Properties

Label 102.4.b.a.67.1
Level $102$
Weight $4$
Character 102.67
Analytic conductor $6.018$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [102,4,Mod(67,102)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("102.67"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(102, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 102.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.01819482059\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{569})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 285x^{2} + 20164 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 67.1
Root \(11.4269i\) of defining polynomial
Character \(\chi\) \(=\) 102.67
Dual form 102.4.b.a.67.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -3.00000i q^{3} +4.00000 q^{4} -16.4269i q^{5} +6.00000i q^{6} +6.00000i q^{7} -8.00000 q^{8} -9.00000 q^{9} +32.8537i q^{10} +1.57314i q^{11} -12.0000i q^{12} -17.2806 q^{13} -12.0000i q^{14} -49.2806 q^{15} +16.0000 q^{16} +(-28.2806 - 64.1343i) q^{17} +18.0000 q^{18} -145.842 q^{19} -65.7074i q^{20} +18.0000 q^{21} -3.14628i q^{22} -30.9880i q^{23} +24.0000i q^{24} -144.842 q^{25} +34.5612 q^{26} +27.0000i q^{27} +24.0000i q^{28} -59.7074i q^{29} +98.5612 q^{30} +30.0000i q^{31} -32.0000 q^{32} +4.71942 q^{33} +(56.5612 + 128.269i) q^{34} +98.5612 q^{35} -36.0000 q^{36} +47.1223i q^{37} +291.683 q^{38} +51.8417i q^{39} +131.415i q^{40} -228.988i q^{41} -36.0000 q^{42} +376.086 q^{43} +6.29256i q^{44} +147.842i q^{45} +61.9760i q^{46} +456.806 q^{47} -48.0000i q^{48} +307.000 q^{49} +289.683 q^{50} +(-192.403 + 84.8417i) q^{51} -69.1223 q^{52} -563.122 q^{53} -54.0000i q^{54} +25.8417 q^{55} -48.0000i q^{56} +437.525i q^{57} +119.415i q^{58} -120.000 q^{59} -197.122 q^{60} +408.878i q^{61} -60.0000i q^{62} -54.0000i q^{63} +64.0000 q^{64} +283.866i q^{65} -9.43884 q^{66} +205.122 q^{67} +(-113.122 - 256.537i) q^{68} -92.9641 q^{69} -197.122 q^{70} -895.391i q^{71} +72.0000 q^{72} -1067.05i q^{73} -94.2447i q^{74} +434.525i q^{75} -583.367 q^{76} -9.43884 q^{77} -103.683i q^{78} -1038.81i q^{79} -262.830i q^{80} +81.0000 q^{81} +457.976i q^{82} +1099.68 q^{83} +72.0000 q^{84} +(-1053.53 + 464.561i) q^{85} -752.173 q^{86} -179.122 q^{87} -12.5851i q^{88} -794.489 q^{89} -295.683i q^{90} -103.683i q^{91} -123.952i q^{92} +90.0000 q^{93} -913.612 q^{94} +2395.72i q^{95} +96.0000i q^{96} -1006.24i q^{97} -614.000 q^{98} -14.1583i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 16 q^{4} - 32 q^{8} - 36 q^{9} + 74 q^{13} - 54 q^{15} + 64 q^{16} + 30 q^{17} + 72 q^{18} - 154 q^{19} + 72 q^{21} - 150 q^{25} - 148 q^{26} + 108 q^{30} - 128 q^{32} + 162 q^{33} - 60 q^{34}+ \cdots - 2456 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/102\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 3.00000i 0.577350i
\(4\) 4.00000 0.500000
\(5\) 16.4269i 1.46926i −0.678466 0.734632i \(-0.737355\pi\)
0.678466 0.734632i \(-0.262645\pi\)
\(6\) 6.00000i 0.408248i
\(7\) 6.00000i 0.323970i 0.986793 + 0.161985i \(0.0517895\pi\)
−0.986793 + 0.161985i \(0.948210\pi\)
\(8\) −8.00000 −0.353553
\(9\) −9.00000 −0.333333
\(10\) 32.8537i 1.03893i
\(11\) 1.57314i 0.0431199i 0.999768 + 0.0215600i \(0.00686328\pi\)
−0.999768 + 0.0215600i \(0.993137\pi\)
\(12\) 12.0000i 0.288675i
\(13\) −17.2806 −0.368675 −0.184337 0.982863i \(-0.559014\pi\)
−0.184337 + 0.982863i \(0.559014\pi\)
\(14\) 12.0000i 0.229081i
\(15\) −49.2806 −0.848279
\(16\) 16.0000 0.250000
\(17\) −28.2806 64.1343i −0.403473 0.914991i
\(18\) 18.0000 0.235702
\(19\) −145.842 −1.76097 −0.880484 0.474076i \(-0.842782\pi\)
−0.880484 + 0.474076i \(0.842782\pi\)
\(20\) 65.7074i 0.734632i
\(21\) 18.0000 0.187044
\(22\) 3.14628i 0.0304904i
\(23\) 30.9880i 0.280933i −0.990085 0.140466i \(-0.955140\pi\)
0.990085 0.140466i \(-0.0448602\pi\)
\(24\) 24.0000i 0.204124i
\(25\) −144.842 −1.15873
\(26\) 34.5612 0.260692
\(27\) 27.0000i 0.192450i
\(28\) 24.0000i 0.161985i
\(29\) 59.7074i 0.382324i −0.981559 0.191162i \(-0.938774\pi\)
0.981559 0.191162i \(-0.0612256\pi\)
\(30\) 98.5612 0.599824
\(31\) 30.0000i 0.173812i 0.996217 + 0.0869058i \(0.0276979\pi\)
−0.996217 + 0.0869058i \(0.972302\pi\)
\(32\) −32.0000 −0.176777
\(33\) 4.71942 0.0248953
\(34\) 56.5612 + 128.269i 0.285299 + 0.646997i
\(35\) 98.5612 0.475996
\(36\) −36.0000 −0.166667
\(37\) 47.1223i 0.209375i 0.994505 + 0.104687i \(0.0333842\pi\)
−0.994505 + 0.104687i \(0.966616\pi\)
\(38\) 291.683 1.24519
\(39\) 51.8417i 0.212854i
\(40\) 131.415i 0.519463i
\(41\) 228.988i 0.872242i −0.899888 0.436121i \(-0.856352\pi\)
0.899888 0.436121i \(-0.143648\pi\)
\(42\) −36.0000 −0.132260
\(43\) 376.086 1.33378 0.666891 0.745155i \(-0.267625\pi\)
0.666891 + 0.745155i \(0.267625\pi\)
\(44\) 6.29256i 0.0215600i
\(45\) 147.842i 0.489754i
\(46\) 61.9760i 0.198649i
\(47\) 456.806 1.41770 0.708851 0.705358i \(-0.249214\pi\)
0.708851 + 0.705358i \(0.249214\pi\)
\(48\) 48.0000i 0.144338i
\(49\) 307.000 0.895044
\(50\) 289.683 0.819349
\(51\) −192.403 + 84.8417i −0.528271 + 0.232945i
\(52\) −69.1223 −0.184337
\(53\) −563.122 −1.45945 −0.729725 0.683741i \(-0.760352\pi\)
−0.729725 + 0.683741i \(0.760352\pi\)
\(54\) 54.0000i 0.136083i
\(55\) 25.8417 0.0633545
\(56\) 48.0000i 0.114541i
\(57\) 437.525i 1.01670i
\(58\) 119.415i 0.270344i
\(59\) −120.000 −0.264791 −0.132396 0.991197i \(-0.542267\pi\)
−0.132396 + 0.991197i \(0.542267\pi\)
\(60\) −197.122 −0.424140
\(61\) 408.878i 0.858220i 0.903252 + 0.429110i \(0.141173\pi\)
