Properties

Label 1734.4.a.s.1.2
Level $1734$
Weight $4$
Character 1734.1
Self dual yes
Analytic conductor $102.309$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1734,4,Mod(1,1734)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1734.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1734, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1734.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,6,8,9,12,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(102.309311950\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{569}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 142 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-11.4269\) of defining polynomial
Character \(\chi\) \(=\) 1734.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.00000 q^{3} +4.00000 q^{4} +16.4269 q^{5} +6.00000 q^{6} +6.00000 q^{7} +8.00000 q^{8} +9.00000 q^{9} +32.8537 q^{10} +1.57314 q^{11} +12.0000 q^{12} -17.2806 q^{13} +12.0000 q^{14} +49.2806 q^{15} +16.0000 q^{16} +18.0000 q^{18} +145.842 q^{19} +65.7074 q^{20} +18.0000 q^{21} +3.14628 q^{22} -30.9880 q^{23} +24.0000 q^{24} +144.842 q^{25} -34.5612 q^{26} +27.0000 q^{27} +24.0000 q^{28} +59.7074 q^{29} +98.5612 q^{30} -30.0000 q^{31} +32.0000 q^{32} +4.71942 q^{33} +98.5612 q^{35} +36.0000 q^{36} -47.1223 q^{37} +291.683 q^{38} -51.8417 q^{39} +131.415 q^{40} -228.988 q^{41} +36.0000 q^{42} -376.086 q^{43} +6.29256 q^{44} +147.842 q^{45} -61.9760 q^{46} +456.806 q^{47} +48.0000 q^{48} -307.000 q^{49} +289.683 q^{50} -69.1223 q^{52} +563.122 q^{53} +54.0000 q^{54} +25.8417 q^{55} +48.0000 q^{56} +437.525 q^{57} +119.415 q^{58} +120.000 q^{59} +197.122 q^{60} +408.878 q^{61} -60.0000 q^{62} +54.0000 q^{63} +64.0000 q^{64} -283.866 q^{65} +9.43884 q^{66} +205.122 q^{67} -92.9641 q^{69} +197.122 q^{70} +895.391 q^{71} +72.0000 q^{72} +1067.05 q^{73} -94.2447 q^{74} +434.525 q^{75} +583.367 q^{76} +9.43884 q^{77} -103.683 q^{78} -1038.81 q^{79} +262.830 q^{80} +81.0000 q^{81} -457.976 q^{82} -1099.68 q^{83} +72.0000 q^{84} -752.173 q^{86} +179.122 q^{87} +12.5851 q^{88} -794.489 q^{89} +295.683 q^{90} -103.683 q^{91} -123.952 q^{92} -90.0000 q^{93} +913.612 q^{94} +2395.72 q^{95} +96.0000 q^{96} +1006.24 q^{97} -614.000 q^{98} +14.1583 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 6 q^{3} + 8 q^{4} + 9 q^{5} + 12 q^{6} + 12 q^{7} + 16 q^{8} + 18 q^{9} + 18 q^{10} + 27 q^{11} + 24 q^{12} + 37 q^{13} + 24 q^{14} + 27 q^{15} + 32 q^{16} + 36 q^{18} + 77 q^{19} + 36 q^{20}+ \cdots + 243 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.00000 0.577350
\(4\) 4.00000 0.500000
\(5\) 16.4269 1.46926 0.734632 0.678466i \(-0.237355\pi\)
0.734632 + 0.678466i \(0.237355\pi\)
\(6\) 6.00000 0.408248
\(7\) 6.00000 0.323970 0.161985 0.986793i \(-0.448210\pi\)
0.161985 + 0.986793i \(0.448210\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) 32.8537 1.03893
\(11\) 1.57314 0.0431199 0.0215600 0.999768i \(-0.493137\pi\)
0.0215600 + 0.999768i \(0.493137\pi\)
\(12\) 12.0000 0.288675
\(13\) −17.2806 −0.368675 −0.184337 0.982863i \(-0.559014\pi\)
−0.184337 + 0.982863i \(0.559014\pi\)
\(14\) 12.0000 0.229081
\(15\) 49.2806 0.848279
\(16\) 16.0000 0.250000
\(17\) 0 0
\(18\) 18.0000 0.235702
\(19\) 145.842 1.76097 0.880484 0.474076i \(-0.157218\pi\)
0.880484 + 0.474076i \(0.157218\pi\)
\(20\) 65.7074 0.734632
\(21\) 18.0000 0.187044
\(22\) 3.14628 0.0304904
\(23\) −30.9880 −0.280933 −0.140466 0.990085i \(-0.544860\pi\)
−0.140466 + 0.990085i \(0.544860\pi\)
\(24\) 24.0000 0.204124
\(25\) 144.842 1.15873
\(26\) −34.5612 −0.260692
\(27\) 27.0000 0.192450
\(28\) 24.0000 0.161985
\(29\) 59.7074 0.382324 0.191162 0.981559i \(-0.438774\pi\)
0.191162 + 0.981559i \(0.438774\pi\)
\(30\) 98.5612 0.599824
\(31\) −30.0000 −0.173812 −0.0869058 0.996217i \(-0.527698\pi\)
−0.0869058 + 0.996217i \(0.527698\pi\)
\(32\) 32.0000 0.176777
\(33\) 4.71942 0.0248953
\(34\) 0 0
\(35\) 98.5612 0.475996
\(36\) 36.0000 0.166667
\(37\) −47.1223 −0.209375 −0.104687 0.994505i \(-0.533384\pi\)
−0.104687 + 0.994505i \(0.533384\pi\)
\(38\) 291.683 1.24519
\(39\) −51.8417 −0.212854
\(40\) 131.415 0.519463
\(41\) −228.988 −0.872242 −0.436121 0.899888i \(-0.643648\pi\)
−0.436121 + 0.899888i \(0.643648\pi\)
\(42\) 36.0000 0.132260
\(43\) −376.086 −1.33378 −0.666891 0.745155i \(-0.732375\pi\)
−0.666891 + 0.745155i \(0.732375\pi\)
\(44\) 6.29256 0.0215600
\(45\) 147.842 0.489754
\(46\) −61.9760 −0.198649
\(47\) 456.806 1.41770 0.708851 0.705358i \(-0.249214\pi\)
0.708851 + 0.705358i \(0.249214\pi\)
\(48\) 48.0000 0.144338
\(49\) −307.000 −0.895044
\(50\) 289.683 0.819349
\(51\) 0 0
\(52\) −69.1223 −0.184337
\(53\) 563.122 1.45945 0.729725 0.683741i \(-0.239648\pi\)
0.729725 + 0.683741i \(0.239648\pi\)
\(54\) 54.0000 0.136083
\(55\) 25.8417 0.0633545
\(56\) 48.0000 0.114541
\(57\) 437.525 1.01670
\(58\) 119.415 0.270344
\(59\) 120.000 0.264791 0.132396 0.991197i \(-0.457733\pi\)
0.132396 + 0.991197i \(0.457733\pi\)
\(60\) 197.122 0.424140
\(61\) 408.878 0.858220 0.429110 0.903252i \(-0.358827\pi\)
0.429110 + 0.903252i \(0.358827\pi\)
\(62\) −60.0000 −0.122903
