −8957.22 −0.614062
\(598\) 0 0
\(599\) −3644.49 −0.248597 −0.124299 0.992245i \(-0.539668\pi\)
−0.124299 + 0.992245i \(0.539668\pi\)
\(600\) 0 0
\(601\) 6984.34i 0.474039i −0.971505 0.237019i \(-0.923829\pi\)
0.971505 0.237019i \(-0.0761705\pi\)
\(602\) 0 0
\(603\) 1846.10 0.124675
\(604\) 0 0
\(605\) 21823.5i 1.46653i
\(606\) 0 0
\(607\) 14362.8i 0.960407i −0.877157 0.480204i \(-0.840563\pi\)
0.877157 0.480204i \(-0.159437\pi\)
\(608\) 0 0
\(609\) 1074.73i 0.0715114i
\(610\) 0 0
\(611\) 7893.87 0.522671
\(612\) 0 0
\(613\) −8703.81 −0.573481 −0.286740 0.958008i \(-0.592572\pi\)
−0.286740 + 0.958008i \(0.592572\pi\)
\(614\) 0 0
\(615\) 11284.7i 0.739905i
\(616\) 0 0
\(617\) 26903.7i 1.75543i −0.479182 0.877715i \(-0.659067\pi\)
0.479182 0.877715i \(-0.340933\pi\)
\(618\) 0 0
\(619\) 8641.76i 0.561133i −0.959835 0.280567i \(-0.909478\pi\)
0.959835 0.280567i \(-0.0905224\pi\)
\(620\) 0 0
\(621\) 836.677 0.0540655
\(622\) 0 0
\(623\) 4766.94i 0.306554i
\(624\) 0 0
\(625\) −12751.1 −0.816070
\(626\) 0 0
\(627\) 688.288 0.0438398
\(628\) 0 0
\(629\) 3022.16 1332.65i 0.191576 0.0844771i
\(630\) 0 0
\(631\) 10472.0 0.660672 0.330336 0.943863i \(-0.392838\pi\)
0.330336 + 0.943863i \(0.392838\pi\)
\(632\) 0 0
\(633\) 13162.2 0.826461
\(634\) 0 0
\(635\) 37644.2i 2.35254i
\(636\) 0 0
\(637\) −5305.14 −0.329980
\(638\) 0 0
\(639\) 8058.52i 0.498889i
\(640\) 0 0
\(641\) 9806.52i 0.604266i 0.953266 + 0.302133i \(0.0976986\pi\)
−0.953266 + 0.302133i \(0.902301\pi\)
\(642\) 0 0
\(643\) 13782.6i 0.845307i −0.906291 0.422653i \(-0.861099\pi\)
0.906291 0.422653i \(-0.138901\pi\)
\(644\) 0 0
\(645\) −18533.8 −1.13142
\(646\) 0 0
\(647\) −13972.3 −0.849005 −0.424502 0.905427i \(-0.639551\pi\)
−0.424502 + 0.905427i \(0.639551\pi\)
\(648\) 0 0
\(649\) 188.777i 0.0114178i
\(650\) 0 0
\(651\) 540.000i 0.0325104i
\(652\) 0 0
\(653\) 469.753i 0.0281514i −0.999901 0.0140757i \(-0.995519\pi\)
0.999901 0.0140757i \(-0.00448058\pi\)
\(654\) 0 0
\(655\) −31786.6 −1.89619
\(656\) 0 0
\(657\) 9603.45i 0.570269i
\(658\) 0 0
\(659\) −6126.73 −0.362160 −0.181080 0.983468i \(-0.557959\pi\)
−0.181080 + 0.983468i \(0.557959\pi\)
\(660\) 0 0
\(661\) −19862.7 −1.16879 −0.584393 0.811471i \(-0.698667\pi\)
−0.584393 + 0.811471i \(0.698667\pi\)
\(662\) 0 0
\(663\) −3324.83 + 1466.11i −0.194760 + 0.0858811i
\(664\) 0 0
\(665\) −14374.3 −0.838215
\(666\) 0 0
\(667\) 1850.22 0.107407
\(668\) 0 0
\(669\) 2756.37i 0.159294i
\(670\) 0 0
\(671\) 643.222 0.0370064
\(672\) 0 0
\(673\) 29895.9i 1.71234i −0.516697 0.856169i \(-0.672838\pi\)
0.516697 0.856169i \(-0.327162\pi\)
\(674\) 0 0
\(675\) 3910.73i 0.222998i
