Properties

Label 8112.2.a.cu.1.5
Level $8112$
Weight $2$
Character 8112.1
Self dual yes
Analytic conductor $64.775$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8112,2,Mod(1,8112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8112.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6,0,1,0,5,0,6,0,6,0,0,0,-1,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.7746461197\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.27700337.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 19x^{4} + 17x^{3} + 103x^{2} - 71x - 127 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4056)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.920510\) of defining polynomial
Character \(\chi\) \(=\) 8112.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +2.72245 q^{5} -3.31535 q^{7} +1.00000 q^{9} -0.656645 q^{11} -2.72245 q^{15} -1.16749 q^{17} -6.77137 q^{19} +3.31535 q^{21} -6.90073 q^{23} +2.41172 q^{25} -1.00000 q^{27} -5.82010 q^{29} +0.969574 q^{31} +0.656645 q^{33} -9.02586 q^{35} -9.93482 q^{37} +10.5937 q^{41} +5.07523 q^{43} +2.72245 q^{45} +8.24364 q^{47} +3.99153 q^{49} +1.16749 q^{51} +0.841166 q^{53} -1.78768 q^{55} +6.77137 q^{57} -0.128144 q^{59} +11.7223 q^{61} -3.31535 q^{63} +15.9422 q^{67} +6.90073 q^{69} -5.32056 q^{71} -3.75917 q^{73} -2.41172 q^{75} +2.17701 q^{77} -2.17759 q^{79} +1.00000 q^{81} +10.8237 q^{83} -3.17843 q^{85} +5.82010 q^{87} -4.09193 q^{89} -0.969574 q^{93} -18.4347 q^{95} +16.5008 q^{97} -0.656645 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + q^{5} + 5 q^{7} + 6 q^{9} + 6 q^{11} - q^{15} + 9 q^{17} - 7 q^{19} - 5 q^{21} - 12 q^{23} + 9 q^{25} - 6 q^{27} + 7 q^{29} + 11 q^{31} - 6 q^{33} - 6 q^{35} + 6 q^{37} + 13 q^{41} - 15 q^{43}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 2.72245 1.21752 0.608758 0.793356i \(-0.291668\pi\)
0.608758 + 0.793356i \(0.291668\pi\)
\(6\) 0 0
\(7\) −3.31535 −1.25308 −0.626542 0.779388i \(-0.715530\pi\)
−0.626542 + 0.779388i \(0.715530\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.656645 −0.197986 −0.0989930 0.995088i \(-0.531562\pi\)
−0.0989930 + 0.995088i \(0.531562\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −2.72245 −0.702933
\(16\) 0 0
\(17\) −1.16749 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(18\) 0 0
\(19\) −6.77137 −1.55346 −0.776729 0.629835i \(-0.783122\pi\)
−0.776729 + 0.629835i \(0.783122\pi\)
\(20\) 0 0
\(21\) 3.31535 0.723468
\(22\) 0 0
\(23\) −6.90073 −1.43890 −0.719451 0.694543i \(-0.755607\pi\)
−0.719451 + 0.694543i \(0.755607\pi\)
\(24\) 0 0
\(25\) 2.41172 0.482344