−0.903252 + 0.429110i \(0.858827\pi\)
\(62\) 60.0000i 0.122903i
\(63\) 54.0000i 0.107990i
\(64\) 64.0000 0.125000
\(65\) 283.866i 0.541680i
\(66\) −9.43884 −0.0176036
\(67\) 205.122 0.374025 0.187013 0.982358i \(-0.440119\pi\)
0.187013 + 0.982358i \(0.440119\pi\)
\(68\) −113.122 256.537i −0.201737 0.457496i
\(69\) −92.9641 −0.162197
\(70\) −197.122 −0.336580
\(71\) 895.391i 1.49667i −0.663323 0.748333i \(-0.730854\pi\)
0.663323 0.748333i \(-0.269146\pi\)
\(72\) 72.0000 0.117851
\(73\) 1067.05i 1.71081i −0.517963 0.855403i \(-0.673310\pi\)
0.517963 0.855403i \(-0.326690\pi\)
\(74\) 94.2447i 0.148050i
\(75\) 434.525i 0.668995i
\(76\) −583.367 −0.880484
\(77\) −9.43884 −0.0139695
\(78\) 103.683i 0.150511i
\(79\) 1038.81i 1.47943i −0.672922 0.739714i \(-0.734961\pi\)
0.672922 0.739714i \(-0.265039\pi\)
\(80\) 262.830i 0.367316i
\(81\) 81.0000 0.111111
\(82\) 457.976i 0.616768i
\(83\) 1099.68 1.45429 0.727144 0.686485i \(-0.240847\pi\)
0.727144 + 0.686485i \(0.240847\pi\)
\(84\) 72.0000 0.0935220
\(85\) −1053.53 + 464.561i −1.34436 + 0.592809i
\(86\) −752.173 −0.943126
\(87\) −179.122 −0.220735
\(88\) 12.5851i 0.0152452i
\(89\) −794.489 −0.946244 −0.473122 0.880997i \(-0.656873\pi\)
−0.473122 + 0.880997i \(0.656873\pi\)
\(90\) 295.683i 0.346309i
\(91\) 103.683i 0.119439i
\(92\) 123.952i 0.140466i
\(93\) 90.0000 0.100350
\(94\) −913.612 −1.00247
\(95\) 2395.72i 2.58733i
\(96\) 96.0000i 0.102062i
\(97\) 1006.24i 1.05329i −0.850087 0.526643i \(-0.823451\pi\)
0.850087 0.526643i \(-0.176549\pi\)
\(98\) −614.000 −0.632891
\(99\) 14.1583i 0.0143733i
\(100\) −579.367 −0.579367
\(101\) −394.173 −0.388333 −0.194167 0.980969i \(-0.562200\pi\)
−0.194167 + 0.980969i \(0.562200\pi\)
\(102\) 384.806 169.683i 0.373544 0.164717i
\(103\) 748.892 0.716413 0.358207 0.933642i \(-0.383388\pi\)
0.358207 + 0.933642i \(0.383388\pi\)
\(104\) 138.245 0.130346
\(105\) 295.683i 0.274817i
\(106\) 1126.24 1.03199
\(107\) 1200.48i 1.08462i 0.840177 + 0.542312i \(0.182451\pi\)
−0.840177 + 0.542312i \(0.817549\pi\)
\(108\) 108.000i 0.0962250i
\(109\) 1083.44i 0.952061i 0.879429 + 0.476030i \(0.157925\pi\)
−0.879429 + 0.476030i \(0.842075\pi\)
\(110\) −51.6835 −0.0447984
\(111\) 141.367 0.120883
\(112\) 96.0000i 0.0809924i
\(113\) 1027.06i 0.855024i −0.904010 0.427512i \(-0.859390\pi\)
0.904010 0.427512i \(-0.140610\pi\)
\(114\) 875.050i 0.718912i
\(115\) −509.036 −0.412764
\(116\) 238.830i 0.191162i
\(117\) 155.525 0.122892
\(118\) 240.000 0.187236
\(119\) 384.806 169.683i 0.296429 0.130713i
\(120\) 394.245 0.299912
\(121\) 1328.53 0.998141
\(122\) 817.755i 0.606853i
\(123\) −686.964 −0.503589
\(124\) 120.000i 0.0869058i
\(125\) 325.938i 0.233222i
\(126\) 108.000i 0.0763604i
\(127\) 2291.63 1.60117 0.800586 0.599217i \(-0.204521\pi\)
0.800586 + 0.599217i \(0.204521\pi\)
\(128\) −128.000 −0.0883883
\(129\) 1128.26i 0.770060i
\(130\) 567.731i 0.383026i
\(131\) 1935.04i 1.29057i 0.763940 + 0.645287i \(0.223262\pi\)
−0.763940 + 0.645287i \(0.776738\pi\)
\(132\) 18.8777 0.0124477
\(133\) 875.050i 0.570500i
\(134\) −410.245 −0.264476
\(135\) 443.525 0.282760
\(136\) 226.245 + 513.074i 0.142649 + 0.323498i
\(137\) 973.540 0.607118 0.303559 0.952813i \(-0.401825\pi\)
0.303559 + 0.952813i \(0.401825\pi\)
\(138\) 185.928 0.114690
\(139\) 310.388i 0.189401i −0.995506 0.0947007i \(-0.969811\pi\)
0.995506 0.0947007i \(-0.0301894\pi\)
\(140\) 394.245 0.237998
\(141\) 1370.42i 0.818510i
\(142\) 1790.78i 1.05830i
\(143\) 27.1848i 0.0158972i
\(144\) −144.000 −0.0833333
\(145\) −980.806 −0.561734
\(146\) 2134.10i 1.20972i
\(147\) 921.000i 0.516754i
\(148\) 188.489i 0.104687i
\(149\) −2680.76 −1.47394 −0.736969 0.675927i \(-0.763743\pi\)
−0.736969 + 0.675927i \(0.763743\pi\)
\(150\) 869.050i 0.473051i
\(151\) −226.878 −0.122272 −0.0611359 0.998129i \(-0.519472\pi\)
−0.0611359 + 0.998129i \(0.519472\pi\)
\(152\) 1166.73 0.622596
\(153\) 254.525 + 577.209i 0.134491 + 0.304997i
\(154\) 18.8777 0.00987796
\(155\) 492.806 0.255375
\(156\) 207.367i 0.106427i
\(157\) 353.108 0.179497 0.0897486 0.995964i \(-0.471394\pi\)
0.0897486 + 0.995964i \(0.471394\pi\)
\(158\) 2077.61i 1.04611i
\(159\) 1689.37i 0.842613i
\(160\) 525.660i 0.259731i
\(161\) 185.928 0.0910136
\(162\) −162.000 −0.0785674
\(163\) 1070.70i 0.514504i 0.966344 + 0.257252i \(0.0828170\pi\)
−0.966344 + 0.257252i \(0.917183\pi\)
\(164\) 915.952i 0.436121i
\(165\) 77.5252i 0.0365778i
\(166\) −2199.37 −1.02834
\(167\) 744.408i 0.344934i 0.985015 + 0.172467i \(0.0551739\pi\)
−0.985015 + 0.172467i \(0.944826\pi\)
\(168\) −144.000 −0.0661300
\(169\) −1898.38 −0.864079
\(170\) 2107.05 929.122i 0.950608 0.419179i
\(171\) 1312.58 0.586989
\(172\) 1504.35 0.666891
\(173\) 2870.53i 1.26152i −0.775980 0.630758i \(-0.782744\pi\)
0.775980 0.630758i \(-0.217256\pi\)
\(174\) 358.245 0.156083
\(175\) 869.050i 0.375395i
\(176\) 25.1702i 0.0107800i
\(177\) 360.000i 0.152877i
\(178\) 1588.98 0.669095
\(179\) −1144.03 −0.477702 −0.238851 0.971056i \(-0.576771\pi\)
−0.238851 + 0.971056i \(0.576771\pi\)
\(180\) 591.367i 0.244877i
\(181\) 3516.07i 1.44391i −0.691940 0.721955i \(-0.743244\pi\)
0.691940 0.721955i \(-0.256756\pi\)
\(182\) 207.367i 0.0844564i
\(183\) 1226.63 0.495494
\(184\) 247.904i 0.0993247i
\(185\) 774.072 0.307626
\(186\) −180.000 −0.0709583
\(187\) 100.892 44.4893i 0.0394544 0.0173978i
\(188\) 1827.22 0.708851
\(189\) −162.000 −0.0623480
\(190\) 4791.44i 1.82952i
\(191\) −4153.61 −1.57353 −0.786766 0.617251i \(-0.788246\pi\)