\(63\) 54.0000 0.107990
\(64\) 64.0000 0.125000
\(65\) −283.866 −0.541680
\(66\) 9.43884 0.0176036
\(67\) 205.122 0.374025 0.187013 0.982358i \(-0.440119\pi\)
0.187013 + 0.982358i \(0.440119\pi\)
\(68\) 0 0
\(69\) −92.9641 −0.162197
\(70\) 197.122 0.336580
\(71\) 895.391 1.49667 0.748333 0.663323i \(-0.230854\pi\)
0.748333 + 0.663323i \(0.230854\pi\)
\(72\) 72.0000 0.117851
\(73\) 1067.05 1.71081 0.855403 0.517963i \(-0.173310\pi\)
0.855403 + 0.517963i \(0.173310\pi\)
\(74\) −94.2447 −0.148050
\(75\) 434.525 0.668995
\(76\) 583.367 0.880484
\(77\) 9.43884 0.0139695
\(78\) −103.683 −0.150511
\(79\) −1038.81 −1.47943 −0.739714 0.672922i \(-0.765039\pi\)
−0.739714 + 0.672922i \(0.765039\pi\)
\(80\) 262.830 0.367316
\(81\) 81.0000 0.111111
\(82\) −457.976 −0.616768
\(83\) −1099.68 −1.45429 −0.727144 0.686485i \(-0.759153\pi\)
−0.727144 + 0.686485i \(0.759153\pi\)
\(84\) 72.0000 0.0935220
\(85\) 0 0
\(86\) −752.173 −0.943126
\(87\) 179.122 0.220735
\(88\) 12.5851 0.0152452
\(89\) −794.489 −0.946244 −0.473122 0.880997i \(-0.656873\pi\)
−0.473122 + 0.880997i \(0.656873\pi\)
\(90\) 295.683 0.346309
\(91\) −103.683 −0.119439
\(92\) −123.952 −0.140466
\(93\) −90.0000 −0.100350
\(94\) 913.612 1.00247
\(95\) 2395.72 2.58733
\(96\) 96.0000 0.102062
\(97\) 1006.24 1.05329 0.526643 0.850087i \(-0.323451\pi\)
0.526643 + 0.850087i \(0.323451\pi\)
\(98\) −614.000 −0.632891
\(99\) 14.1583 0.0143733
\(100\) 579.367 0.579367
\(101\) −394.173 −0.388333 −0.194167 0.980969i \(-0.562200\pi\)
−0.194167 + 0.980969i \(0.562200\pi\)
\(102\) 0 0
\(103\) 748.892 0.716413 0.358207 0.933642i \(-0.383388\pi\)
0.358207 + 0.933642i \(0.383388\pi\)
\(104\) −138.245 −0.130346
\(105\) 295.683 0.274817
\(106\) 1126.24 1.03199
\(107\) −1200.48 −1.08462 −0.542312 0.840177i \(-0.682451\pi\)
−0.542312 + 0.840177i \(0.682451\pi\)
\(108\) 108.000 0.0962250
\(109\) 1083.44 0.952061 0.476030 0.879429i \(-0.342075\pi\)
0.476030 + 0.879429i \(0.342075\pi\)
\(110\) 51.6835 0.0447984
\(111\) −141.367 −0.120883
\(112\) 96.0000 0.0809924
\(113\) −1027.06 −0.855024 −0.427512 0.904010i \(-0.640610\pi\)
−0.427512 + 0.904010i \(0.640610\pi\)
\(114\) 875.050 0.718912
\(115\) −509.036 −0.412764
\(116\) 238.830 0.191162
\(117\) −155.525 −0.122892
\(118\) 240.000 0.187236
\(119\) 0 0
\(120\) 394.245 0.299912
\(121\) −1328.53 −0.998141
\(122\) 817.755 0.606853
\(123\) −686.964 −0.503589
\(124\) −120.000 −0.0869058
\(125\) 325.938 0.233222
\(126\) 108.000 0.0763604
\(127\) −2291.63 −1.60117 −0.800586 0.599217i \(-0.795479\pi\)
−0.800586 + 0.599217i \(0.795479\pi\)
\(128\) 128.000 0.0883883
\(129\) −1128.26 −0.770060
\(130\) −567.731 −0.383026
\(131\) −1935.04 −1.29057 −0.645287 0.763940i \(-0.723262\pi\)
−0.645287 + 0.763940i \(0.723262\pi\)
\(132\) 18.8777 0.0124477
\(133\) 875.050 0.570500
\(134\) 410.245 0.264476
\(135\) 443.525 0.282760
\(136\) 0 0
\(137\) 973.540 0.607118 0.303559 0.952813i \(-0.401825\pi\)
0.303559 + 0.952813i \(0.401825\pi\)
\(138\) −185.928 −0.114690
\(139\) 310.388 0.189401 0.0947007 0.995506i \(-0.469811\pi\)
0.0947007 + 0.995506i \(0.469811\pi\)
\(140\) 394.245 0.237998
\(141\) 1370.42 0.818510
\(142\) 1790.78 1.05830
\(143\) −27.1848 −0.0158972
\(144\) 144.000 0.0833333
\(145\) 980.806 0.561734
\(146\) 2134.10 1.20972
\(147\) −921.000 −0.516754
\(148\) −188.489 −0.104687
\(149\) −2680.76 −1.47394 −0.736969 0.675927i \(-0.763743\pi\)
−0.736969 + 0.675927i \(0.763743\pi\)
\(150\) 869.050 0.473051
\(151\) 226.878 0.122272 0.0611359 0.998129i \(-0.480528\pi\)
0.0611359 + 0.998129i \(0.480528\pi\)
\(152\) 1166.73 0.622596
\(153\) 0 0
\(154\) 18.8777 0.00987796
\(155\) −492.806 −0.255375
\(156\) −207.367 −0.106427
\(157\) 353.108 0.179497 0.0897486 0.995964i \(-0.471394\pi\)
0.0897486 + 0.995964i \(0.471394\pi\)
\(158\) −2077.61 −1.04611
\(159\) 1689.37 0.842613
\(160\) 525.660 0.259731
\(161\) −185.928 −0.0910136
\(162\) 162.000 0.0785674
\(163\) 1070.70 0.514504 0.257252 0.966344i \(-0.417183\pi\)
0.257252 + 0.966344i \(0.417183\pi\)
\(164\) −915.952 −0.436121
\(165\) 77.5252 0.0365778
\(166\) −2199.37 −1.02834
\(167\) −744.408 −0.344934 −0.172467 0.985015i \(-0.555174\pi\)
−0.172467 + 0.985015i \(0.555174\pi\)
\(168\) 144.000 0.0661300
\(169\) −1898.38 −0.864079
\(170\) 0 0
\(171\) 1312.58 0.586989
\(172\) −1504.35 −0.666891
\(173\) 2870.53 1.26152 0.630758 0.775980i \(-0.282744\pi\)
0.630758 + 0.775980i \(0.282744\pi\)
\(174\) 358.245 0.156083
\(175\) 869.050 0.375395
\(176\) 25.1702 0.0107800
\(177\) 360.000 0.152877
\(178\) −1588.98 −0.669095
\(179\) 1144.03 0.477702 0.238851 0.971056i \(-0.423229\pi\)
0.238851 + 0.971056i \(0.423229\pi\)
\(180\) 591.367 0.244877
\(181\) −3516.07 −1.44391 −0.721955 0.691940i \(-0.756756\pi\)
−0.721955 + 0.691940i \(0.756756\pi\)
\(182\) −207.367 −0.0844564
\(183\) 1226.63 0.495494
\(184\) −247.904 −0.0993247
\(185\) −774.072 −0.307626
\(186\) −180.000 −0.0709583
\(187\) 0 0
\(188\) 1827.22 0.708851
\(189\) 162.000 0.0623480
\(190\) 4791.44 1.82952
\(191\) −4153.61 −1.57353 −0.786766 0.617251i \(-0.788246\pi\)
−0.786766 + 0.617251i \(0.788246\pi\)