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −5.82010 −1.08077 −0.540383 0.841419i \(-0.681721\pi\)
−0.540383 + 0.841419i \(0.681721\pi\)
\(30\) 0 0
\(31\) 0.969574 0.174141 0.0870703 0.996202i \(-0.472250\pi\)
0.0870703 + 0.996202i \(0.472250\pi\)
\(32\) 0 0
\(33\) 0.656645 0.114307
\(34\) 0 0
\(35\) −9.02586 −1.52565
\(36\) 0 0
\(37\) −9.93482 −1.63327 −0.816637 0.577151i \(-0.804164\pi\)
−0.816637 + 0.577151i \(0.804164\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.5937 1.65445 0.827227 0.561869i \(-0.189917\pi\)
0.827227 + 0.561869i \(0.189917\pi\)
\(42\) 0 0
\(43\) 5.07523 0.773965 0.386983 0.922087i \(-0.373517\pi\)
0.386983 + 0.922087i \(0.373517\pi\)
\(44\) 0 0
\(45\) 2.72245 0.405839
\(46\) 0 0
\(47\) 8.24364 1.20246 0.601229 0.799077i \(-0.294678\pi\)
0.601229 + 0.799077i \(0.294678\pi\)
\(48\) 0 0
\(49\) 3.99153 0.570218
\(50\) 0 0
\(51\) 1.16749 0.163481
\(52\) 0 0
\(53\) 0.841166 0.115543 0.0577715 0.998330i \(-0.481601\pi\)
0.0577715 + 0.998330i \(0.481601\pi\)
\(54\) 0 0
\(55\) −1.78768 −0.241051
\(56\) 0 0
\(57\) 6.77137 0.896889
\(58\) 0 0
\(59\) −0.128144 −0.0166829 −0.00834145 0.999965i \(-0.502655\pi\)
−0.00834145 + 0.999965i \(0.502655\pi\)
\(60\) 0 0
\(61\) 11.7223 1.50089 0.750443 0.660935i \(-0.229840\pi\)
0.750443 + 0.660935i \(0.229840\pi\)
\(62\) 0 0
\(63\) −3.31535 −0.417694
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 15.9422 1.94765 0.973824 0.227303i \(-0.0729906\pi\)
0.973824 + 0.227303i \(0.0729906\pi\)
\(68\) 0 0
\(69\) 6.90073 0.830750
\(70\) 0 0
\(71\) −5.32056 −0.631434 −0.315717 0.948853i \(-0.602245\pi\)
−0.315717 + 0.948853i \(0.602245\pi\)
\(72\) 0 0
\(73\) −3.75917 −0.439977 −0.219989 0.975502i \(-0.570602\pi\)
−0.219989 + 0.975502i \(0.570602\pi\)
\(74\) 0 0
\(75\) −2.41172 −0.278482
\(76\) 0 0
\(77\) 2.17701 0.248093
\(78\) 0 0
\(79\) −2.17759 −0.244998 −0.122499 0.992469i \(-0.539091\pi\)
−0.122499 + 0.992469i \(0.539091\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.8237 1.18806 0.594029 0.804444i \(-0.297536\pi\)
0.594029 + 0.804444i \(0.297536\pi\)
\(84\) 0 0
\(85\) −3.17843 −0.344749
\(86\) 0 0
\(87\) 5.82010 0.623980
\(88\) 0 0
\(89\) −4.09193 −0.433743 −0.216872 0.976200i \(-0.569585\pi\)
−0.216872 + 0.976200i \(0.569585\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.969574 −0.100540
\(94\) 0 0
\(95\) −18.4347 −1.89136
\(96\) 0 0
\(97\) 16.5008 1.67540 0.837702 0.546127i \(-0.183899\pi\)
0.837702 + 0.546127i \(0.183899\pi\)
\(98\) 0 0
\(99\) −0.656645 −0.0659953
\(100\) 0 0
\(101\) 14.4134 1.43419 0.717096 0.696975i \(-0.245471\pi\)