\(676\) 0 0
\(677\) 3689.27i 0.209439i 0.994502 + 0.104719i \(0.0333945\pi\)
−0.994502 + 0.104719i \(0.966606\pi\)
\(678\) 0 0
\(679\) −6037.47 −0.341232
\(680\) 0 0
\(681\) −5262.94 −0.296147
\(682\) 0 0
\(683\) 14206.2i 0.795879i −0.917412 0.397940i \(-0.869725\pi\)
0.917412 0.397940i \(-0.130275\pi\)
\(684\) 0 0
\(685\) 15992.2i 0.892016i
\(686\) 0 0
\(687\) 5577.54i 0.309747i
\(688\) 0 0
\(689\) 9731.08 0.538062
\(690\) 0 0
\(691\) 36094.2i 1.98710i −0.113391 0.993550i \(-0.536171\pi\)
0.113391 0.993550i \(-0.463829\pi\)
\(692\) 0 0
\(693\) 84.9495 0.00465652
\(694\) 0 0
\(695\) 5098.71 0.278281
\(696\) 0 0
\(697\) −14686.0 + 6475.91i −0.798094 + 0.351926i
\(698\) 0 0
\(699\) −4612.29 −0.249575
\(700\) 0 0
\(701\) 17089.4 0.920767 0.460383 0.887720i \(-0.347712\pi\)
0.460383 + 0.887720i \(0.347712\pi\)
\(702\) 0 0
\(703\) 6872.40i 0.368702i
\(704\) 0 0
\(705\) −22511.7 −1.20261
\(706\) 0 0
\(707\) 2365.04i 0.125808i
\(708\) 0 0
\(709\) 17325.6i 0.917737i −0.888504 0.458868i \(-0.848255\pi\)
0.888504 0.458868i \(-0.151745\pi\)
\(710\) 0 0
\(711\) 9349.25i 0.493143i
\(712\) 0 0
\(713\) 929.641 0.0488293
\(714\) 0 0
\(715\) 446.560 0.0233572
\(716\) 0 0
\(717\) 11714.1i 0.610140i
\(718\) 0 0
\(719\) 3861.73i 0.200304i −0.994972 0.100152i \(-0.968067\pi\)
0.994972 0.100152i \(-0.0319329\pi\)
\(720\) 0 0
\(721\) 4493.35i 0.232096i
\(722\) 0 0
\(723\) −7108.92 −0.365676
\(724\) 0 0
\(725\) 8648.13i 0.443012i
\(726\) 0 0
\(727\) −3016.23 −0.153873 −0.0769366 0.997036i \(-0.524514\pi\)
−0.0769366 + 0.997036i \(0.524514\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 10635.9 + 24120.0i 0.538146 + 1.22040i
\(732\) 0 0
\(733\) −6778.92 −0.341590 −0.170795 0.985307i \(-0.554634\pi\)
−0.170795 + 0.985307i \(0.554634\pi\)
\(734\) 0 0
\(735\) 15129.1 0.759247
\(736\) 0 0
\(737\) 322.686i 0.0161279i
\(738\) 0 0
\(739\) −25629.9 −1.27579 −0.637896 0.770123i \(-0.720195\pi\)
−0.637896 + 0.770123i \(0.720195\pi\)
\(740\) 0 0
\(741\) 7560.69i 0.374830i
\(742\) 0 0
\(743\) 8981.07i 0.443450i −0.975109 0.221725i \(-0.928831\pi\)
0.975109 0.221725i \(-0.0711688\pi\)
\(744\) 0 0
\(745\) 44036.5i 2.16560i
\(746\) 0 0
\(747\) 9897.15 0.484763
\(748\) 0 0
\(749\) −7202.88 −0.351385
\(750\) 0 0
\(751\) 4198.37i 0.203996i −0.994785 0.101998i \(-0.967477\pi\)
0.994785 0.101998i \(-0.0325235\pi\)
\(752\) 0 0
\(753\) 22068.7i 1.06803i
\(754\) 0 0
\(755\) 3726.89i 0.179649i
\(756\) 0 0
\(757\) 11693.1 0.561418 0.280709 0.959793i \(-0.409430\pi\)
0.280709 + 0.959793i \(0.409430\pi\)
\(758\) 0 0
\(759\) 146.245i 0.00699390i
\(760\) 0 0
\(761\) 13505.6 0.643333 0.321667 0.946853i \(-0.395757\pi\)