\(192\) 192.000 0.0721688
\(193\) 4090.91 1.52575 0.762875 0.646546i \(-0.223787\pi\)
0.762875 + 0.646546i \(0.223787\pi\)
\(194\) 2012.49 0.744785
\(195\) −851.597 −0.312739
\(196\) −1228.00 −0.447522
\(197\) 4823.75 1.74456 0.872278 0.489010i \(-0.162642\pi\)
0.872278 + 0.489010i \(0.162642\pi\)
\(198\) 28.3165 0.0101635
\(199\) 2985.74 1.06359 0.531793 0.846874i \(-0.321518\pi\)
0.531793 + 0.846874i \(0.321518\pi\)
\(200\) 1158.73 0.409674
\(201\) 615.367 0.215943
\(202\) −788.346 −0.274593
\(203\) 358.245 0.123861
\(204\) 0 0
\(205\) −3761.55 −1.28155
\(206\) 1497.78 0.506581
\(207\) −278.892 −0.0936442
\(208\) −276.489 −0.0921687
\(209\) 229.429 0.0759328
\(210\) 591.367 0.194325
\(211\) 4387.40 1.43147 0.715736 0.698370i \(-0.246091\pi\)
0.715736 + 0.698370i \(0.246091\pi\)
\(212\) 2252.49 0.729725
\(213\) 2686.17 0.864101
\(214\) −2400.96 −0.766945
\(215\) −6177.92 −1.95968
\(216\) 216.000 0.0680414
\(217\) −180.000 −0.0563097
\(218\) 2166.88 0.673209
\(219\) 3201.15 0.987734
\(220\) 103.367 0.0316773
\(221\) 0 0
\(222\) −282.734 −0.0854768
\(223\) −918.791 −0.275905 −0.137952 0.990439i \(-0.544052\pi\)
−0.137952 + 0.990439i \(0.544052\pi\)
\(224\) 192.000 0.0572703
\(225\) 1303.58 0.386245
\(226\) −2054.12 −0.604593
\(227\) −1754.31 −0.512942 −0.256471 0.966552i \(-0.582560\pi\)
−0.256471 + 0.966552i \(0.582560\pi\)
\(228\) 1750.10 0.508348
\(229\) 1859.18 0.536498 0.268249 0.963350i \(-0.413555\pi\)
0.268249 + 0.963350i \(0.413555\pi\)
\(230\) −1018.07 −0.291868
\(231\) 28.3165 0.00806532
\(232\) 477.660 0.135172
\(233\) −1537.43 −0.432276 −0.216138 0.976363i \(-0.569346\pi\)
−0.216138 + 0.976363i \(0.569346\pi\)
\(234\) −311.050 −0.0868975
\(235\) 7503.89 2.08298
\(236\) 480.000 0.132396
\(237\) −3116.42 −0.854148
\(238\) 0 0
\(239\) −3904.69 −1.05679 −0.528396 0.848998i \(-0.677206\pi\)
−0.528396 + 0.848998i \(0.677206\pi\)
\(240\) 788.489 0.212070
\(241\) −2369.64 −0.633369 −0.316685 0.948531i \(-0.602570\pi\)
−0.316685 + 0.948531i \(0.602570\pi\)
\(242\) −2657.05 −0.705792
\(243\) 243.000 0.0641500
\(244\) 1635.51 0.429110
\(245\) −5043.05 −1.31505
\(246\) −1373.93 −0.356091
\(247\) −2520.23 −0.649224
\(248\) −240.000 −0.0614517
\(249\) −3299.05 −0.839634
\(250\) 651.875 0.164913
\(251\) 7356.23 1.84989 0.924943 0.380107i \(-0.124113\pi\)
0.924943 + 0.380107i \(0.124113\pi\)
\(252\) 216.000 0.0539949
\(253\) −48.7485 −0.0121138
\(254\) −4583.25 −1.13220
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −3415.32 −0.828957 −0.414479 0.910059i \(-0.636036\pi\)
−0.414479 + 0.910059i \(0.636036\pi\)
\(258\) −2256.52 −0.544514
\(259\) −282.734 −0.0678310
\(260\) −1135.46 −0.270840
\(261\) 537.367 0.127441
\(262\) −3870.08 −0.912574
\(263\) 3030.22 0.710460 0.355230 0.934779i \(-0.384402\pi\)
0.355230 + 0.934779i \(0.384402\pi\)
\(264\) 37.7553 0.00880182
\(265\) 9250.33 2.14431
\(266\) 1750.10 0.403404
\(267\) −2383.47 −0.546314
\(268\) 820.489 0.187013
\(269\) 5449.58 1.23519 0.617596 0.786496i \(-0.288107\pi\)
0.617596 + 0.786496i \(0.288107\pi\)
\(270\) 887.050 0.199941
\(271\) 2628.14 0.589109 0.294554 0.955635i \(-0.404829\pi\)
0.294554 + 0.955635i \(0.404829\pi\)
\(272\) 0 0
\(273\) −311.050 −0.0689584
\(274\) 1947.08 0.429297
\(275\) 227.856 0.0499645
\(276\) −371.856 −0.0810983
\(277\) −7133.14 −1.54725 −0.773626 0.633643i \(-0.781559\pi\)
−0.773626 + 0.633643i \(0.781559\pi\)
\(278\) 620.777 0.133927
\(279\) −270.000 −0.0579372
\(280\) 788.489 0.168290
\(281\) −6010.26 −1.27595 −0.637975 0.770057i \(-0.720228\pi\)
−0.637975 + 0.770057i \(0.720228\pi\)
\(282\) 2740.83 0.578774
\(283\) −1226.19 −0.257559 −0.128780 0.991673i \(-0.541106\pi\)
−0.128780 + 0.991673i \(0.541106\pi\)
\(284\) 3581.56 0.748333
\(285\) 7187.17 1.49379
\(286\) −54.3695 −0.0112410
\(287\) −1373.93 −0.282580
\(288\) 288.000 0.0589256
\(289\) 0 0
\(290\) 1961.61 0.397206
\(291\) 3018.73 0.608114
\(292\) 4268.20 0.855403
\(293\) 8459.73 1.68677 0.843383 0.537312i \(-0.180560\pi\)
0.843383 + 0.537312i \(0.180560\pi\)
\(294\) −1842.00 −0.365400
\(295\) 1971.22 0.389048
\(296\) −376.979 −0.0740251
\(297\) 42.4748 0.00829844
\(298\) −5361.53 −1.04223
\(299\) 535.491 0.103573
\(300\) 1738.10 0.334498
\(301\) −2256.52 −0.432105
\(302\) 453.755 0.0864592
\(303\) −1182.52 −0.224204
\(304\) 2333.47 0.440242
\(305\) 6716.58 1.26095
\(306\) 0 0
\(307\) −3384.78 −0.629249 −0.314624 0.949216i \(-0.601879\pi\)
−0.314624 + 0.949216i \(0.601879\pi\)
\(308\) 37.7553 0.00698477
\(309\) 2246.68 0.413621
\(310\) −985.612 −0.180577
\(311\) 861.003 0.156987 0.0784935 0.996915i \(-0.474989\pi\)
0.0784935 + 0.996915i \(0.474989\pi\)
\(312\) −414.734 −0.0752554
\(313\) 950.648 0.171674 0.0858368 0.996309i \(-0.472644\pi\)
0.0858368 + 0.996309i \(0.472644\pi\)
\(314\) 706.216 0.126924
\(315\) 887.050 0.158665
\(316\) −4155.22 −0.739714
\(317\) −8401.18 −1.48851 −0.744254 0.667897i \(-0.767195\pi\)
−0.744254 + 0.667897i \(0.767195\pi\)
\(318\) 3378.73 0.595818
\(319\) 93.9281 0.0164858
\(320\) 1051.32 0.183658
\(321\) −3601.44 −0.626208
\(322\) −371.856 −0.0643563
\(323\) 0 0
\(324\) 324.000 0.0555556