0.717096 + 0.696975i \(0.245471\pi\)
\(102\) 0 0
\(103\) 15.7309 1.55001 0.775007 0.631953i \(-0.217747\pi\)
0.775007 + 0.631953i \(0.217747\pi\)
\(104\) 0 0
\(105\) 9.02586 0.880834
\(106\) 0 0
\(107\) −9.27509 −0.896656 −0.448328 0.893869i \(-0.647980\pi\)
−0.448328 + 0.893869i \(0.647980\pi\)
\(108\) 0 0
\(109\) 8.82889 0.845655 0.422827 0.906210i \(-0.361038\pi\)
0.422827 + 0.906210i \(0.361038\pi\)
\(110\) 0 0
\(111\) 9.93482 0.942971
\(112\) 0 0
\(113\) 6.45873 0.607586 0.303793 0.952738i \(-0.401747\pi\)
0.303793 + 0.952738i \(0.401747\pi\)
\(114\) 0 0
\(115\) −18.7869 −1.75189
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.87063 0.354820
\(120\) 0 0
\(121\) −10.5688 −0.960802
\(122\) 0 0
\(123\) −10.5937 −0.955199
\(124\) 0 0
\(125\) −7.04645 −0.630254
\(126\) 0 0
\(127\) 4.90436 0.435191 0.217596 0.976039i \(-0.430179\pi\)
0.217596 + 0.976039i \(0.430179\pi\)
\(128\) 0 0
\(129\) −5.07523 −0.446849
\(130\) 0 0
\(131\) 13.9311 1.21717 0.608584 0.793489i \(-0.291738\pi\)
0.608584 + 0.793489i \(0.291738\pi\)
\(132\) 0 0
\(133\) 22.4494 1.94661
\(134\) 0 0
\(135\) −2.72245 −0.234311
\(136\) 0 0
\(137\) −17.4589 −1.49161 −0.745806 0.666163i \(-0.767936\pi\)
−0.745806 + 0.666163i \(0.767936\pi\)
\(138\) 0 0
\(139\) −9.93881 −0.842999 −0.421499 0.906829i \(-0.638496\pi\)
−0.421499 + 0.906829i \(0.638496\pi\)
\(140\) 0 0
\(141\) −8.24364 −0.694239
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −15.8449 −1.31585
\(146\) 0 0
\(147\) −3.99153 −0.329216
\(148\) 0 0
\(149\) −14.7938 −1.21196 −0.605979 0.795481i \(-0.707218\pi\)
−0.605979 + 0.795481i \(0.707218\pi\)
\(150\) 0 0
\(151\) 11.5920 0.943340 0.471670 0.881775i \(-0.343651\pi\)
0.471670 + 0.881775i \(0.343651\pi\)
\(152\) 0 0
\(153\) −1.16749 −0.0943859
\(154\) 0 0
\(155\) 2.63961 0.212019
\(156\) 0 0
\(157\) −16.3811 −1.30735 −0.653677 0.756773i \(-0.726775\pi\)
−0.653677 + 0.756773i \(0.726775\pi\)
\(158\) 0 0
\(159\) −0.841166 −0.0667088
\(160\) 0 0
\(161\) 22.8783 1.80306
\(162\) 0 0
\(163\) 21.2719 1.66615 0.833073 0.553163i \(-0.186579\pi\)
0.833073 + 0.553163i \(0.186579\pi\)
\(164\) 0 0
\(165\) 1.78768 0.139171
\(166\) 0 0
\(167\) 10.5498 0.816367 0.408183 0.912900i \(-0.366162\pi\)
0.408183 + 0.912900i \(0.366162\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −6.77137 −0.517819
\(172\) 0 0
\(173\) 20.4284 1.55314 0.776569 0.630032i \(-0.216958\pi\)
0.776569 + 0.630032i \(0.216958\pi\)
\(174\) 0 0
\(175\) −7.99570 −0.604418
\(176\) 0 0
\(177\) 0.128144 0.00963188
\(178\) 0 0
\(179\) 5.71037 0.426813 0.213406 0.976964i \(-0.431544\pi\)