−0.786766 + 0.617251i \(0.788246\pi\)
\(192\) 192.000i 0.0721688i
\(193\) 4090.91i 1.52575i 0.646546 + 0.762875i \(0.276213\pi\)
−0.646546 + 0.762875i \(0.723787\pi\)
\(194\) 2012.49i 0.744785i
\(195\) 851.597 0.312739
\(196\) 1228.00 0.447522
\(197\) 4823.75i 1.74456i 0.489010 + 0.872278i \(0.337358\pi\)
−0.489010 + 0.872278i \(0.662642\pi\)
\(198\) 28.3165i 0.0101635i
\(199\) 2985.74i 1.06359i −0.846874 0.531793i \(-0.821518\pi\)
0.846874 0.531793i \(-0.178482\pi\)
\(200\) 1158.73 0.409674
\(201\) 615.367i 0.215943i
\(202\) 788.346 0.274593
\(203\) 358.245 0.123861
\(204\) −769.612 + 339.367i −0.264135 + 0.116473i
\(205\) −3761.55 −1.28155
\(206\) −1497.78 −0.506581
\(207\) 278.892i 0.0936442i
\(208\) −276.489 −0.0921687
\(209\) 229.429i 0.0759328i
\(210\) 591.367i 0.194325i
\(211\) 4387.40i 1.43147i 0.698370 + 0.715736i \(0.253909\pi\)
−0.698370 + 0.715736i \(0.746091\pi\)
\(212\) −2252.49 −0.729725
\(213\) −2686.17 −0.864101
\(214\) 2400.96i 0.766945i
\(215\) 6177.92i 1.95968i
\(216\) 216.000i 0.0680414i
\(217\) −180.000 −0.0563097
\(218\) 2166.88i 0.673209i
\(219\) −3201.15 −0.987734
\(220\) 103.367 0.0316773
\(221\) 488.705 + 1108.28i 0.148750 + 0.337334i
\(222\) −282.734 −0.0854768
\(223\) 918.791 0.275905 0.137952 0.990439i \(-0.455948\pi\)
0.137952 + 0.990439i \(0.455948\pi\)
\(224\) 192.000i 0.0572703i
\(225\) 1303.58 0.386245
\(226\) 2054.12i 0.604593i
\(227\) 1754.31i 0.512942i −0.966552 0.256471i \(-0.917440\pi\)
0.966552 0.256471i \(-0.0825598\pi\)
\(228\) 1750.10i 0.508348i
\(229\) −1859.18 −0.536498 −0.268249 0.963350i \(-0.586445\pi\)
−0.268249 + 0.963350i \(0.586445\pi\)
\(230\) 1018.07 0.291868
\(231\) 28.3165i 0.00806532i
\(232\) 477.660i 0.135172i
\(233\) 1537.43i 0.432276i 0.976363 + 0.216138i \(0.0693461\pi\)
−0.976363 + 0.216138i \(0.930654\pi\)
\(234\) −311.050 −0.0868975
\(235\) 7503.89i 2.08298i
\(236\) −480.000 −0.132396
\(237\) −3116.42 −0.854148
\(238\) −769.612 + 339.367i −0.209607 + 0.0924281i
\(239\) −3904.69 −1.05679 −0.528396 0.848998i \(-0.677206\pi\)
−0.528396 + 0.848998i \(0.677206\pi\)
\(240\) −788.489 −0.212070
\(241\) 2369.64i 0.633369i 0.948531 + 0.316685i \(0.102570\pi\)
−0.948531 + 0.316685i \(0.897430\pi\)
\(242\) −2657.05 −0.705792
\(243\) 243.000i 0.0641500i
\(244\) 1635.51i 0.429110i
\(245\) 5043.05i 1.31505i
\(246\) 1373.93 0.356091
\(247\) 2520.23 0.649224
\(248\) 240.000i 0.0614517i
\(249\) 3299.05i 0.839634i
\(250\) 651.875i 0.164913i
\(251\) 7356.23 1.84989 0.924943 0.380107i \(-0.124113\pi\)
0.924943 + 0.380107i \(0.124113\pi\)
\(252\) 216.000i 0.0539949i
\(253\) 48.7485 0.0121138
\(254\) −4583.25 −1.13220
\(255\) 1393.68 + 3160.58i 0.342258 + 0.776168i
\(256\) 256.000 0.0625000
\(257\) 3415.32 0.828957 0.414479 0.910059i \(-0.363964\pi\)
0.414479 + 0.910059i \(0.363964\pi\)
\(258\) 2256.52i 0.544514i
\(259\) −282.734 −0.0678310
\(260\) 1135.46i 0.270840i
\(261\) 537.367i 0.127441i
\(262\) 3870.08i 0.912574i
\(263\) −3030.22 −0.710460 −0.355230 0.934779i \(-0.615598\pi\)
−0.355230 + 0.934779i \(0.615598\pi\)
\(264\) −37.7553 −0.00880182
\(265\) 9250.33i 2.14431i
\(266\) 1750.10i 0.403404i
\(267\) 2383.47i 0.546314i
\(268\) 820.489 0.187013
\(269\) 5449.58i 1.23519i −0.786496 0.617596i \(-0.788107\pi\)
0.786496 0.617596i \(-0.211893\pi\)
\(270\) −887.050 −0.199941
\(271\) 2628.14 0.589109 0.294554 0.955635i \(-0.404829\pi\)
0.294554 + 0.955635i \(0.404829\pi\)
\(272\) −452.489 1026.15i −0.100868 0.228748i
\(273\) −311.050 −0.0689584
\(274\) −1947.08 −0.429297
\(275\) 227.856i 0.0499645i
\(276\) −371.856 −0.0810983
\(277\) 7133.14i 1.54725i 0.633643 + 0.773626i \(0.281559\pi\)
−0.633643 + 0.773626i \(0.718441\pi\)
\(278\) 620.777i 0.133927i
\(279\) 270.000i 0.0579372i
\(280\) −788.489 −0.168290
\(281\) 6010.26 1.27595 0.637975 0.770057i \(-0.279772\pi\)
0.637975 + 0.770057i \(0.279772\pi\)
\(282\) 2740.83i 0.578774i
\(283\) 1226.19i 0.257559i −0.991673 0.128780i \(-0.958894\pi\)
0.991673 0.128780i \(-0.0411060\pi\)
\(284\) 3581.56i 0.748333i
\(285\) 7187.17 1.49379
\(286\) 54.3695i 0.0112410i
\(287\) 1373.93 0.282580
\(288\) 288.000 0.0589256
\(289\) −3313.42 + 3627.51i −0.674418 + 0.738349i
\(290\) 1961.61 0.397206
\(291\) −3018.73 −0.608114
\(292\) 4268.20i 0.855403i
\(293\) 8459.73 1.68677 0.843383 0.537312i \(-0.180560\pi\)
0.843383 + 0.537312i \(0.180560\pi\)
\(294\) 1842.00i 0.365400i
\(295\) 1971.22i 0.389048i
\(296\) 376.979i 0.0740251i
\(297\) −42.4748 −0.00829844
\(298\) 5361.53 1.04223
\(299\) 535.491i 0.103573i
\(300\) 1738.10i 0.334498i
\(301\) 2256.52i 0.432105i
\(302\) 453.755 0.0864592
\(303\) 1182.52i 0.224204i
\(304\) −2333.47 −0.440242
\(305\) 6716.58 1.26095
\(306\) −509.050 1154.42i −0.0950996 0.215666i
\(307\) −3384.78 −0.629249 −0.314624 0.949216i \(-0.601879\pi\)
−0.314624 + 0.949216i \(0.601879\pi\)
\(308\) −37.7553 −0.00698477
\(309\) 2246.68i 0.413621i
\(310\) −985.612 −0.180577
\(311\) 861.003i 0.156987i −0.996915 0.0784935i \(-0.974989\pi\)
0.996915 0.0784935i \(-0.0250110\pi\)
\(312\) 414.734i 0.0752554i
\(313\) 950.648i 0.171674i 0.996309 + 0.0858368i \(0.0273564\pi\)
−0.996309 + 0.0858368i \(0.972644\pi\)
\(314\) −706.216 −0.126924
\(315\) −887.050 −0.158665
\(316\) 4155.22i 0.739714i
\(317\) 8401.18i 1.48851i −0.667897 0.744254i \(-0.732805\pi\)
0.667897 0.744254i \(-0.267195\pi\)
\(318\) 3378.73i 0.595818i
\(319\) 93.9281 0.0164858
\(320\) 1051.32i 0.183658i
\(321\) 3601.44 0.626208
\(322\) −371.856 −0.0643563