\(325\) −2502.95 −0.427196
\(326\) 2141.41 0.363809
\(327\) 3250.32 0.549673
\(328\) −1831.90 −0.308384
\(329\) 2740.83 0.459292
\(330\) 155.050 0.0258644
\(331\) −4128.20 −0.685518 −0.342759 0.939423i \(-0.611361\pi\)
−0.342759 + 0.939423i \(0.611361\pi\)
\(332\) −4398.73 −0.727144
\(333\) −424.101 −0.0697916
\(334\) −1488.82 −0.243905
\(335\) 3369.52 0.549541
\(336\) 288.000 0.0467610
\(337\) 40.2293 0.00650276 0.00325138 0.999995i \(-0.498965\pi\)
0.00325138 + 0.999995i \(0.498965\pi\)
\(338\) −3796.76 −0.610996
\(339\) −3081.18 −0.493648
\(340\) 0 0
\(341\) −47.1942 −0.00749475
\(342\) 2625.15 0.415064
\(343\) −3900.00 −0.613936
\(344\) −3008.69 −0.471563
\(345\) −1527.11 −0.238309
\(346\) 5741.06 0.892026
\(347\) −1137.51 −0.175978 −0.0879892 0.996121i \(-0.528044\pi\)
−0.0879892 + 0.996121i \(0.528044\pi\)
\(348\) 716.489 0.110367
\(349\) −625.741 −0.0959746 −0.0479873 0.998848i \(-0.515281\pi\)
−0.0479873 + 0.998848i \(0.515281\pi\)
\(350\) 1738.10 0.265444
\(351\) −466.576 −0.0709515
\(352\) 50.3405 0.00762260
\(353\) −6354.81 −0.958165 −0.479082 0.877770i \(-0.659031\pi\)
−0.479082 + 0.877770i \(0.659031\pi\)
\(354\) 720.000 0.108100
\(355\) 14708.5 2.19900
\(356\) −3177.96 −0.473122
\(357\) 0 0
\(358\) 2288.06 0.337787
\(359\) 10466.9 1.53878 0.769388 0.638781i \(-0.220561\pi\)
0.769388 + 0.638781i \(0.220561\pi\)
\(360\) 1182.73 0.173154
\(361\) 14410.8 2.10101
\(362\) −7032.14 −1.02100
\(363\) −3985.58 −0.576277
\(364\) −414.734 −0.0597197
\(365\) 17528.3 2.51362
\(366\) 2453.27 0.350367
\(367\) 8320.39 1.18344 0.591718 0.806145i \(-0.298450\pi\)
0.591718 + 0.806145i \(0.298450\pi\)
\(368\) −495.808 −0.0702331
\(369\) −2060.89 −0.290747
\(370\) −1548.14 −0.217525
\(371\) 3378.73 0.472817
\(372\) −360.000 −0.0501751
\(373\) 265.251 0.0368208 0.0184104 0.999831i \(-0.494139\pi\)
0.0184104 + 0.999831i \(0.494139\pi\)
\(374\) 0 0
\(375\) 977.813 0.134651
\(376\) 3654.45 0.501233
\(377\) −1031.78 −0.140953
\(378\) 324.000 0.0440867
\(379\) 10168.5 1.37815 0.689077 0.724688i \(-0.258016\pi\)
0.689077 + 0.724688i \(0.258016\pi\)
\(380\) 9582.89 1.29366
\(381\) −6874.88 −0.924438
\(382\) −8307.22 −1.11266
\(383\) 1646.79 0.219705 0.109853 0.993948i \(-0.464962\pi\)
0.109853 + 0.993948i \(0.464962\pi\)
\(384\) 384.000 0.0510310
\(385\) 155.050 0.0205249
\(386\) 8181.81 1.07887
\(387\) −3384.78 −0.444594
\(388\) 4024.98 0.526643
\(389\) −6268.68 −0.817055 −0.408528 0.912746i \(-0.633958\pi\)
−0.408528 + 0.912746i \(0.633958\pi\)
\(390\) −1703.19 −0.221140
\(391\) 0 0
\(392\) −2456.00 −0.316446
\(393\) −5805.12 −0.745114
\(394\) 9647.49 1.23359
\(395\) −17064.3 −2.17367
\(396\) 56.6330 0.00718666
\(397\) −13537.7 −1.71143 −0.855716 0.517446i \(-0.826883\pi\)
−0.855716 + 0.517446i \(0.826883\pi\)
\(398\) 5971.48 0.752069
\(399\) 2625.15 0.329378
\(400\) 2317.47 0.289683
\(401\) −6490.51 −0.808281 −0.404141 0.914697i \(-0.632429\pi\)
−0.404141 + 0.914697i \(0.632429\pi\)
\(402\) 1230.73 0.152695
\(403\) 518.417 0.0640799
\(404\) −1576.69 −0.194167
\(405\) 1330.58 0.163251
\(406\) 716.489 0.0875832
\(407\) −74.1300 −0.00902822
\(408\) 0 0
\(409\) −7733.80 −0.934992 −0.467496 0.883995i \(-0.654844\pi\)
−0.467496 + 0.883995i \(0.654844\pi\)
\(410\) −7523.11 −0.906195
\(411\) 2920.62 0.350520
\(412\) 2995.57 0.358207
\(413\) 720.000 0.0857842
\(414\) −557.784 −0.0662164
\(415\) −18064.3 −2.13673
\(416\) −552.979 −0.0651731
\(417\) 931.165 0.109351
\(418\) 458.859 0.0536926
\(419\) 8170.70 0.952660 0.476330 0.879267i \(-0.341967\pi\)
0.476330 + 0.879267i \(0.341967\pi\)
\(420\) 1182.73 0.137408
\(421\) −13732.6 −1.58975 −0.794874 0.606774i \(-0.792463\pi\)
−0.794874 + 0.606774i \(0.792463\pi\)
\(422\) 8774.79 1.01220
\(423\) 4111.25 0.472567
\(424\) 4504.98 0.515993
\(425\) 0 0
\(426\) 5372.35 0.611012
\(427\) 2453.27 0.278037
\(428\) −4801.92 −0.542312
\(429\) −81.5543 −0.00917827
\(430\) −12355.8 −1.38570
\(431\) 13075.7 1.46133 0.730667 0.682734i \(-0.239209\pi\)
0.730667 + 0.682734i \(0.239209\pi\)
\(432\) 432.000 0.0481125
\(433\) −16873.0 −1.87266 −0.936331 0.351118i \(-0.885802\pi\)
−0.936331 + 0.351118i \(0.885802\pi\)
\(434\) −360.000 −0.0398169
\(435\) 2942.42 0.324318
\(436\) 4333.76 0.476030
\(437\) −4519.35 −0.494713
\(438\) 6402.30 0.698433
\(439\) 16207.3 1.76203 0.881014 0.473089i \(-0.156861\pi\)
0.881014 + 0.473089i \(0.156861\pi\)
\(440\) 206.734 0.0223992
\(441\) −2763.00 −0.298348
\(442\) 0 0
\(443\) 8022.65 0.860423 0.430212 0.902728i \(-0.358439\pi\)
0.430212 + 0.902728i \(0.358439\pi\)
\(444\) −565.468 −0.0604413
\(445\) −13051.0 −1.39028
\(446\) −1837.58 −0.195094
\(447\) −8042.29 −0.850978
\(448\) 384.000 0.0404962
\(449\) 4730.44 0.497201 0.248600 0.968606i \(-0.420029\pi\)
0.248600 + 0.968606i \(0.420029\pi\)
\(450\) 2607.15 0.273116
\(451\) −360.230 −0.0376110
\(452\) −4108.24 −0.427512
\(453\) 680.633 0.0705937
\(454\) −3508.62 −0.362705
\(455\) −1703.19 −0.175488
\(456\) 3500.20 0.359456
\(457\) −840.447 −0.0860273 −0.0430136 0.999074i \(-0.513696\pi\)
−0.0430136 + 0.999074i \(0.513696\pi\)
\(458\) 3718.36 0.379362
\(459\) 0 0