0.213406 + 0.976964i \(0.431544\pi\)
\(180\) 0 0
\(181\) 4.70324 0.349589 0.174795 0.984605i \(-0.444074\pi\)
0.174795 + 0.984605i \(0.444074\pi\)
\(182\) 0 0
\(183\) −11.7223 −0.866537
\(184\) 0 0
\(185\) −27.0470 −1.98854
\(186\) 0 0
\(187\) 0.766626 0.0560613
\(188\) 0 0
\(189\) 3.31535 0.241156
\(190\) 0 0
\(191\) −14.7128 −1.06458 −0.532292 0.846561i \(-0.678669\pi\)
−0.532292 + 0.846561i \(0.678669\pi\)
\(192\) 0 0
\(193\) 1.50643 0.108435 0.0542177 0.998529i \(-0.482734\pi\)
0.0542177 + 0.998529i \(0.482734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.4470 −1.24305 −0.621524 0.783395i \(-0.713486\pi\)
−0.621524 + 0.783395i \(0.713486\pi\)
\(198\) 0 0
\(199\) −17.4032 −1.23368 −0.616841 0.787088i \(-0.711588\pi\)
−0.616841 + 0.787088i \(0.711588\pi\)
\(200\) 0 0
\(201\) −15.9422 −1.12448
\(202\) 0 0
\(203\) 19.2957 1.35429
\(204\) 0 0
\(205\) 28.8407 2.01432
\(206\) 0 0
\(207\) −6.90073 −0.479634
\(208\) 0 0
\(209\) 4.44638 0.307563
\(210\) 0 0
\(211\) 12.4002 0.853662 0.426831 0.904331i \(-0.359630\pi\)
0.426831 + 0.904331i \(0.359630\pi\)
\(212\) 0 0
\(213\) 5.32056 0.364559
\(214\) 0 0
\(215\) 13.8170 0.942315
\(216\) 0 0
\(217\) −3.21447 −0.218213
\(218\) 0 0
\(219\) 3.75917 0.254021
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 12.5356 0.839448 0.419724 0.907652i \(-0.362127\pi\)
0.419724 + 0.907652i \(0.362127\pi\)
\(224\) 0 0
\(225\) 2.41172 0.160781
\(226\) 0 0
\(227\) −1.16802 −0.0775243 −0.0387622 0.999248i \(-0.512341\pi\)
−0.0387622 + 0.999248i \(0.512341\pi\)
\(228\) 0 0
\(229\) 21.9158 1.44824 0.724119 0.689675i \(-0.242247\pi\)
0.724119 + 0.689675i \(0.242247\pi\)
\(230\) 0 0
\(231\) −2.17701 −0.143237
\(232\) 0 0
\(233\) −3.00659 −0.196968 −0.0984842 0.995139i \(-0.531399\pi\)
−0.0984842 + 0.995139i \(0.531399\pi\)
\(234\) 0 0
\(235\) 22.4429 1.46401
\(236\) 0 0
\(237\) 2.17759 0.141450
\(238\) 0 0
\(239\) −12.7853 −0.827015 −0.413508 0.910501i \(-0.635697\pi\)
−0.413508 + 0.910501i \(0.635697\pi\)
\(240\) 0 0
\(241\) 23.6123 1.52100 0.760499 0.649339i \(-0.224954\pi\)
0.760499 + 0.649339i \(0.224954\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 10.8667 0.694249
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −10.8237 −0.685926
\(250\) 0 0
\(251\) −8.22001 −0.518843 −0.259421 0.965764i \(-0.583532\pi\)
−0.259421 + 0.965764i \(0.583532\pi\)
\(252\) 0 0
\(253\) 4.53133 0.284882
\(254\) 0 0
\(255\) 3.17843 0.199041
\(256\) 0 0
\(257\) 27.7850 1.73318 0.866592 0.499018i \(-0.166306\pi\)
0.866592 + 0.499018i \(0.166306\pi\)
\(258\) 0 0