\(323\) 4124.49 + 9353.46i 0.710504 + 1.61127i
\(324\) 324.000 0.0555556
\(325\) 2502.95 0.427196
\(326\) 2141.41i 0.363809i
\(327\) 3250.32 0.549673
\(328\) 1831.90i 0.308384i
\(329\) 2740.83i 0.459292i
\(330\) 155.050i 0.0258644i
\(331\) 4128.20 0.685518 0.342759 0.939423i \(-0.388639\pi\)
0.342759 + 0.939423i \(0.388639\pi\)
\(332\) 4398.73 0.727144
\(333\) 424.101i 0.0697916i
\(334\) 1488.82i 0.243905i
\(335\) 3369.52i 0.549541i
\(336\) 288.000 0.0467610
\(337\) 40.2293i 0.00650276i −0.999995 0.00325138i \(-0.998965\pi\)
0.999995 0.00325138i \(-0.00103495\pi\)
\(338\) 3796.76 0.610996
\(339\) −3081.18 −0.493648
\(340\) −4214.10 + 1858.24i −0.672182 + 0.296404i
\(341\) −47.1942 −0.00749475
\(342\) −2625.15 −0.415064
\(343\) 3900.00i 0.613936i
\(344\) −3008.69 −0.471563
\(345\) 1527.11i 0.238309i
\(346\) 5741.06i 0.892026i
\(347\) 1137.51i 0.175978i −0.996121 0.0879892i \(-0.971956\pi\)
0.996121 0.0879892i \(-0.0280441\pi\)
\(348\) −716.489 −0.110367
\(349\) 625.741 0.0959746 0.0479873 0.998848i \(-0.484719\pi\)
0.0479873 + 0.998848i \(0.484719\pi\)
\(350\) 1738.10i 0.265444i
\(351\) 466.576i 0.0709515i
\(352\) 50.3405i 0.00762260i
\(353\) −6354.81 −0.958165 −0.479082 0.877770i \(-0.659031\pi\)
−0.479082 + 0.877770i \(0.659031\pi\)
\(354\) 720.000i 0.108100i
\(355\) −14708.5 −2.19900
\(356\) −3177.96 −0.473122
\(357\) −509.050 1154.42i −0.0754672 0.171144i
\(358\) 2288.06 0.337787
\(359\) −10466.9 −1.53878 −0.769388 0.638781i \(-0.779439\pi\)
−0.769388 + 0.638781i \(0.779439\pi\)
\(360\) 1182.73i 0.173154i
\(361\) 14410.8 2.10101
\(362\) 7032.14i 1.02100i
\(363\) 3985.58i 0.576277i
\(364\) 414.734i 0.0597197i
\(365\) −17528.3 −2.51362
\(366\) −2453.27 −0.350367
\(367\) 8320.39i 1.18344i 0.806145 + 0.591718i \(0.201550\pi\)
−0.806145 + 0.591718i \(0.798450\pi\)
\(368\) 495.808i 0.0702331i
\(369\) 2060.89i 0.290747i
\(370\) −1548.14 −0.217525
\(371\) 3378.73i 0.472817i
\(372\) 360.000 0.0501751
\(373\) 265.251 0.0368208 0.0184104 0.999831i \(-0.494139\pi\)
0.0184104 + 0.999831i \(0.494139\pi\)
\(374\) −201.784 + 88.9786i −0.0278985 + 0.0123021i
\(375\) 977.813 0.134651
\(376\) −3654.45 −0.501233
\(377\) 1031.78i 0.140953i
\(378\) 324.000 0.0440867
\(379\) 10168.5i 1.37815i −0.724688 0.689077i \(-0.758016\pi\)
0.724688 0.689077i \(-0.241984\pi\)
\(380\) 9582.89i 1.29366i
\(381\) 6874.88i 0.924438i
\(382\) 8307.22 1.11266
\(383\) −1646.79 −0.219705 −0.109853 0.993948i \(-0.535038\pi\)
−0.109853 + 0.993948i \(0.535038\pi\)
\(384\) 384.000i 0.0510310i
\(385\) 155.050i 0.0205249i
\(386\) 8181.81i 1.07887i
\(387\) −3384.78 −0.444594
\(388\) 4024.98i 0.526643i
\(389\) 6268.68 0.817055 0.408528 0.912746i \(-0.366042\pi\)
0.408528 + 0.912746i \(0.366042\pi\)
\(390\) −1703.19 −0.221140
\(391\) −1987.40 + 876.359i −0.257051 + 0.113349i
\(392\) −2456.00 −0.316446
\(393\) 5805.12 0.745114
\(394\) 9647.49i 1.23359i
\(395\) −17064.3 −2.17367
\(396\) 56.6330i 0.00718666i
\(397\) 13537.7i 1.71143i −0.517446 0.855716i \(-0.673117\pi\)
0.517446 0.855716i \(-0.326883\pi\)
\(398\) 5971.48i 0.752069i
\(399\) −2625.15 −0.329378
\(400\) −2317.47 −0.289683
\(401\) 6490.51i 0.808281i −0.914697 0.404141i \(-0.867571\pi\)
0.914697 0.404141i \(-0.132429\pi\)
\(402\) 1230.73i 0.152695i
\(403\) 518.417i 0.0640799i
\(404\) −1576.69 −0.194167
\(405\) 1330.58i 0.163251i
\(406\) −716.489 −0.0875832
\(407\) −74.1300 −0.00902822
\(408\) 1539.22 678.734i 0.186772 0.0823587i
\(409\) −7733.80 −0.934992 −0.467496 0.883995i \(-0.654844\pi\)
−0.467496 + 0.883995i \(0.654844\pi\)
\(410\) 7523.11 0.906195
\(411\) 2920.62i 0.350520i
\(412\) 2995.57 0.358207
\(413\) 720.000i 0.0857842i
\(414\) 557.784i 0.0662164i
\(415\) 18064.3i 2.13673i
\(416\) 552.979 0.0651731
\(417\) −931.165 −0.109351
\(418\) 458.859i 0.0536926i
\(419\) 8170.70i 0.952660i 0.879267 + 0.476330i \(0.158033\pi\)
−0.879267 + 0.476330i \(0.841967\pi\)
\(420\) 1182.73i 0.137408i
\(421\) −13732.6 −1.58975 −0.794874 0.606774i \(-0.792463\pi\)
−0.794874 + 0.606774i \(0.792463\pi\)
\(422\) 8774.79i 1.01220i
\(423\) −4111.25 −0.472567
\(424\) 4504.98 0.515993
\(425\) 4096.21 + 9289.32i 0.467518 + 1.06023i
\(426\) 5372.35 0.611012
\(427\) −2453.27 −0.278037
\(428\) 4801.92i 0.542312i
\(429\) −81.5543 −0.00917827
\(430\) 12355.8i 1.38570i
\(431\) 13075.7i 1.46133i 0.682734 + 0.730667i \(0.260791\pi\)
−0.682734 + 0.730667i \(0.739209\pi\)
\(432\) 432.000i 0.0481125i
\(433\) 16873.0 1.87266 0.936331 0.351118i \(-0.114198\pi\)
0.936331 + 0.351118i \(0.114198\pi\)
\(434\) 360.000 0.0398169
\(435\) 2942.42i 0.324318i
\(436\) 4333.76i 0.476030i
\(437\) 4519.35i 0.494713i
\(438\) 6402.30 0.698433
\(439\) 16207.3i 1.76203i −0.473089 0.881014i \(-0.656861\pi\)
0.473089 0.881014i \(-0.343139\pi\)
\(440\) −206.734 −0.0223992
\(441\) −2763.00 −0.298348
\(442\) −977.410 2216.56i −0.105182 0.238531i
\(443\) 8022.65 0.860423 0.430212 0.902728i \(-0.358439\pi\)
0.430212 + 0.902728i \(0.358439\pi\)
\(444\) 565.468 0.0604413
\(445\) 13051.0i 1.39028i
\(446\) −1837.58 −0.195094
\(447\) 8042.29i 0.850978i
\(448\) 384.000i 0.0404962i
\(449\) 4730.44i 0.497201i 0.968606 + 0.248600i \(0.0799706\pi\)
−0.968606 + 0.248600i \(0.920029\pi\)
\(450\) −2607.15 −0.273116
\(451\) 360.230 0.0376110
\(452\) 4108.24i 0.427512i
\(453\) 680.633i 0.0705937i
\(454\) 3508.62i 0.362705i
\(455\) −1703.19 −0.175488
\(456\) 3500.20i 0.359456i
\(457\) 840.447 0.0860273 0.0430136 0.999074i \(-0.486304\pi\)