\(460\) −2036.14 −0.206382
\(461\) −6788.88 −0.685878 −0.342939 0.939358i \(-0.611422\pi\)
−0.342939 + 0.939358i \(0.611422\pi\)
\(462\) 56.6330 0.00570304
\(463\) −11545.7 −1.15890 −0.579452 0.815006i \(-0.696733\pi\)
−0.579452 + 0.815006i \(0.696733\pi\)
\(464\) 955.319 0.0955810
\(465\) −1478.42 −0.147441
\(466\) −3074.86 −0.305665
\(467\) −174.303 −0.0172715 −0.00863573 0.999963i \(-0.502749\pi\)
−0.00863573 + 0.999963i \(0.502749\pi\)
\(468\) −622.101 −0.0614458
\(469\) 1230.73 0.121173
\(470\) 15007.8 1.47289
\(471\) 1059.32 0.103633
\(472\) 960.000 0.0936178
\(473\) −591.636 −0.0575126
\(474\) −6232.83 −0.603974
\(475\) 21124.0 2.04049
\(476\) 0 0
\(477\) 5068.10 0.486483
\(478\) −7809.38 −0.747265
\(479\) −16182.7 −1.54365 −0.771824 0.635837i \(-0.780655\pi\)
−0.771824 + 0.635837i \(0.780655\pi\)
\(480\) 1576.98 0.149956
\(481\) 814.301 0.0771911
\(482\) −4739.28 −0.447860
\(483\) −557.784 −0.0525467
\(484\) −5314.10 −0.499070
\(485\) 16529.4 1.54755
\(486\) 486.000 0.0453609
\(487\) −17815.3 −1.65767 −0.828837 0.559491i \(-0.810997\pi\)
−0.828837 + 0.559491i \(0.810997\pi\)
\(488\) 3271.02 0.303427
\(489\) 3212.11 0.297049
\(490\) −10086.1 −0.929884
\(491\) −19445.2 −1.78727 −0.893635 0.448794i \(-0.851854\pi\)
−0.893635 + 0.448794i \(0.851854\pi\)
\(492\) −2747.86 −0.251795
\(493\) 0 0
\(494\) −5040.46 −0.459071
\(495\) 232.576 0.0211182
\(496\) −480.000 −0.0434529
\(497\) 5372.35 0.484875
\(498\) −6598.10 −0.593711
\(499\) −9524.72 −0.854479 −0.427240 0.904138i \(-0.640514\pi\)
−0.427240 + 0.904138i \(0.640514\pi\)
\(500\) 1303.75 0.116611
\(501\) −2233.22 −0.199148
\(502\) 14712.5 1.30807
\(503\) −1592.37 −0.141154 −0.0705768 0.997506i \(-0.522484\pi\)
−0.0705768 + 0.997506i \(0.522484\pi\)
\(504\) 432.000 0.0381802
\(505\) −6475.02 −0.570564
\(506\) −97.4970 −0.00856575
\(507\) −5695.14 −0.498876
\(508\) −9166.50 −0.800586
\(509\) −14893.7 −1.29696 −0.648480 0.761232i \(-0.724595\pi\)
−0.648480 + 0.761232i \(0.724595\pi\)
\(510\) 0 0
\(511\) 6402.30 0.554249
\(512\) 512.000 0.0441942
\(513\) 3937.73 0.338898
\(514\) −6830.65 −0.586161
\(515\) 12301.9 1.05260
\(516\) −4513.04 −0.385030
\(517\) 718.619 0.0611312
\(518\) −565.468 −0.0479638
\(519\) 8611.58 0.728336
\(520\) −2270.93 −0.191513
\(521\) −4403.38 −0.370279 −0.185140 0.982712i \(-0.559274\pi\)
−0.185140 + 0.982712i \(0.559274\pi\)
\(522\) 1074.73 0.0901146
\(523\) −6728.23 −0.562533 −0.281267 0.959630i \(-0.590755\pi\)
−0.281267 + 0.959630i \(0.590755\pi\)
\(524\) −7740.16 −0.645287
\(525\) 2607.15 0.216734
\(526\) 6060.43 0.502371
\(527\) 0 0
\(528\) 75.5107 0.00622383
\(529\) −11206.7 −0.921077
\(530\) 18500.7 1.51626
\(531\) 1080.00 0.0882637
\(532\) 3500.20 0.285250
\(533\) 3957.05 0.321574
\(534\) −4766.94 −0.386302
\(535\) −19720.1 −1.59360
\(536\) 1640.98 0.132238
\(537\) 3432.09 0.275802
\(538\) 10899.2 0.873413
\(539\) −482.954 −0.0385942
\(540\) 1774.10 0.141380
\(541\) −13624.4 −1.08273 −0.541366 0.840787i \(-0.682093\pi\)
−0.541366 + 0.840787i \(0.682093\pi\)
\(542\) 5256.29 0.416563
\(543\) −10548.2 −0.833641
\(544\) 0 0
\(545\) 17797.5 1.39883
\(546\) −622.101 −0.0487609
\(547\) −3158.10 −0.246857 −0.123428 0.992353i \(-0.539389\pi\)
−0.123428 + 0.992353i \(0.539389\pi\)
\(548\) 3894.16 0.303559
\(549\) 3679.90 0.286073
\(550\) 455.713 0.0353303
\(551\) 8707.84 0.673260
\(552\) −743.713 −0.0573451
\(553\) −6232.83 −0.479290
\(554\) −14266.3 −1.09407
\(555\) −2322.22 −0.177608
\(556\) 1241.55 0.0947007
\(557\) −5831.35 −0.443595 −0.221797 0.975093i \(-0.571192\pi\)
−0.221797 + 0.975093i \(0.571192\pi\)
\(558\) −540.000 −0.0409678
\(559\) 6498.99 0.491732
\(560\) 1576.98 0.118999
\(561\) 0 0
\(562\) −12020.5 −0.902233
\(563\) 12511.5 0.936587 0.468294 0.883573i \(-0.344869\pi\)
0.468294 + 0.883573i \(0.344869\pi\)
\(564\) 5481.67 0.409255
\(565\) −16871.4 −1.25625
\(566\) −2452.37 −0.182122
\(567\) 486.000 0.0359966
\(568\) 7163.13 0.529152
\(569\) 8469.14 0.623980 0.311990 0.950085i \(-0.399004\pi\)
0.311990 + 0.950085i \(0.399004\pi\)
\(570\) 14374.3 1.05627
\(571\) 5857.64 0.429308 0.214654 0.976690i \(-0.431138\pi\)
0.214654 + 0.976690i \(0.431138\pi\)
\(572\) −108.739 −0.00794862
\(573\) −12460.8 −0.908480
\(574\) −2747.86 −0.199814
\(575\) −4488.36 −0.325526
\(576\) 576.000 0.0416667
\(577\) 15537.9 1.12106 0.560528 0.828135i \(-0.310598\pi\)
0.560528 + 0.828135i \(0.310598\pi\)
\(578\) 0 0
\(579\) 12272.7 0.880893
\(580\) 3923.22 0.280867
\(581\) −6598.10 −0.471145
\(582\) 6037.47 0.430002
\(583\) 885.870 0.0629314
\(584\) 8536.40 0.604861
\(585\) −2554.79 −0.180560
\(586\) 16919.5 1.19272
\(587\) −1491.54 −0.104876 −0.0524382 0.998624i \(-0.516699\pi\)
−0.0524382 + 0.998624i \(0.516699\pi\)
\(588\) −3684.00 −0.258377
\(589\) −4375.25 −0.306077
\(590\) 3942.45 0.275098
\(591\) 14471.2 1.00722
\(592\) −753.957 −0.0523437
\(593\) −14418.0 −0.998442 −0.499221 0.866475i \(-0.666380\pi\)
−0.499221 + 0.866475i \(0.666380\pi\)
\(594\) 84.9495 0.00586788
\(595\) 0 0
\(596\) −10723.1 −0.736969
\(597\) 8957.22 0.614062
\(598\) 1070.98 0.0732370
\(599\) 3644.49 0.248597 0.124299 0.992245i \(-0.460332\pi\)