\(259\) 32.9374 2.04663
\(260\) 0 0
\(261\) −5.82010 −0.360255
\(262\) 0 0
\(263\) −10.5270 −0.649120 −0.324560 0.945865i \(-0.605216\pi\)
−0.324560 + 0.945865i \(0.605216\pi\)
\(264\) 0 0
\(265\) 2.29003 0.140676
\(266\) 0 0
\(267\) 4.09193 0.250422
\(268\) 0 0
\(269\) −2.51426 −0.153297 −0.0766486 0.997058i \(-0.524422\pi\)
−0.0766486 + 0.997058i \(0.524422\pi\)
\(270\) 0 0
\(271\) 4.83460 0.293681 0.146841 0.989160i \(-0.453090\pi\)
0.146841 + 0.989160i \(0.453090\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.58365 −0.0954974
\(276\) 0 0
\(277\) −15.4274 −0.926941 −0.463471 0.886112i \(-0.653396\pi\)
−0.463471 + 0.886112i \(0.653396\pi\)
\(278\) 0 0
\(279\) 0.969574 0.0580469
\(280\) 0 0
\(281\) −6.10796 −0.364370 −0.182185 0.983264i \(-0.558317\pi\)
−0.182185 + 0.983264i \(0.558317\pi\)
\(282\) 0 0
\(283\) −11.3138 −0.672538 −0.336269 0.941766i \(-0.609165\pi\)
−0.336269 + 0.941766i \(0.609165\pi\)
\(284\) 0 0
\(285\) 18.4347 1.09198
\(286\) 0 0
\(287\) −35.1217 −2.07317
\(288\) 0 0
\(289\) −15.6370 −0.919822
\(290\) 0 0
\(291\) −16.5008 −0.967295
\(292\) 0 0
\(293\) 28.0013 1.63585 0.817927 0.575322i \(-0.195123\pi\)
0.817927 + 0.575322i \(0.195123\pi\)
\(294\) 0 0
\(295\) −0.348865 −0.0203117
\(296\) 0 0
\(297\) 0.656645 0.0381024
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −16.8261 −0.969843
\(302\) 0 0
\(303\) −14.4134 −0.828031
\(304\) 0 0
\(305\) 31.9134 1.82735
\(306\) 0 0
\(307\) −18.6077 −1.06199 −0.530997 0.847373i \(-0.678183\pi\)
−0.530997 + 0.847373i \(0.678183\pi\)
\(308\) 0 0
\(309\) −15.7309 −0.894900
\(310\) 0 0
\(311\) −25.9076 −1.46909 −0.734543 0.678563i \(-0.762603\pi\)
−0.734543 + 0.678563i \(0.762603\pi\)
\(312\) 0 0
\(313\) −0.799031 −0.0451639 −0.0225819 0.999745i \(-0.507189\pi\)
−0.0225819 + 0.999745i \(0.507189\pi\)
\(314\) 0 0
\(315\) −9.02586 −0.508550
\(316\) 0 0
\(317\) 32.7072 1.83702 0.918509 0.395400i \(-0.129394\pi\)
0.918509 + 0.395400i \(0.129394\pi\)
\(318\) 0 0
\(319\) 3.82174 0.213976
\(320\) 0 0
\(321\) 9.27509 0.517685
\(322\) 0 0
\(323\) 7.90550 0.439874
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −8.82889 −0.488239
\(328\) 0 0
\(329\) −27.3305 −1.50678
\(330\) 0 0
\(331\) −5.69662 −0.313115 −0.156557 0.987669i \(-0.550040\pi\)
−0.156557 + 0.987669i \(0.550040\pi\)
\(332\) 0 0
\(333\) −9.93482 −0.544425
\(334\) 0 0
\(335\) 43.4018 2.37129
\(336\) 0 0
\(337\) −10.4046 −0.566773 −0.283387 0.959006i \(-0.591458\pi\)
−0.283387 + 0.959006i \(0.591458\pi\)
\(338\) 0 0
\(339\) −6.45873 −0.350790
\(340\) 0 0
\(341\) −0.636666 −0.0344774