0.0430136 + 0.999074i \(0.486304\pi\)
\(458\) 3718.36 0.379362
\(459\) 1731.63 763.576i 0.176090 0.0776485i
\(460\) −2036.14 −0.206382
\(461\) 6788.88 0.685878 0.342939 0.939358i \(-0.388578\pi\)
0.342939 + 0.939358i \(0.388578\pi\)
\(462\) 56.6330i 0.00570304i
\(463\) −11545.7 −1.15890 −0.579452 0.815006i \(-0.696733\pi\)
−0.579452 + 0.815006i \(0.696733\pi\)
\(464\) 955.319i 0.0955810i
\(465\) 1478.42i 0.147441i
\(466\) 3074.86i 0.305665i
\(467\) 174.303 0.0172715 0.00863573 0.999963i \(-0.497251\pi\)
0.00863573 + 0.999963i \(0.497251\pi\)
\(468\) 622.101 0.0614458
\(469\) 1230.73i 0.121173i
\(470\) 15007.8i 1.47289i
\(471\) 1059.32i 0.103633i
\(472\) 960.000 0.0936178
\(473\) 591.636i 0.0575126i
\(474\) 6232.83 0.603974
\(475\) 21124.0 2.04049
\(476\) 1539.22 678.734i 0.148215 0.0653566i
\(477\) 5068.10 0.486483
\(478\) 7809.38 0.747265
\(479\) 16182.7i 1.54365i 0.635837 + 0.771824i \(0.280655\pi\)
−0.635837 + 0.771824i \(0.719345\pi\)
\(480\) 1576.98 0.149956
\(481\) 814.301i 0.0771911i
\(482\) 4739.28i 0.447860i
\(483\) 557.784i 0.0525467i
\(484\) 5314.10 0.499070
\(485\) −16529.4 −1.54755
\(486\) 486.000i 0.0453609i
\(487\) 17815.3i 1.65767i −0.559491 0.828837i \(-0.689003\pi\)
0.559491 0.828837i \(-0.310997\pi\)
\(488\) 3271.02i 0.303427i
\(489\) 3212.11 0.297049
\(490\) 10086.1i 0.929884i
\(491\) 19445.2 1.78727 0.893635 0.448794i \(-0.148146\pi\)
0.893635 + 0.448794i \(0.148146\pi\)
\(492\) −2747.86 −0.251795
\(493\) −3829.30 + 1688.56i −0.349823 + 0.154258i
\(494\) −5040.46 −0.459071
\(495\) −232.576 −0.0211182
\(496\) 480.000i 0.0434529i
\(497\) 5372.35 0.484875
\(498\) 6598.10i 0.593711i
\(499\) 9524.72i 0.854479i −0.904138 0.427240i \(-0.859486\pi\)
0.904138 0.427240i \(-0.140514\pi\)
\(500\) 1303.75i 0.116611i
\(501\) 2233.22 0.199148
\(502\) −14712.5 −1.30807
\(503\) 1592.37i 0.141154i −0.997506 0.0705768i \(-0.977516\pi\)
0.997506 0.0705768i \(-0.0224840\pi\)
\(504\) 432.000i 0.0381802i
\(505\) 6475.02i 0.570564i
\(506\) −97.4970 −0.00856575
\(507\) 5695.14i 0.498876i
\(508\) 9166.50 0.800586
\(509\) −14893.7 −1.29696 −0.648480 0.761232i \(-0.724595\pi\)
−0.648480 + 0.761232i \(0.724595\pi\)
\(510\) −2787.37 6321.15i −0.242013 0.548834i
\(511\) 6402.30 0.554249
\(512\) −512.000 −0.0441942
\(513\) 3937.73i 0.338898i
\(514\) −6830.65 −0.586161
\(515\) 12301.9i 1.05260i
\(516\) 4513.04i 0.385030i
\(517\) 718.619i 0.0611312i
\(518\) 565.468 0.0479638
\(519\) −8611.58 −0.728336
\(520\) 2270.93i 0.191513i
\(521\) 4403.38i 0.370279i −0.982712 0.185140i \(-0.940726\pi\)
0.982712 0.185140i \(-0.0592737\pi\)
\(522\) 1074.73i 0.0901146i
\(523\) −6728.23 −0.562533 −0.281267 0.959630i \(-0.590755\pi\)
−0.281267 + 0.959630i \(0.590755\pi\)
\(524\) 7740.16i 0.645287i
\(525\) −2607.15 −0.216734
\(526\) 6060.43 0.502371
\(527\) 1924.03 848.417i 0.159036 0.0701284i
\(528\) 75.5107 0.00622383
\(529\) 11206.7 0.921077
\(530\) 18500.7i 1.51626i
\(531\) 1080.00 0.0882637
\(532\) 3500.20i 0.285250i
\(533\) 3957.05i 0.321574i
\(534\) 4766.94i 0.386302i
\(535\) 19720.1 1.59360
\(536\) −1640.98 −0.132238
\(537\) 3432.09i 0.275802i
\(538\) 10899.2i 0.873413i
\(539\) 482.954i 0.0385942i
\(540\) 1774.10 0.141380
\(541\) 13624.4i 1.08273i 0.840787 + 0.541366i \(0.182093\pi\)
−0.840787 + 0.541366i \(0.817907\pi\)
\(542\) −5256.29 −0.416563
\(543\) −10548.2 −0.833641
\(544\) 904.979 + 2052.30i 0.0713247 + 0.161749i
\(545\) 17797.5 1.39883
\(546\) 622.101 0.0487609
\(547\) 3158.10i 0.246857i 0.992353 + 0.123428i \(0.0393889\pi\)
−0.992353 + 0.123428i \(0.960611\pi\)
\(548\) 3894.16 0.303559
\(549\) 3679.90i 0.286073i
\(550\) 455.713i 0.0353303i
\(551\) 8707.84i 0.673260i
\(552\) 743.713 0.0573451
\(553\) 6232.83 0.479290
\(554\) 14266.3i 1.09407i
\(555\) 2322.22i 0.177608i
\(556\) 1241.55i 0.0947007i
\(557\) −5831.35 −0.443595 −0.221797 0.975093i \(-0.571192\pi\)
−0.221797 + 0.975093i \(0.571192\pi\)
\(558\) 540.000i 0.0409678i
\(559\) −6498.99 −0.491732
\(560\) 1576.98 0.118999
\(561\) −133.468 302.677i −0.0100446 0.0227790i
\(562\) −12020.5 −0.902233
\(563\) −12511.5 −0.936587 −0.468294 0.883573i \(-0.655131\pi\)
−0.468294 + 0.883573i \(0.655131\pi\)
\(564\) 5481.67i 0.409255i
\(565\) −16871.4 −1.25625
\(566\) 2452.37i 0.182122i
\(567\) 486.000i 0.0359966i
\(568\) 7163.13i 0.529152i
\(569\) −8469.14 −0.623980 −0.311990 0.950085i \(-0.600996\pi\)
−0.311990 + 0.950085i \(0.600996\pi\)
\(570\) −14374.3 −1.05627
\(571\) 5857.64i 0.429308i 0.976690 + 0.214654i \(0.0688623\pi\)
−0.976690 + 0.214654i \(0.931138\pi\)
\(572\) 108.739i 0.00794862i
\(573\) 12460.8i 0.908480i
\(574\) −2747.86 −0.199814
\(575\) 4488.36i 0.325526i
\(576\) −576.000 −0.0416667
\(577\) 15537.9 1.12106 0.560528 0.828135i \(-0.310598\pi\)
0.560528 + 0.828135i \(0.310598\pi\)
\(578\) 6626.83 7255.02i 0.476886 0.522092i
\(579\) 12272.7 0.880893
\(580\) −3923.22 −0.280867
\(581\) 6598.10i 0.471145i
\(582\) 6037.47 0.430002
\(583\) 885.870i 0.0629314i
\(584\) 8536.40i 0.604861i
\(585\) 2554.79i 0.180560i
\(586\) −16919.5 −1.19272
\(587\) 1491.54 0.104876 0.0524382 0.998624i \(-0.483301\pi\)
0.0524382 + 0.998624i \(0.483301\pi\)
\(588\) 3684.00i 0.258377i
\(589\) 4375.25i 0.306077i
\(590\) 3942.45i 0.275098i
\(591\) 14471.2 1.00722
\(592\) 753.957i 0.0523437i
\(593\) 14418.0 0.998442 0.499221 0.866475i \(-0.333620\pi\)
0.499221 + 0.866475i \(0.333620\pi\)
\(594\) 84.9495 0.00586788
\(595\) −2787.37 6321.15i −0.192052 0.435533i
\(596\) −10723.1 −0.736969
\(597\) −8957.22 −0.614062