0.124299 + 0.992245i \(0.460332\pi\)
\(600\) 3476.20 0.236526
\(601\) −6984.34 −0.474039 −0.237019 0.971505i \(-0.576171\pi\)
−0.237019 + 0.971505i \(0.576171\pi\)
\(602\) −4513.04 −0.305544
\(603\) 1846.10 0.124675
\(604\) 907.511 0.0611359
\(605\) −21823.5 −1.46653
\(606\) −2365.04 −0.158536
\(607\) −14362.8 −0.960407 −0.480204 0.877157i \(-0.659437\pi\)
−0.480204 + 0.877157i \(0.659437\pi\)
\(608\) 4666.94 0.311298
\(609\) 1074.73 0.0715114
\(610\) 13433.2 0.891627
\(611\) −7893.87 −0.522671
\(612\) 0 0
\(613\) −8703.81 −0.573481 −0.286740 0.958008i \(-0.592572\pi\)
−0.286740 + 0.958008i \(0.592572\pi\)
\(614\) −6769.55 −0.444946
\(615\) −11284.7 −0.739905
\(616\) 75.5107 0.00493898
\(617\) 26903.7 1.75543 0.877715 0.479182i \(-0.159067\pi\)
0.877715 + 0.479182i \(0.159067\pi\)
\(618\) 4493.35 0.292474
\(619\) 8641.76 0.561133 0.280567 0.959835i \(-0.409478\pi\)
0.280567 + 0.959835i \(0.409478\pi\)
\(620\) −1971.22 −0.127687
\(621\) −836.677 −0.0540655
\(622\) 1722.01 0.111007
\(623\) −4766.94 −0.306554
\(624\) −829.468 −0.0532136
\(625\) −12751.1 −0.816070
\(626\) 1901.30 0.121392
\(627\) 688.288 0.0438398
\(628\) 1412.43 0.0897486
\(629\) 0 0
\(630\) 1774.10 0.112193
\(631\) 10472.0 0.660672 0.330336 0.943863i \(-0.392838\pi\)
0.330336 + 0.943863i \(0.392838\pi\)
\(632\) −8310.45 −0.523057
\(633\) 13162.2 0.826461
\(634\) −16802.4 −1.05253
\(635\) −37644.2 −2.35254
\(636\) 6757.47 0.421307
\(637\) 5305.14 0.329980
\(638\) 187.856 0.0116572
\(639\) 8058.52 0.498889
\(640\) 2102.64 0.129866
\(641\) −9806.52 −0.604266 −0.302133 0.953266i \(-0.597699\pi\)
−0.302133 + 0.953266i \(0.597699\pi\)
\(642\) −7202.88 −0.442796
\(643\) −13782.6 −0.845307 −0.422653 0.906291i \(-0.638901\pi\)
−0.422653 + 0.906291i \(0.638901\pi\)
\(644\) −743.713 −0.0455068
\(645\) −18533.8 −1.13142
\(646\) 0 0
\(647\) 13972.3 0.849005 0.424502 0.905427i \(-0.360449\pi\)
0.424502 + 0.905427i \(0.360449\pi\)
\(648\) 648.000 0.0392837
\(649\) 188.777 0.0114178
\(650\) −5005.90 −0.302073
\(651\) −540.000 −0.0325104
\(652\) 4282.82 0.257252
\(653\) −469.753 −0.0281514 −0.0140757 0.999901i \(-0.504481\pi\)
−0.0140757 + 0.999901i \(0.504481\pi\)
\(654\) 6500.63 0.388677
\(655\) −31786.6 −1.89619
\(656\) −3663.81 −0.218060
\(657\) 9603.45 0.570269
\(658\) 5481.67 0.324769
\(659\) 6126.73 0.362160 0.181080 0.983468i \(-0.442041\pi\)
0.181080 + 0.983468i \(0.442041\pi\)
\(660\) 310.101 0.0182889
\(661\) 19862.7 1.16879 0.584393 0.811471i \(-0.301333\pi\)
0.584393 + 0.811471i \(0.301333\pi\)
\(662\) −8256.40 −0.484734
\(663\) 0 0
\(664\) −8797.47 −0.514169
\(665\) 14374.3 0.838215
\(666\) −848.202 −0.0493501
\(667\) −1850.22 −0.107407
\(668\) −2977.63 −0.172467
\(669\) −2756.37 −0.159294
\(670\) 6739.03 0.388584
\(671\) 643.222 0.0370064
\(672\) 576.000 0.0330650
\(673\) −29895.9 −1.71234 −0.856169 0.516697i \(-0.827162\pi\)
−0.856169 + 0.516697i \(0.827162\pi\)
\(674\) 80.4586 0.00459815
\(675\) 3910.73 0.222998
\(676\) −7593.53 −0.432039
\(677\) −3689.27 −0.209439 −0.104719 0.994502i \(-0.533394\pi\)
−0.104719 + 0.994502i \(0.533394\pi\)
\(678\) −6162.36 −0.349062
\(679\) 6037.47 0.341232
\(680\) 0 0
\(681\) −5262.94 −0.296147
\(682\) −94.3884 −0.00529959
\(683\) −14206.2 −0.795879 −0.397940 0.917412i \(-0.630275\pi\)
−0.397940 + 0.917412i \(0.630275\pi\)
\(684\) 5250.30 0.293495
\(685\) 15992.2 0.892016
\(686\) −7800.00 −0.434119
\(687\) 5577.54 0.309747
\(688\) −6017.38 −0.333446
\(689\) −9731.08 −0.538062
\(690\) −3054.22 −0.168510
\(691\) 36094.2 1.98710 0.993550 0.113391i \(-0.0361714\pi\)
0.993550 + 0.113391i \(0.0361714\pi\)
\(692\) 11482.1 0.630758
\(693\) 84.9495 0.00465652
\(694\) −2275.01 −0.124436
\(695\) 5098.71 0.278281
\(696\) 1432.98 0.0780415
\(697\) 0 0
\(698\) −1251.48 −0.0678643
\(699\) −4612.29 −0.249575
\(700\) 3476.20 0.187697
\(701\) 17089.4 0.920767 0.460383 0.887720i \(-0.347712\pi\)
0.460383 + 0.887720i \(0.347712\pi\)
\(702\) −933.151 −0.0501703
\(703\) −6872.40 −0.368702
\(704\) 100.681 0.00538999
\(705\) 22511.7 1.20261
\(706\) −12709.6 −0.677525
\(707\) −2365.04 −0.125808
\(708\) 1440.00 0.0764386
\(709\) 17325.6 0.917737 0.458868 0.888504i \(-0.348255\pi\)
0.458868 + 0.888504i \(0.348255\pi\)
\(710\) 29416.9 1.55493
\(711\) −9349.25 −0.493143
\(712\) −6355.91 −0.334548
\(713\) 929.641 0.0488293
\(714\) 0 0
\(715\) −446.560 −0.0233572
\(716\) 4576.12 0.238851
\(717\) −11714.1 −0.610140
\(718\) 20933.8 1.08808
\(719\) −3861.73 −0.200304 −0.100152 0.994972i \(-0.531933\pi\)
−0.100152 + 0.994972i \(0.531933\pi\)
\(720\) 2365.47 0.122439
\(721\) 4493.35 0.232096
\(722\) 28821.6 1.48564
\(723\) −7108.92 −0.365676
\(724\) −14064.3 −0.721955
\(725\) 8648.13 0.443012
\(726\) −7971.15 −0.407489
\(727\) 3016.23 0.153873 0.0769366 0.997036i \(-0.475486\pi\)
0.0769366 + 0.997036i \(0.475486\pi\)
\(728\) −829.468 −0.0422282
\(729\) 729.000 0.0370370
\(730\) 35056.6 1.77740
\(731\) 0 0
\(732\) 4906.53 0.247747
\(733\) 6778.92 0.341590 0.170795 0.985307i \(-0.445366\pi\)
0.170795 + 0.985307i \(0.445366\pi\)
\(734\) 16640.8 0.836815
\(735\) −15129.1 −0.759247