\(342\) 0 0
\(343\) 9.97413 0.538553
\(344\) 0 0
\(345\) 18.7869 1.01145
\(346\) 0 0
\(347\) −9.76863 −0.524408 −0.262204 0.965013i \(-0.584449\pi\)
−0.262204 + 0.965013i \(0.584449\pi\)
\(348\) 0 0
\(349\) −6.11185 −0.327160 −0.163580 0.986530i \(-0.552304\pi\)
−0.163580 + 0.986530i \(0.552304\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 21.1136 1.12376 0.561882 0.827217i \(-0.310077\pi\)
0.561882 + 0.827217i \(0.310077\pi\)
\(354\) 0 0
\(355\) −14.4849 −0.768781
\(356\) 0 0
\(357\) −3.87063 −0.204856
\(358\) 0 0
\(359\) −2.37346 −0.125267 −0.0626333 0.998037i \(-0.519950\pi\)
−0.0626333 + 0.998037i \(0.519950\pi\)
\(360\) 0 0
\(361\) 26.8514 1.41323
\(362\) 0 0
\(363\) 10.5688 0.554719
\(364\) 0 0
\(365\) −10.2341 −0.535679
\(366\) 0 0
\(367\) 34.1977 1.78511 0.892553 0.450943i \(-0.148912\pi\)
0.892553 + 0.450943i \(0.148912\pi\)
\(368\) 0 0
\(369\) 10.5937 0.551484
\(370\) 0 0
\(371\) −2.78876 −0.144785
\(372\) 0 0
\(373\) 4.01148 0.207707 0.103853 0.994593i \(-0.466883\pi\)
0.103853 + 0.994593i \(0.466883\pi\)
\(374\) 0 0
\(375\) 7.04645 0.363877
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.282802 0.0145265 0.00726327 0.999974i \(-0.497688\pi\)
0.00726327 + 0.999974i \(0.497688\pi\)
\(380\) 0 0
\(381\) −4.90436 −0.251258
\(382\) 0 0
\(383\) 11.7130 0.598508 0.299254 0.954173i \(-0.403262\pi\)
0.299254 + 0.954173i \(0.403262\pi\)
\(384\) 0 0
\(385\) 5.92679 0.302057
\(386\) 0 0
\(387\) 5.07523 0.257988
\(388\) 0 0
\(389\) −11.7485 −0.595672 −0.297836 0.954617i \(-0.596265\pi\)
−0.297836 + 0.954617i \(0.596265\pi\)
\(390\) 0 0
\(391\) 8.05653 0.407436
\(392\) 0 0
\(393\) −13.9311 −0.702733
\(394\) 0 0
\(395\) −5.92838 −0.298289
\(396\) 0 0
\(397\) −1.55897 −0.0782427 −0.0391213 0.999234i \(-0.512456\pi\)
−0.0391213 + 0.999234i \(0.512456\pi\)
\(398\) 0 0
\(399\) −22.4494 −1.12388
\(400\) 0 0
\(401\) −5.75468 −0.287375 −0.143687 0.989623i \(-0.545896\pi\)
−0.143687 + 0.989623i \(0.545896\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.72245 0.135280
\(406\) 0 0
\(407\) 6.52365 0.323365
\(408\) 0 0
\(409\) 22.5609 1.11557 0.557783 0.829987i \(-0.311652\pi\)
0.557783 + 0.829987i \(0.311652\pi\)
\(410\) 0 0
\(411\) 17.4589 0.861183
\(412\) 0 0
\(413\) 0.424841 0.0209051
\(414\) 0 0
\(415\) 29.4670 1.44648
\(416\) 0 0
\(417\) 9.93881 0.486706
\(418\) 0 0
\(419\) −14.5676 −0.711675 −0.355837 0.934548i \(-0.615804\pi\)
−0.355837 + 0.934548i \(0.615804\pi\)
\(420\) 0 0
\(421\) −40.2281 −1.96060 −0.980298 0.197525i \(-0.936710\pi\)
−0.980298 + 0.197525i \(0.936710\pi\)
\(422\) 0 0
\(423\) 8.24364 0.400819