0.321667 + 0.946853i \(0.395757\pi\)
\(762\) 0 0
\(763\) 6500.63 0.308439
\(764\) 0 0
\(765\) 9481.73 4181.05i 0.448121 0.197603i
\(766\) 0 0
\(767\) −2073.67 −0.0976217
\(768\) 0 0
\(769\) 15256.1 0.715407 0.357704 0.933835i \(-0.383560\pi\)
0.357704 + 0.933835i \(0.383560\pi\)
\(770\) 0 0
\(771\) 10246.0i 0.478599i
\(772\) 0 0
\(773\) −16038.3 −0.746256 −0.373128 0.927780i \(-0.621715\pi\)
−0.373128 + 0.927780i \(0.621715\pi\)
\(774\) 0 0
\(775\) 4345.25i 0.201401i
\(776\) 0 0
\(777\) 848.202i 0.0391623i
\(778\) 0 0
\(779\) 33396.0i 1.53599i
\(780\) 0 0
\(781\) 1408.57 0.0645362
\(782\) 0 0
\(783\) −1612.10 −0.0735783
\(784\) 0 0
\(785\) 5800.45i 0.263729i
\(786\) 0 0
\(787\) 26105.8i 1.18243i 0.806514 + 0.591215i \(0.201352\pi\)
−0.806514 + 0.591215i \(0.798648\pi\)
\(788\) 0 0
\(789\) 9090.65i 0.410185i
\(790\) 0 0
\(791\) −6162.36 −0.277002
\(792\) 0 0
\(793\) 7065.64i 0.316404i
\(794\) 0 0
\(795\) −27751.0 −1.23802
\(796\) 0 0
\(797\) 5988.53 0.266154 0.133077 0.991106i \(-0.457514\pi\)
0.133077 + 0.991106i \(0.457514\pi\)
\(798\) 0 0
\(799\) 12918.7 + 29296.9i 0.572005 + 1.29718i
\(800\) 0 0
\(801\) 7150.40 0.315415
\(802\) 0 0
\(803\) −1678.62 −0.0737698
\(804\) 0 0
\(805\) 3054.22i 0.133723i
\(806\) 0 0
\(807\) 16348.7 0.713138
\(808\) 0 0
\(809\) 44380.7i 1.92873i 0.264577 + 0.964365i \(0.414768\pi\)
−0.264577 + 0.964365i \(0.585232\pi\)
\(810\) 0 0
\(811\) 33546.5i 1.45250i −0.687432 0.726249i \(-0.741262\pi\)
0.687432 0.726249i \(-0.258738\pi\)
\(812\) 0 0
\(813\) 7884.43i 0.340122i
\(814\) 0 0
\(815\) −17588.3 −0.755941
\(816\) 0 0
\(817\) −54849.1 −2.34875
\(818\) 0 0
\(819\) 933.151i 0.0398131i
\(820\) 0 0
\(821\) 13701.7i 0.582451i −0.956654 0.291226i \(-0.905937\pi\)
0.956654 0.291226i \(-0.0940630\pi\)
\(822\) 0 0
\(823\) 4440.76i 0.188087i 0.995568 + 0.0940433i \(0.0299792\pi\)
−0.995568 + 0.0940433i \(0.970021\pi\)
\(824\) 0 0
\(825\) −683.569 −0.0288470
\(826\) 0 0
\(827\) 8705.42i 0.366043i 0.983109 + 0.183021i \(0.0585877\pi\)
−0.983109 + 0.183021i \(0.941412\pi\)
\(828\) 0 0
\(829\) 5755.30 0.241121 0.120561 0.992706i \(-0.461531\pi\)
0.120561 + 0.992706i \(0.461531\pi\)
\(830\) 0 0
\(831\) −21399.4 −0.893306
\(832\) 0 0
\(833\) −8682.14 19689.2i −0.361126 0.818957i
\(834\) 0 0
\(835\) −12228.3 −0.506799
\(836\) 0 0
\(837\) −810.000 −0.0334501
\(838\) 0 0
\(839\) 29272.2i 1.20451i 0.798302 + 0.602257i \(0.205732\pi\)
−0.798302 + 0.602257i \(0.794268\pi\)
\(840\) 0 0
\(841\) 20824.0 0.853828
\(842\) 0 0
\(843\) 18030.8i 0.736670i
\(844\) 0 0
\(845\) 31184.4i 1.26956i
\(846\) 0 0
\(847\) 7971.15i 0.323367i
\(848\) 0 0