\(736\) −991.617 −0.0496623
\(737\) 322.686 0.0161279
\(738\) −4121.78 −0.205589
\(739\) −25629.9 −1.27579 −0.637896 0.770123i \(-0.720195\pi\)
−0.637896 + 0.770123i \(0.720195\pi\)
\(740\) −3096.29 −0.153813
\(741\) −7560.69 −0.374830
\(742\) 6757.47 0.334332
\(743\) −8981.07 −0.443450 −0.221725 0.975109i \(-0.571169\pi\)
−0.221725 + 0.975109i \(0.571169\pi\)
\(744\) −720.000 −0.0354791
\(745\) −44036.5 −2.16560
\(746\) 530.501 0.0260362
\(747\) −9897.15 −0.484763
\(748\) 0 0
\(749\) −7202.88 −0.351385
\(750\) 1955.63 0.0952125
\(751\) −4198.37 −0.203996 −0.101998 0.994785i \(-0.532523\pi\)
−0.101998 + 0.994785i \(0.532523\pi\)
\(752\) 7308.89 0.354425
\(753\) 22068.7 1.06803
\(754\) −2063.56 −0.0996689
\(755\) 3726.89 0.179649
\(756\) 648.000 0.0311740
\(757\) −11693.1 −0.561418 −0.280709 0.959793i \(-0.590570\pi\)
−0.280709 + 0.959793i \(0.590570\pi\)
\(758\) 20337.0 0.974502
\(759\) −146.245 −0.00699390
\(760\) 19165.8 0.914758
\(761\) 13505.6 0.643333 0.321667 0.946853i \(-0.395757\pi\)
0.321667 + 0.946853i \(0.395757\pi\)
\(762\) −13749.8 −0.653676
\(763\) 6500.63 0.308439
\(764\) −16614.4 −0.786766
\(765\) 0 0
\(766\) 3293.58 0.155355
\(767\) −2073.67 −0.0976217
\(768\) 768.000 0.0360844
\(769\) 15256.1 0.715407 0.357704 0.933835i \(-0.383560\pi\)
0.357704 + 0.933835i \(0.383560\pi\)
\(770\) 310.101 0.0145133
\(771\) −10246.0 −0.478599
\(772\) 16363.6 0.762875
\(773\) 16038.3 0.746256 0.373128 0.927780i \(-0.378285\pi\)
0.373128 + 0.927780i \(0.378285\pi\)
\(774\) −6769.56 −0.314375
\(775\) −4345.25 −0.201401
\(776\) 8049.96 0.372393
\(777\) −848.202 −0.0391623
\(778\) −12537.4 −0.577745
\(779\) −33396.0 −1.53599
\(780\) −3406.39 −0.156370
\(781\) 1408.57 0.0645362
\(782\) 0 0
\(783\) 1612.10 0.0735783
\(784\) −4912.00 −0.223761
\(785\) 5800.45 0.263729
\(786\) −11610.2 −0.526875
\(787\) 26105.8 1.18243 0.591215 0.806514i \(-0.298648\pi\)
0.591215 + 0.806514i \(0.298648\pi\)
\(788\) 19295.0 0.872278
\(789\) 9090.65 0.410185
\(790\) −34128.6 −1.53702
\(791\) −6162.36 −0.277002
\(792\) 113.266 0.00508173
\(793\) −7065.64 −0.316404
\(794\) −27075.4 −1.21016
\(795\) 27751.0 1.23802
\(796\) 11943.0 0.531793
\(797\) −5988.53 −0.266154 −0.133077 0.991106i \(-0.542486\pi\)
−0.133077 + 0.991106i \(0.542486\pi\)
\(798\) 5250.30 0.232906
\(799\) 0 0
\(800\) 4634.94 0.204837
\(801\) −7150.40 −0.315415
\(802\) −12981.0 −0.571541
\(803\) 1678.62 0.0737698
\(804\) 2461.47 0.107972
\(805\) −3054.22 −0.133723
\(806\) 1036.83 0.0453114
\(807\) 16348.7 0.713138
\(808\) −3153.38 −0.137297
\(809\) 44380.7 1.92873 0.964365 0.264577i \(-0.0852323\pi\)
0.964365 + 0.264577i \(0.0852323\pi\)
\(810\) 2661.15 0.115436
\(811\) −33546.5 −1.45250 −0.726249 0.687432i \(-0.758738\pi\)
−0.726249 + 0.687432i \(0.758738\pi\)
\(812\) 1432.98 0.0619307
\(813\) 7884.43 0.340122
\(814\) −148.260 −0.00638392
\(815\) 17588.3 0.755941
\(816\) 0 0
\(817\) −54849.1 −2.34875
\(818\) −15467.6 −0.661139
\(819\) −933.151 −0.0398131
\(820\) −15046.2 −0.640776
\(821\) 13701.7 0.582451 0.291226 0.956654i \(-0.405937\pi\)
0.291226 + 0.956654i \(0.405937\pi\)
\(822\) 5841.24 0.247855
\(823\) −4440.76 −0.188087 −0.0940433 0.995568i \(-0.529979\pi\)
−0.0940433 + 0.995568i \(0.529979\pi\)
\(824\) 5991.14 0.253290
\(825\) 683.569 0.0288470
\(826\) 1440.00 0.0606586
\(827\) −8705.42 −0.366043 −0.183021 0.983109i \(-0.558588\pi\)
−0.183021 + 0.983109i \(0.558588\pi\)
\(828\) −1115.57 −0.0468221
\(829\) 5755.30 0.241121 0.120561 0.992706i \(-0.461531\pi\)
0.120561 + 0.992706i \(0.461531\pi\)
\(830\) −36128.7 −1.51090
\(831\) −21399.4 −0.893306
\(832\) −1105.96 −0.0460843
\(833\) 0 0
\(834\) 1862.33 0.0773228
\(835\) −12228.3 −0.506799
\(836\) 917.718 0.0379664
\(837\) −810.000 −0.0334501
\(838\) 16341.4 0.673633
\(839\) −29272.2 −1.20451 −0.602257 0.798302i \(-0.705732\pi\)
−0.602257 + 0.798302i \(0.705732\pi\)
\(840\) 2365.47 0.0971624
\(841\) −20824.0 −0.853828
\(842\) −27465.1 −1.12412
\(843\) −18030.8 −0.736670
\(844\) 17549.6 0.715736
\(845\) −31184.4 −1.26956
\(846\) 8222.50 0.334155
\(847\) −7971.15 −0.323367
\(848\) 9009.96 0.364862
\(849\) −3678.56 −0.148702
\(850\) 0 0
\(851\) 1460.23 0.0588202
\(852\) 10744.7 0.432051
\(853\) 45569.0 1.82913 0.914567 0.404434i \(-0.132531\pi\)
0.914567 + 0.404434i \(0.132531\pi\)
\(854\) 4906.53 0.196602
\(855\) 21561.5 0.862442
\(856\) −9603.84 −0.383473
\(857\) −33462.5 −1.33379 −0.666895 0.745151i \(-0.732377\pi\)
−0.666895 + 0.745151i \(0.732377\pi\)
\(858\) −163.109 −0.00649002
\(859\) −7859.19 −0.312168 −0.156084 0.987744i \(-0.549887\pi\)
−0.156084 + 0.987744i \(0.549887\pi\)
\(860\) −24711.7 −0.979839
\(861\) −4121.78 −0.163148
\(862\) 26151.4 1.03332
\(863\) −17613.4 −0.694746 −0.347373 0.937727i \(-0.612926\pi\)
−0.347373 + 0.937727i \(0.612926\pi\)
\(864\) 864.000 0.0340207
\(865\) 47153.8 1.85350
\(866\) −33745.9 −1.32417
\(867\) 0 0
\(868\) −720.000 −0.0281548
\(869\) −1634.19 −0.0637928
\(870\) 5884.83 0.229327
\(871\) −3544.63 −0.137894
\(872\) 8667.51 0.336604
\(873\) 9056.20 0.351095
\(874\) −9038.69 −0.349815
\(875\) 1955.63 0.0755568