\(424\) 0 0
\(425\) −2.81566 −0.136580
\(426\) 0 0
\(427\) −38.8635 −1.88074
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.9559 0.720402 0.360201 0.932875i \(-0.382708\pi\)
0.360201 + 0.932875i \(0.382708\pi\)
\(432\) 0 0
\(433\) −30.1200 −1.44748 −0.723738 0.690074i \(-0.757578\pi\)
−0.723738 + 0.690074i \(0.757578\pi\)
\(434\) 0 0
\(435\) 15.8449 0.759706
\(436\) 0 0
\(437\) 46.7274 2.23527
\(438\) 0 0
\(439\) −10.7914 −0.515043 −0.257522 0.966273i \(-0.582906\pi\)
−0.257522 + 0.966273i \(0.582906\pi\)
\(440\) 0 0
\(441\) 3.99153 0.190073
\(442\) 0 0
\(443\) −30.6498 −1.45622 −0.728108 0.685463i \(-0.759600\pi\)
−0.728108 + 0.685463i \(0.759600\pi\)
\(444\) 0 0
\(445\) −11.1401 −0.528089
\(446\) 0 0
\(447\) 14.7938 0.699724
\(448\) 0 0
\(449\) 12.3953 0.584970 0.292485 0.956270i \(-0.405518\pi\)
0.292485 + 0.956270i \(0.405518\pi\)
\(450\) 0 0
\(451\) −6.95628 −0.327558
\(452\) 0 0
\(453\) −11.5920 −0.544638
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 21.5121 1.00629 0.503147 0.864201i \(-0.332175\pi\)
0.503147 + 0.864201i \(0.332175\pi\)
\(458\) 0 0
\(459\) 1.16749 0.0544938
\(460\) 0 0
\(461\) −20.2208 −0.941777 −0.470889 0.882193i \(-0.656067\pi\)
−0.470889 + 0.882193i \(0.656067\pi\)
\(462\) 0 0
\(463\) 11.2424 0.522477 0.261239 0.965274i \(-0.415869\pi\)
0.261239 + 0.965274i \(0.415869\pi\)
\(464\) 0 0
\(465\) −2.63961 −0.122409
\(466\) 0 0
\(467\) 27.1166 1.25481 0.627403 0.778695i \(-0.284118\pi\)
0.627403 + 0.778695i \(0.284118\pi\)
\(468\) 0 0
\(469\) −52.8539 −2.44057
\(470\) 0 0
\(471\) 16.3811 0.754802
\(472\) 0 0
\(473\) −3.33262 −0.153234
\(474\) 0 0
\(475\) −16.3307 −0.749302
\(476\) 0 0
\(477\) 0.841166 0.0385144
\(478\) 0 0
\(479\) 13.8701 0.633743 0.316872 0.948468i \(-0.397368\pi\)
0.316872 + 0.948468i \(0.397368\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −22.8783 −1.04100
\(484\) 0 0
\(485\) 44.9226 2.03983
\(486\) 0 0
\(487\) 0.0497164 0.00225287 0.00112643 0.999999i \(-0.499641\pi\)
0.00112643 + 0.999999i \(0.499641\pi\)
\(488\) 0 0
\(489\) −21.2719 −0.961950
\(490\) 0 0
\(491\) 21.9646 0.991248 0.495624 0.868537i \(-0.334939\pi\)
0.495624 + 0.868537i \(0.334939\pi\)
\(492\) 0 0
\(493\) 6.79491 0.306027
\(494\) 0 0
\(495\) −1.78768 −0.0803503
\(496\) 0 0
\(497\) 17.6395 0.791240
\(498\) 0 0
\(499\) 35.8347 1.60418 0.802091 0.597202i \(-0.203721\pi\)
0.802091 + 0.597202i \(0.203721\pi\)
\(500\) 0 0
\(501\) −10.5498 −0.471329
\(502\) 0 0
\(503\) 0.104369 0.00465358 0.00232679 0.999997i \(-0.499259\pi\)
0.00232679 + 0.999997i \(0.499259\pi\)
\(504\) 0 0