\(598\) 1070.98i 0.0732370i
\(599\) 3644.49 0.248597 0.124299 0.992245i \(-0.460332\pi\)
0.124299 + 0.992245i \(0.460332\pi\)
\(600\) 3476.20i 0.236526i
\(601\) 6984.34i 0.474039i −0.971505 0.237019i \(-0.923829\pi\)
0.971505 0.237019i \(-0.0761705\pi\)
\(602\) 4513.04i 0.305544i
\(603\) −1846.10 −0.124675
\(604\) −907.511 −0.0611359
\(605\) 21823.5i 1.46653i
\(606\) 2365.04i 0.158536i
\(607\) 14362.8i 0.960407i 0.877157 + 0.480204i \(0.159437\pi\)
−0.877157 + 0.480204i \(0.840563\pi\)
\(608\) 4666.94 0.311298
\(609\) 1074.73i 0.0715114i
\(610\) −13433.2 −0.891627
\(611\) −7893.87 −0.522671
\(612\) 1018.10 + 2308.83i 0.0672456 + 0.152499i
\(613\) −8703.81 −0.573481 −0.286740 0.958008i \(-0.592572\pi\)
−0.286740 + 0.958008i \(0.592572\pi\)
\(614\) 6769.55 0.444946
\(615\) 11284.7i 0.739905i
\(616\) 75.5107 0.00493898
\(617\) 26903.7i 1.75543i −0.479182 0.877715i \(-0.659067\pi\)
0.479182 0.877715i \(-0.340933\pi\)
\(618\) 4493.35i 0.292474i
\(619\) 8641.76i 0.561133i 0.959835 + 0.280567i \(0.0905224\pi\)
−0.959835 + 0.280567i \(0.909478\pi\)
\(620\) 1971.22 0.127687
\(621\) 836.677 0.0540655
\(622\) 1722.01i 0.111007i
\(623\) 4766.94i 0.306554i
\(624\) 829.468i 0.0532136i
\(625\) −12751.1 −0.816070
\(626\) 1901.30i 0.121392i
\(627\) −688.288 −0.0438398
\(628\) 1412.43 0.0897486
\(629\) 3022.16 1332.65i 0.191576 0.0844771i
\(630\) 1774.10 0.112193
\(631\) −10472.0 −0.660672 −0.330336 0.943863i \(-0.607162\pi\)
−0.330336 + 0.943863i \(0.607162\pi\)
\(632\) 8310.45i 0.523057i
\(633\) 13162.2 0.826461
\(634\) 16802.4i 1.05253i
\(635\) 37644.2i 2.35254i
\(636\) 6757.47i 0.421307i
\(637\) −5305.14 −0.329980
\(638\) −187.856 −0.0116572
\(639\) 8058.52i 0.498889i
\(640\) 2102.64i 0.129866i
\(641\) 9806.52i 0.604266i 0.953266 + 0.302133i \(0.0976986\pi\)
−0.953266 + 0.302133i \(0.902301\pi\)
\(642\) −7202.88 −0.442796
\(643\) 13782.6i 0.845307i 0.906291 + 0.422653i \(0.138901\pi\)
−0.906291 + 0.422653i \(0.861099\pi\)
\(644\) 743.713 0.0455068
\(645\) −18533.8 −1.13142
\(646\) −8248.98 18706.9i −0.502402 1.13934i
\(647\) 13972.3 0.849005 0.424502 0.905427i \(-0.360449\pi\)
0.424502 + 0.905427i \(0.360449\pi\)
\(648\) −648.000 −0.0392837
\(649\) 188.777i 0.0114178i
\(650\) −5005.90 −0.302073
\(651\) 540.000i 0.0325104i
\(652\) 4282.82i 0.257252i
\(653\) 469.753i 0.0281514i −0.999901 0.0140757i \(-0.995519\pi\)
0.999901 0.0140757i \(-0.00448058\pi\)
\(654\) −6500.63 −0.388677
\(655\) 31786.6 1.89619
\(656\) 3663.81i 0.218060i
\(657\) 9603.45i 0.570269i
\(658\) 5481.67i 0.324769i
\(659\) 6126.73 0.362160 0.181080 0.983468i \(-0.442041\pi\)
0.181080 + 0.983468i \(0.442041\pi\)
\(660\) 310.101i 0.0182889i
\(661\) −19862.7 −1.16879 −0.584393 0.811471i \(-0.698667\pi\)
−0.584393 + 0.811471i \(0.698667\pi\)
\(662\) −8256.40 −0.484734
\(663\) 3324.83 1466.11i 0.194760 0.0858811i
\(664\) −8797.47 −0.514169
\(665\) −14374.3 −0.838215
\(666\) 848.202i 0.0493501i
\(667\) −1850.22 −0.107407
\(668\) 2977.63i 0.172467i
\(669\) 2756.37i 0.159294i
\(670\) 6739.03i 0.388584i
\(671\) −643.222 −0.0370064
\(672\) −576.000 −0.0330650
\(673\) 29895.9i 1.71234i −0.516697 0.856169i \(-0.672838\pi\)
0.516697 0.856169i \(-0.327162\pi\)
\(674\) 80.4586i 0.00459815i
\(675\) 3910.73i 0.222998i
\(676\) −7593.53 −0.432039
\(677\) 3689.27i 0.209439i 0.994502 + 0.104719i \(0.0333945\pi\)
−0.994502 + 0.104719i \(0.966606\pi\)
\(678\) 6162.36 0.349062
\(679\) 6037.47 0.341232
\(680\) 8428.20 3716.49i 0.475304 0.209589i
\(681\) −5262.94 −0.296147
\(682\) 94.3884 0.00529959
\(683\) 14206.2i 0.795879i 0.917412 + 0.397940i \(0.130275\pi\)
−0.917412 + 0.397940i \(0.869725\pi\)
\(684\) 5250.30 0.293495
\(685\) 15992.2i 0.892016i
\(686\) 7800.00i 0.434119i
\(687\) 5577.54i 0.309747i
\(688\) 6017.38 0.333446
\(689\) 9731.08 0.538062
\(690\) 3054.22i 0.168510i
\(691\) 36094.2i 1.98710i 0.113391 + 0.993550i \(0.463829\pi\)
−0.113391 + 0.993550i \(0.536171\pi\)
\(692\) 11482.1i 0.630758i
\(693\) 84.9495 0.00465652
\(694\) 2275.01i 0.124436i
\(695\) −5098.71 −0.278281
\(696\) 1432.98 0.0780415
\(697\) −14686.0 + 6475.91i −0.798094 + 0.351926i
\(698\) −1251.48 −0.0678643
\(699\) 4612.29 0.249575
\(700\) 3476.20i 0.187697i
\(701\) 17089.4 0.920767 0.460383 0.887720i \(-0.347712\pi\)
0.460383 + 0.887720i \(0.347712\pi\)
\(702\) 933.151i 0.0501703i
\(703\) 6872.40i 0.368702i
\(704\) 100.681i 0.00538999i
\(705\) −22511.7 −1.20261
\(706\) 12709.6 0.677525
\(707\) 2365.04i 0.125808i
\(708\) 1440.00i 0.0764386i
\(709\) 17325.6i 0.917737i −0.888504 0.458868i \(-0.848255\pi\)
0.888504 0.458868i \(-0.151745\pi\)
\(710\) 29416.9 1.55493
\(711\) 9349.25i 0.493143i
\(712\) 6355.91 0.334548
\(713\) 929.641 0.0488293
\(714\) 1018.10 + 2308.83i 0.0533634 + 0.121017i
\(715\) −446.560 −0.0233572
\(716\) −4576.12 −0.238851
\(717\) 11714.1i 0.610140i
\(718\) 20933.8 1.08808
\(719\) 3861.73i 0.200304i 0.994972 + 0.100152i \(0.0319329\pi\)
−0.994972 + 0.100152i \(0.968067\pi\)
\(720\) 2365.47i 0.122439i
\(721\) 4493.35i 0.232096i
\(722\) −28821.6 −1.48564
\(723\) 7108.92 0.365676
\(724\) 14064.3i 0.721955i
\(725\) 8648.13i 0.443012i
\(726\) 7971.15i 0.407489i
\(727\) 3016.23 0.153873 0.0769366 0.997036i \(-0.475486\pi\)
0.0769366 + 0.997036i \(0.475486\pi\)
\(728\) 829.468i 0.0422282i
\(729\) −729.000 −0.0370370
\(730\) 35056.6 1.77740
\(731\) −10635.9 24120.0i −0.538146 1.22040i
\(732\) 4906.53 0.247747
\(733\) −6778.92 −0.341590 −0.170795 0.985307i \(-0.554634\pi\)