\(876\) 12804.6 0.493867
\(877\) −38660.0 −1.48855 −0.744274 0.667874i \(-0.767204\pi\)
−0.744274 + 0.667874i \(0.767204\pi\)
\(878\) 32414.5 1.24594
\(879\) 25379.2 0.973855
\(880\) 413.468 0.0158386
\(881\) −15647.5 −0.598384 −0.299192 0.954193i \(-0.596717\pi\)
−0.299192 + 0.954193i \(0.596717\pi\)
\(882\) −5526.00 −0.210964
\(883\) −12759.6 −0.486291 −0.243145 0.969990i \(-0.578179\pi\)
−0.243145 + 0.969990i \(0.578179\pi\)
\(884\) 0 0
\(885\) 5913.67 0.224617
\(886\) 16045.3 0.608411
\(887\) −18022.4 −0.682225 −0.341113 0.940022i \(-0.610804\pi\)
−0.341113 + 0.940022i \(0.610804\pi\)
\(888\) −1130.94 −0.0427384
\(889\) −13749.8 −0.518731
\(890\) −26101.9 −0.983077
\(891\) 127.424 0.00479111
\(892\) −3675.17 −0.137952
\(893\) 66621.4 2.49653
\(894\) −16084.6 −0.601732
\(895\) 18792.8 0.701871
\(896\) 768.000 0.0286351
\(897\) 1606.47 0.0597977
\(898\) 9460.88 0.351574
\(899\) −1791.22 −0.0664523
\(900\) 5214.30 0.193122
\(901\) 0 0
\(902\) −720.460 −0.0265950
\(903\) −6769.56 −0.249476
\(904\) −8216.48 −0.302296
\(905\) −57758.0 −2.12148
\(906\) 1361.27 0.0499173
\(907\) 51434.0 1.88295 0.941477 0.337078i \(-0.109439\pi\)
0.941477 + 0.337078i \(0.109439\pi\)
\(908\) −7017.25 −0.256471
\(909\) −3547.56 −0.129444
\(910\) −3406.39 −0.124089
\(911\) 7890.19 0.286953 0.143476 0.989654i \(-0.454172\pi\)
0.143476 + 0.989654i \(0.454172\pi\)
\(912\) 7000.40 0.254174
\(913\) −1729.96 −0.0627088
\(914\) −1680.89 −0.0608305
\(915\) 20149.7 0.728010
\(916\) 7436.72 0.268249
\(917\) −11610.2 −0.418107
\(918\) 0 0
\(919\) −46068.0 −1.65358 −0.826792 0.562507i \(-0.809837\pi\)
−0.826792 + 0.562507i \(0.809837\pi\)
\(920\) −4072.29 −0.145934
\(921\) −10154.3 −0.363297
\(922\) −13577.8 −0.484989
\(923\) −15472.9 −0.551783
\(924\) 113.266 0.00403266
\(925\) −6825.28 −0.242610
\(926\) −23091.3 −0.819469
\(927\) 6740.03 0.238804
\(928\) 1910.64 0.0675860
\(929\) 28007.0 0.989106 0.494553 0.869147i \(-0.335332\pi\)
0.494553 + 0.869147i \(0.335332\pi\)
\(930\) −2956.83 −0.104256
\(931\) −44773.4 −1.57614
\(932\) −6149.72 −0.216138
\(933\) 2583.01 0.0906365
\(934\) −348.606 −0.0122128
\(935\) 0 0
\(936\) −1244.20 −0.0434487
\(937\) −42032.8 −1.46548 −0.732738 0.680511i \(-0.761758\pi\)
−0.732738 + 0.680511i \(0.761758\pi\)
\(938\) 2461.47 0.0856821
\(939\) 2851.95 0.0991158
\(940\) 30015.5 1.04149
\(941\) −31863.4 −1.10384 −0.551922 0.833896i \(-0.686105\pi\)
−0.551922 + 0.833896i \(0.686105\pi\)
\(942\) 2118.65 0.0732794
\(943\) 7095.89 0.245041
\(944\) 1920.00 0.0661978
\(945\) 2661.15 0.0916056
\(946\) −1183.27 −0.0406676
\(947\) 42612.1 1.46220 0.731102 0.682269i \(-0.239007\pi\)
0.731102 + 0.682269i \(0.239007\pi\)
\(948\) −12465.7 −0.427074
\(949\) −18439.3 −0.630731
\(950\) 42247.9 1.44285
\(951\) −25203.5 −0.859390
\(952\) 0 0
\(953\) −6529.28 −0.221935 −0.110968 0.993824i \(-0.535395\pi\)
−0.110968 + 0.993824i \(0.535395\pi\)
\(954\) 10136.2 0.343995
\(955\) −68230.8 −2.31193
\(956\) −15618.8 −0.528396
\(957\) 281.784 0.00951807
\(958\) −32365.4 −1.09152
\(959\) 5841.24 0.196688
\(960\) 3153.96 0.106035
\(961\) −28891.0 −0.969790
\(962\) 1628.60 0.0545824
\(963\) −10804.3 −0.361541
\(964\) −9478.56 −0.316685
\(965\) 67200.8 2.24173
\(966\) −1115.57 −0.0371561
\(967\) −21784.1 −0.724436 −0.362218 0.932093i \(-0.617980\pi\)
−0.362218 + 0.932093i \(0.617980\pi\)
\(968\) −10628.2 −0.352896
\(969\) 0 0
\(970\) 33058.9 1.09429
\(971\) 293.579 0.00970279 0.00485140 0.999988i \(-0.498456\pi\)
0.00485140 + 0.999988i \(0.498456\pi\)
\(972\) 972.000 0.0320750
\(973\) 1862.33 0.0613603
\(974\) −35630.5 −1.17215
\(975\) −7508.85 −0.246642
\(976\) 6542.04 0.214555
\(977\) −42000.5 −1.37535 −0.687673 0.726020i \(-0.741368\pi\)
−0.687673 + 0.726020i \(0.741368\pi\)
\(978\) 6424.23 0.210045
\(979\) −1249.84 −0.0408020
\(980\) −20172.2 −0.657527
\(981\) 9750.95 0.317354
\(982\) −38890.4 −1.26379
\(983\) −4754.22 −0.154258 −0.0771292 0.997021i \(-0.524575\pi\)
−0.0771292 + 0.997021i \(0.524575\pi\)
\(984\) −5495.71 −0.178046
\(985\) 79239.0 2.56321
\(986\) 0 0
\(987\) 8222.50 0.265172
\(988\) −10080.9 −0.324612
\(989\) 11654.2 0.374703
\(990\) 465.151 0.0149328
\(991\) 44080.5 1.41298 0.706491 0.707722i \(-0.250277\pi\)
0.706491 + 0.707722i \(0.250277\pi\)
\(992\) −960.000 −0.0307258
\(993\) −12384.6 −0.395784
\(994\) 10744.7 0.342858
\(995\) 49046.4 1.56269
\(996\) −13196.2 −0.419817
\(997\) 6073.28 0.192922 0.0964608 0.995337i \(-0.469248\pi\)
0.0964608 + 0.995337i \(0.469248\pi\)
\(998\) −19049.4 −0.604208
\(999\) −1272.30 −0.0402942
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.4.a.s.1.2 2
17.4 even 4 102.4.b.a.67.1 4
17.13 even 4 102.4.b.a.67.4 yes 4
17.16 even 2 1734.4.a.m.1.1 2
51.38 odd 4 306.4.b.e.271.4 4
51.47 odd 4 306.4.b.e.271.1 4
68.47 odd 4 816.4.c.b.577.2 4
68.55 odd 4 816.4.c.b.577.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.4.b.a.67.1 4 17.4 even 4
102.4.b.a.67.4 yes 4 17.13 even 4
306.4.b.e.271.1 4 51.47 odd 4
306.4.b.e.271.4 4 51.38 odd 4
816.4.c.b.577.2 4 68.47 odd 4
816.4.c.b.577.3 4 68.55 odd 4
1734.4.a.m.1.1 2 17.16 even 2
1734.4.a.s.1.2 2 1.1 even 1 trivial