\(849\) −3678.56 −0.148702
\(850\) 0 0
\(851\) −1460.23 −0.0588202
\(852\) 0 0
\(853\) 45569.0i 1.82913i −0.404434 0.914567i \(-0.632531\pi\)
0.404434 0.914567i \(-0.367469\pi\)
\(854\) 0 0
\(855\) 21561.5i 0.862442i
\(856\) 0 0
\(857\) 33462.5i 1.33379i −0.745151 0.666895i \(-0.767623\pi\)
0.745151 0.666895i \(-0.232377\pi\)
\(858\) 0 0
\(859\) −7859.19 −0.312168 −0.156084 0.987744i \(-0.549887\pi\)
−0.156084 + 0.987744i \(0.549887\pi\)
\(860\) 0 0
\(861\) 4121.78i 0.163148i
\(862\) 0 0
\(863\) 17613.4 0.694746 0.347373 0.937727i \(-0.387074\pi\)
0.347373 + 0.937727i \(0.387074\pi\)
\(864\) 0 0
\(865\) −47153.8 −1.85350
\(866\) 0 0
\(867\) −10882.5 9940.25i −0.426286 0.389376i
\(868\) 0 0
\(869\) 1634.19 0.0637928
\(870\) 0 0
\(871\) 3544.63 0.137894
\(872\) 0 0
\(873\) 9056.20i 0.351095i
\(874\) 0 0
\(875\) 1955.63 0.0755568
\(876\) 0 0
\(877\) 38660.0i 1.48855i −0.667874 0.744274i \(-0.732796\pi\)
0.667874 0.744274i \(-0.267204\pi\)
\(878\) 0 0
\(879\) 25379.2i 0.973855i
\(880\) 0 0
\(881\) 15647.5i 0.598384i 0.954193 + 0.299192i \(0.0967172\pi\)
−0.954193 + 0.299192i \(0.903283\pi\)
\(882\) 0 0
\(883\) 12759.6 0.486291 0.243145 0.969990i \(-0.421821\pi\)
0.243145 + 0.969990i \(0.421821\pi\)
\(884\) 0 0
\(885\) 5913.67 0.224617
\(886\) 0 0
\(887\) 18022.4i 0.682225i −0.940022 0.341113i \(-0.889196\pi\)
0.940022 0.341113i \(-0.110804\pi\)
\(888\) 0 0
\(889\) 13749.8i 0.518731i
\(890\) 0 0
\(891\) 127.424i 0.00479111i
\(892\) 0 0
\(893\) −66621.4 −2.49653
\(894\) 0 0
\(895\) 18792.8i 0.701871i
\(896\) 0 0
\(897\) 1606.47 0.0597977
\(898\) 0 0
\(899\) −1791.22 −0.0664523
\(900\) 0 0
\(901\) 15925.4 + 36115.5i 0.588849 + 1.33538i
\(902\) 0 0
\(903\) −6769.56 −0.249476
\(904\) 0 0
\(905\) −57758.0 −2.12148
\(906\) 0 0
\(907\) 51434.0i 1.88295i −0.337078 0.941477i \(-0.609439\pi\)
0.337078 0.941477i \(-0.390561\pi\)
\(908\) 0 0
\(909\) 3547.56 0.129444
\(910\) 0 0
\(911\) 7890.19i 0.286953i −0.989654 0.143476i \(-0.954172\pi\)
0.989654 0.143476i \(-0.0458281\pi\)
\(912\) 0 0
\(913\) 1729.96i 0.0627088i
\(914\) 0 0
\(915\) 20149.7i 0.728010i
\(916\) 0 0
\(917\) −11610.2 −0.418107
\(918\) 0 0
\(919\) 46068.0 1.65358 0.826792 0.562507i \(-0.190163\pi\)
0.826792 + 0.562507i \(0.190163\pi\)
\(920\) 0 0
\(921\) 10154.3i 0.363297i
\(922\) 0 0
\(923\) 15472.9i 0.551783i
\(924\) 0 0
\(925\) 6825.28i 0.242610i
\(926\) 0 0
\(927\) 6740.03 0.238804
\(928\) 0 0
\(929\) 28007.0i 0.989106i 0.869147 + 0.494553i \(0.164668\pi\)
−0.869147 + 0.494553i \(0.835332\pi\)
\(930\) 0 0
\(931\) 44773.4 1.57614
\(932\) 0 0
\(933\) −2583.01 −0.0906365
\(934\) 0 0
\(935\) 730.820 + 1657.34i 0.0255619 + 0.0579689i