−0.170795 + 0.985307i \(0.554634\pi\)
\(734\) 16640.8i 0.836815i
\(735\) −15129.1 −0.759247
\(736\) 991.617i 0.0496623i
\(737\) 322.686i 0.0161279i
\(738\) 4121.78i 0.205589i
\(739\) 25629.9 1.27579 0.637896 0.770123i \(-0.279805\pi\)
0.637896 + 0.770123i \(0.279805\pi\)
\(740\) 3096.29 0.153813
\(741\) 7560.69i 0.374830i
\(742\) 6757.47i 0.334332i
\(743\) 8981.07i 0.443450i 0.975109 + 0.221725i \(0.0711688\pi\)
−0.975109 + 0.221725i \(0.928831\pi\)
\(744\) −720.000 −0.0354791
\(745\) 44036.5i 2.16560i
\(746\) −530.501 −0.0260362
\(747\) −9897.15 −0.484763
\(748\) 403.569 177.957i 0.0197272 0.00869888i
\(749\) −7202.88 −0.351385
\(750\) −1955.63 −0.0952125
\(751\) 4198.37i 0.203996i 0.994785 + 0.101998i \(0.0325235\pi\)
−0.994785 + 0.101998i \(0.967477\pi\)
\(752\) 7308.89 0.354425
\(753\) 22068.7i 1.06803i
\(754\) 2063.56i 0.0996689i
\(755\) 3726.89i 0.179649i
\(756\) −648.000 −0.0311740
\(757\) 11693.1 0.561418 0.280709 0.959793i \(-0.409430\pi\)
0.280709 + 0.959793i \(0.409430\pi\)
\(758\) 20337.0i 0.974502i
\(759\) 146.245i 0.00699390i
\(760\) 19165.8i 0.914758i
\(761\) 13505.6 0.643333 0.321667 0.946853i \(-0.395757\pi\)
0.321667 + 0.946853i \(0.395757\pi\)
\(762\) 13749.8i 0.653676i
\(763\) −6500.63 −0.308439
\(764\) −16614.4 −0.786766
\(765\) 9481.73 4181.05i 0.448121 0.197603i
\(766\) 3293.58 0.155355
\(767\) 2073.67 0.0976217
\(768\) 768.000i 0.0360844i
\(769\) 15256.1 0.715407 0.357704 0.933835i \(-0.383560\pi\)
0.357704 + 0.933835i \(0.383560\pi\)
\(770\) 310.101i 0.0145133i
\(771\) 10246.0i 0.478599i
\(772\) 16363.6i 0.762875i
\(773\) −16038.3 −0.746256 −0.373128 0.927780i \(-0.621715\pi\)
−0.373128 + 0.927780i \(0.621715\pi\)
\(774\) 6769.56 0.314375
\(775\) 4345.25i 0.201401i
\(776\) 8049.96i 0.372393i
\(777\) 848.202i 0.0391623i
\(778\) −12537.4 −0.577745
\(779\) 33396.0i 1.53599i
\(780\) 3406.39 0.156370
\(781\) 1408.57 0.0645362
\(782\) 3974.79 1752.72i 0.181762 0.0801497i
\(783\) 1612.10 0.0735783
\(784\) 4912.00 0.223761
\(785\) 5800.45i 0.263729i
\(786\) −11610.2 −0.526875
\(787\) 26105.8i 1.18243i −0.806514 0.591215i \(-0.798648\pi\)
0.806514 0.591215i \(-0.201352\pi\)
\(788\) 19295.0i 0.872278i
\(789\) 9090.65i 0.410185i
\(790\) 34128.6 1.53702
\(791\) 6162.36 0.277002
\(792\) 113.266i 0.00508173i
\(793\) 7065.64i 0.316404i
\(794\) 27075.4i 1.21016i
\(795\) 27751.0 1.23802
\(796\) 11943.0i 0.531793i
\(797\) 5988.53 0.266154 0.133077 0.991106i \(-0.457514\pi\)
0.133077 + 0.991106i \(0.457514\pi\)
\(798\) 5250.30 0.232906
\(799\) −12918.7 29296.9i −0.572005 1.29718i
\(800\) 4634.94 0.204837
\(801\) 7150.40 0.315415
\(802\) 12981.0i 0.571541i
\(803\) 1678.62 0.0737698
\(804\) 2461.47i 0.107972i
\(805\) 3054.22i 0.133723i
\(806\) 1036.83i 0.0453114i
\(807\) −16348.7 −0.713138
\(808\) 3153.38 0.137297
\(809\) 44380.7i 1.92873i 0.264577 + 0.964365i \(0.414768\pi\)
−0.264577 + 0.964365i \(0.585232\pi\)
\(810\) 2661.15i 0.115436i
\(811\) 33546.5i 1.45250i 0.687432 + 0.726249i \(0.258738\pi\)
−0.687432 + 0.726249i \(0.741262\pi\)
\(812\) 1432.98 0.0619307
\(813\) 7884.43i 0.340122i
\(814\) 148.260 0.00638392
\(815\) 17588.3 0.755941
\(816\) −3078.45 + 1357.47i −0.132068 + 0.0582364i
\(817\) −54849.1 −2.34875
\(818\) 15467.6 0.661139
\(819\) 933.151i 0.0398131i
\(820\) −15046.2 −0.640776
\(821\) 13701.7i 0.582451i −0.956654 0.291226i \(-0.905937\pi\)
0.956654 0.291226i \(-0.0940630\pi\)
\(822\) 5841.24i 0.247855i
\(823\) 4440.76i 0.188087i −0.995568 0.0940433i \(-0.970021\pi\)
0.995568 0.0940433i \(-0.0299792\pi\)
\(824\) −5991.14 −0.253290
\(825\) −683.569 −0.0288470
\(826\) 1440.00i 0.0606586i
\(827\) 8705.42i 0.366043i −0.983109 0.183021i \(-0.941412\pi\)
0.983109 0.183021i \(-0.0585877\pi\)
\(828\) 1115.57i 0.0468221i
\(829\) 5755.30 0.241121 0.120561 0.992706i \(-0.461531\pi\)
0.120561 + 0.992706i \(0.461531\pi\)
\(830\) 36128.7i 1.51090i
\(831\) 21399.4 0.893306
\(832\) −1105.96 −0.0460843
\(833\) −8682.14 19689.2i −0.361126 0.818957i
\(834\) 1862.33 0.0773228
\(835\) 12228.3 0.506799
\(836\) 917.718i 0.0379664i
\(837\) −810.000 −0.0334501
\(838\) 16341.4i 0.673633i
\(839\) 29272.2i 1.20451i −0.798302 0.602257i \(-0.794268\pi\)
0.798302 0.602257i \(-0.205732\pi\)
\(840\) 2365.47i 0.0971624i
\(841\) 20824.0 0.853828
\(842\) 27465.1 1.12412
\(843\) 18030.8i 0.736670i
\(844\) 17549.6i 0.715736i
\(845\) 31184.4i 1.26956i
\(846\) 8222.50 0.334155
\(847\) 7971.15i 0.323367i
\(848\) −9009.96 −0.364862
\(849\) −3678.56 −0.148702
\(850\) −8192.42 18578.6i −0.330585 0.749697i
\(851\) 1460.23 0.0588202
\(852\) −10744.7 −0.432051
\(853\) 45569.0i 1.82913i −0.404434 0.914567i \(-0.632531\pi\)
0.404434 0.914567i \(-0.367469\pi\)
\(854\) 4906.53 0.196602
\(855\) 21561.5i 0.862442i
\(856\) 9603.84i 0.383473i
\(857\) 33462.5i 1.33379i −0.745151 0.666895i \(-0.767623\pi\)
0.745151 0.666895i \(-0.232377\pi\)
\(858\) 163.109 0.00649002
\(859\) 7859.19 0.312168 0.156084 0.987744i \(-0.450113\pi\)
0.156084 + 0.987744i \(0.450113\pi\)
\(860\) 24711.7i 0.979839i
\(861\) 4121.78i 0.163148i
\(862\) 26151.4i 1.03332i
\(863\) −17613.4 −0.694746 −0.347373 0.937727i \(-0.612926\pi\)
−0.347373 + 0.937727i \(0.612926\pi\)
\(864\) 864.000i 0.0340207i
\(865\) −47153.8 −1.85350
\(866\) −33745.9 −1.32417
\(867\) 10882.5 + 9940.25i 0.426286 + 0.389376i
\(868\) −720.000 −0.0281548
\(869\) 1634.19 0.0637928
\(870\) 5884.83i 0.229327i
\(871\) −3544.63 −0.137894
\(872\) 8667.51i 0.336604i
\(873\) 9056.20i 0.351095i
\(874\) 9038.69i 0.349815i
\(875\) −1955.63 −0.0755568
\(876\) −12804.6 −0.493867
\(877\) 38660.0i 1.48855i −0.667874 0.744274i \(-0.732796\pi\)
0.667874 0.744274i \(-0.267204\pi\)
\(878\) 32414.5i 1.24594i
\(879\) 25379.2i 0.973855i
\(880\) 413.468 0.0158386
\(881\) 15647.5i 0.598384i 0.954193 + 0.299192i \(0.0967172\pi\)
−0.954193 + 0.299192i \(0.903283\pi\)
\(882\) 5526.00 0.210964
\(883\) −12759.6 −0.486291 −0.243145 0.969990i \(-0.578179\pi\)
−0.243145 + 0.969990i \(0.578179\pi\)
\(884\) 1954.82 + 4433.11i 0.0743752 + 0.168667i
\(885\) 5913.67 0.224617
\(886\) −16045.3 −0.608411
\(887\) 18022.4i 0.682225i 0.940022 + 0.341113i \(0.110804\pi\)
−0.940022 + 0.341113i \(0.889196\pi\)
\(888\) −1130.94 −0.0427384
\(889\) 13749.8i 0.518731i
\(890\) 26101.9i 0.983077i
\(891\) 127.424i 0.00479111i
\(892\) 3675.17 0.137952
\(893\) −66621.4 −2.49653
\(894\) 16084.6i 0.601732i
\(895\) 18792.8i 0.701871i
\(896\) 768.000i 0.0286351i
\(897\) 1606.47 0.0597977
\(898\) 9460.88i 0.351574i
\(899\) 1791.22 0.0664523
\(900\) 5214.30 0.193122
\(901\) 15925.4 + 36115.5i 0.588849 + 1.33538i
\(902\) −720.460 −0.0265950
\(903\) 6769.56 0.249476
\(904\) 8216.48i 0.302296i
\(905\) −57758.0 −2.12148
\(906\) 1361.27i 0.0499173i
\(907\) 51434.0i 1.88295i 0.337078 + 0.941477i \(0.390561\pi\)
−0.337078 + 0.941477i \(0.609439\pi\)
\(908\) 7017.25i 0.256471i
\(909\) 3547.56 0.129444
\(910\) 3406.39 0.124089
\(911\) 7890.19i 0.286953i 0.989654 + 0.143476i \(0.0458281\pi\)
−0.989654 + 0.143476i \(0.954172\pi\)
\(912\) 7000.40i 0.254174i
\(913\) 1729.96i 0.0627088i
\(914\) −1680.89 −0.0608305
\(915\) 20149.7i 0.728010i
\(916\) −7436.72 −0.268249
\(917\) −11610.2 −0.418107
\(918\) −3463.25 + 1527.15i −0.124515 + 0.0549058i
\(919\) −46068.0 −1.65358 −0.826792 0.562507i \(-0.809837\pi\)
−0.826792 + 0.562507i \(0.809837\pi\)
\(920\) 4072.29 0.145934
\(921\) 10154.3i 0.363297i
\(922\) −13577.8 −0.484989
\(923\) 15472.9i 0.551783i
\(924\) 113.266i 0.00403266i
\(925\) 6825.28i 0.242610i
\(926\) 23091.3 0.819469
\(927\) −6740.03 −0.238804
\(928\) 1910.64i 0.0675860i
\(929\) 28007.0i 0.989106i 0.869147 + 0.494553i \(0.164668\pi\)
−0.869147 + 0.494553i \(0.835332\pi\)
\(930\) 2956.83i 0.104256i
\(931\) −44773.4 −1.57614
\(932\) 6149.72i 0.216138i
\(933\) −2583.01 −0.0906365
\(934\) −348.606 −0.0122128
\(935\) −730.820 1657.34i −0.0255619 0.0579689i
\(936\) −1244.20 −0.0434487
\(937\) 42032.8 1.46548 0.732738 0.680511i \(-0.238242\pi\)
0.732738 + 0.680511i \(0.238242\pi\)
\(938\) 2461.47i 0.0856821i
\(939\) 2851.95 0.0991158
\(940\) 30015.5i 1.04149i
\(941\) 31863.4i 1.10384i −0.833896 0.551922i \(-0.813895\pi\)
0.833896 0.551922i \(-0.186105\pi\)
\(942\) 2118.65i 0.0732794i
\(943\) −7095.89 −0.245041
\(944\) −1920.00 −0.0661978
\(945\) 2661.15i 0.0916056i
\(946\) 1183.27i 0.0406676i
\(947\) 42612.1i 1.46220i −0.682269 0.731102i \(-0.739007\pi\)
0.682269 0.731102i \(-0.260993\pi\)
\(948\) −12465.7 −0.427074
\(949\) 18439.3i 0.630731i
\(950\) −42247.9 −1.44285
\(951\) −25203.5 −0.859390
\(952\) −3078.45 + 1357.47i −0.104804 + 0.0462141i
\(953\) −6529.28 −0.221935 −0.110968 0.993824i \(-0.535395\pi\)
−0.110968 + 0.993824i \(0.535395\pi\)
\(954\) −10136.2 −0.343995
\(955\) 68230.8i 2.31193i
\(956\) −15618.8 −0.528396
\(957\) 281.784i 0.00951807i
\(958\) 32365.4i 1.09152i
\(959\) 5841.24i 0.196688i
\(960\) −3153.96 −0.106035
\(961\) 28891.0 0.969790
\(962\) 1628.60i 0.0545824i
\(963\) 10804.3i 0.361541i
\(964\) 9478.56i 0.316685i
\(965\) 67200.8 2.24173
\(966\) 1115.57i 0.0371561i
\(967\) 21784.1 0.724436 0.362218 0.932093i \(-0.382020\pi\)
0.362218 + 0.932093i \(0.382020\pi\)
\(968\) −10628.2 −0.352896
\(969\) 28060.4 12373.5i 0.930267 0.410210i
\(970\) 33058.9 1.09429
\(971\) −293.579 −0.00970279 −0.00485140 0.999988i \(-0.501544\pi\)
−0.00485140 + 0.999988i \(0.501544\pi\)
\(972\) 972.000i 0.0320750i
\(973\) 1862.33 0.0613603
\(974\) 35630.5i 1.17215i
\(975\) 7508.85i 0.246642i
\(976\) 6542.04i 0.214555i
\(977\) 42000.5 1.37535 0.687673 0.726020i \(-0.258632\pi\)
0.687673 + 0.726020i \(0.258632\pi\)
\(978\) −6424.23 −0.210045
\(979\) 1249.84i 0.0408020i
\(980\) 20172.2i 0.657527i
\(981\) 9750.95i 0.317354i
\(982\) −38890.4 −1.26379
\(983\) 4754.22i 0.154258i 0.997021 + 0.0771292i \(0.0245754\pi\)
−0.997021 + 0.0771292i \(0.975425\pi\)
\(984\) 5495.71 0.178046
\(985\) 79239.0 2.56321
\(986\) 7658.59 3377.12i 0.247362 0.109077i
\(987\) 8222.50 0.265172
\(988\) 10080.9 0.324612
\(989\) 11654.2i 0.374703i
\(990\) 465.151 0.0149328
\(991\) 44080.5i 1.41298i −0.707722 0.706491i \(-0.750277\pi\)
0.707722 0.706491i \(-0.249723\pi\)
\(992\) 960.000i 0.0307258i
\(993\) 12384.6i 0.395784i
\(994\) −10744.7 −0.342858
\(995\) −49046.4 −1.56269
\(996\) 13196.2i 0.419817i
\(997\) 6073.28i 0.192922i 0.995337 + 0.0964608i \(0.0307522\pi\)
−0.995337 + 0.0964608i \(0.969248\pi\)
\(998\) 19049.4i 0.604208i
\(999\) −1272.30 −0.0402942
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 102.4.b.a.67.1 4
3.2 odd 2 306.4.b.e.271.4 4
4.3 odd 2 816.4.c.b.577.3 4
17.4 even 4 1734.4.a.m.1.1 2
17.13 even 4 1734.4.a.s.1.2 2
17.16 even 2 inner 102.4.b.a.67.4 yes 4
51.50 odd 2 306.4.b.e.271.1 4
68.67 odd 2 816.4.c.b.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.4.b.a.67.1 4 1.1 even 1 trivial
102.4.b.a.67.4 yes 4 17.16 even 2 inner
306.4.b.e.271.1 4 51.50 odd 2
306.4.b.e.271.4 4 3.2 odd 2
816.4.c.b.577.2 4 68.67 odd 2
816.4.c.b.577.3 4 4.3 odd 2
1734.4.a.m.1.1 2 17.4 even 4
1734.4.a.s.1.2 2 17.13 even 4