\(936\) 0 0
\(937\) 42032.8 1.46548 0.732738 0.680511i \(-0.238242\pi\)
0.732738 + 0.680511i \(0.238242\pi\)
\(938\) 0 0
\(939\) −2851.95 −0.0991158
\(940\) 0 0
\(941\) 31863.4i 1.10384i −0.833896 0.551922i \(-0.813895\pi\)
0.833896 0.551922i \(-0.186105\pi\)
\(942\) 0 0
\(943\) 7095.89 0.245041
\(944\) 0 0
\(945\) 2661.15i 0.0916056i
\(946\) 0 0
\(947\) 42612.1i 1.46220i 0.682269 + 0.731102i \(0.260993\pi\)
−0.682269 + 0.731102i \(0.739007\pi\)
\(948\) 0 0
\(949\) 18439.3i 0.630731i
\(950\) 0 0
\(951\) 25203.5 0.859390
\(952\) 0 0
\(953\) −6529.28 −0.221935 −0.110968 0.993824i \(-0.535395\pi\)
−0.110968 + 0.993824i \(0.535395\pi\)
\(954\) 0 0
\(955\) 68230.8i 2.31193i
\(956\) 0 0
\(957\) 281.784i 0.00951807i
\(958\) 0 0
\(959\) 5841.24i 0.196688i
\(960\) 0 0
\(961\) 28891.0 0.969790
\(962\) 0 0
\(963\) 10804.3i 0.361541i
\(964\) 0 0
\(965\) 67200.8 2.24173
\(966\) 0 0
\(967\) −21784.1 −0.724436 −0.362218 0.932093i \(-0.617980\pi\)
−0.362218 + 0.932093i \(0.617980\pi\)
\(968\) 0 0
\(969\) 28060.4 12373.5i 0.930267 0.410210i
\(970\) 0 0
\(971\) 293.579 0.00970279 0.00485140 0.999988i \(-0.498456\pi\)
0.00485140 + 0.999988i \(0.498456\pi\)
\(972\) 0 0
\(973\) 1862.33 0.0613603
\(974\) 0 0
\(975\) 7508.85i 0.246642i
\(976\) 0 0
\(977\) 42000.5 1.37535 0.687673 0.726020i \(-0.258632\pi\)
0.687673 + 0.726020i \(0.258632\pi\)
\(978\) 0 0
\(979\) 1249.84i 0.0408020i
\(980\) 0 0
\(981\) 9750.95i 0.317354i
\(982\) 0 0
\(983\) 4754.22i 0.154258i −0.997021 0.0771292i \(-0.975425\pi\)
0.997021 0.0771292i \(-0.0245754\pi\)
\(984\) 0 0
\(985\) 79239.0 2.56321
\(986\) 0 0
\(987\) −8222.50 −0.265172
\(988\) 0 0
\(989\) 11654.2i 0.374703i
\(990\) 0 0
\(991\) 44080.5i 1.41298i 0.707722 + 0.706491i \(0.249723\pi\)
−0.707722 + 0.706491i \(0.750277\pi\)
\(992\) 0 0
\(993\) 12384.6i 0.395784i
\(994\) 0 0
\(995\) 49046.4 1.56269
\(996\) 0 0
\(997\) 6073.28i 0.192922i 0.995337 + 0.0964608i \(0.0307522\pi\)
−0.995337 + 0.0964608i \(0.969248\pi\)
\(998\) 0 0
\(999\) 1272.30 0.0402942
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.4.c.b.577.3 4
4.3 odd 2 102.4.b.a.67.1 4
12.11 even 2 306.4.b.e.271.4 4
17.16 even 2 inner 816.4.c.b.577.2 4
68.47 odd 4 1734.4.a.s.1.2 2
68.55 odd 4 1734.4.a.m.1.1 2
68.67 odd 2 102.4.b.a.67.4 yes 4
204.203 even 2 306.4.b.e.271.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.4.b.a.67.1 4 4.3 odd 2
102.4.b.a.67.4 yes 4 68.67 odd 2
306.4.b.e.271.1 4 204.203 even 2
306.4.b.e.271.4 4 12.11 even 2
816.4.c.b.577.2 4 17.16 even 2 inner
816.4.c.b.577.3 4 1.1 even 1 trivial
1734.4.a.m.1.1 2 68.55 odd 4
1734.4.a.s.1.2 2 68.47 odd 4