\(505\) 39.2399 1.74615
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.19452 0.0529464 0.0264732 0.999650i \(-0.491572\pi\)
0.0264732 + 0.999650i \(0.491572\pi\)
\(510\) 0 0
\(511\) 12.4629 0.551328
\(512\) 0 0
\(513\) 6.77137 0.298963
\(514\) 0 0
\(515\) 42.8266 1.88717
\(516\) 0 0
\(517\) −5.41314 −0.238070
\(518\) 0 0
\(519\) −20.4284 −0.896705
\(520\) 0 0
\(521\) 22.8446 1.00084 0.500420 0.865783i \(-0.333179\pi\)
0.500420 + 0.865783i \(0.333179\pi\)
\(522\) 0 0
\(523\) −38.3582 −1.67728 −0.838642 0.544682i \(-0.816650\pi\)
−0.838642 + 0.544682i \(0.816650\pi\)
\(524\) 0 0
\(525\) 7.99570 0.348961
\(526\) 0 0
\(527\) −1.13197 −0.0493093
\(528\) 0 0
\(529\) 24.6201 1.07044
\(530\) 0 0
\(531\) −0.128144 −0.00556097
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −25.2509 −1.09169
\(536\) 0 0
\(537\) −5.71037 −0.246420
\(538\) 0 0
\(539\) −2.62102 −0.112895
\(540\) 0 0
\(541\) −10.5126 −0.451970 −0.225985 0.974131i \(-0.572560\pi\)
−0.225985 + 0.974131i \(0.572560\pi\)
\(542\) 0 0
\(543\) −4.70324 −0.201835
\(544\) 0 0
\(545\) 24.0362 1.02960
\(546\) 0 0
\(547\) −23.9358 −1.02342 −0.511711 0.859158i \(-0.670988\pi\)
−0.511711 + 0.859158i \(0.670988\pi\)
\(548\) 0 0
\(549\) 11.7223 0.500296
\(550\) 0 0
\(551\) 39.4100 1.67892
\(552\) 0 0
\(553\) 7.21948 0.307003
\(554\) 0 0
\(555\) 27.0470 1.14808
\(556\) 0 0
\(557\) 0.843060 0.0357216 0.0178608 0.999840i \(-0.494314\pi\)
0.0178608 + 0.999840i \(0.494314\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −0.766626 −0.0323670
\(562\) 0 0
\(563\) 18.4169 0.776179 0.388090 0.921622i \(-0.373135\pi\)
0.388090 + 0.921622i \(0.373135\pi\)
\(564\) 0 0
\(565\) 17.5836 0.739746
\(566\) 0 0
\(567\) −3.31535 −0.139231
\(568\) 0 0
\(569\) −27.6396 −1.15871 −0.579356 0.815075i \(-0.696696\pi\)
−0.579356 + 0.815075i \(0.696696\pi\)
\(570\) 0 0
\(571\) −8.23866 −0.344777 −0.172389 0.985029i \(-0.555148\pi\)
−0.172389 + 0.985029i \(0.555148\pi\)
\(572\) 0 0
\(573\) 14.7128 0.614638
\(574\) 0 0
\(575\) −16.6426 −0.694046
\(576\) 0 0
\(577\) −2.60340 −0.108381 −0.0541906 0.998531i \(-0.517258\pi\)
−0.0541906 + 0.998531i \(0.517258\pi\)
\(578\) 0 0
\(579\) −1.50643 −0.0626052
\(580\) 0 0
\(581\) −35.8844 −1.48874
\(582\) 0 0
\(583\) −0.552348 −0.0228759
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.62011 0.355790 0.177895 0.984049i \(-0.443071\pi\)
0.177895 + 0.984049i \(0.443071\pi\)
\(588\) 0 0
\(589\) −6.56534 −0.270520
\(590\) 0 0
\(591\) 17.4470 0.717674
\(592\) 0 0
\(593\) 39.3090 1.61423 0.807114 0.590395i \(-0.201028\pi\)
0.807114 + 0.590395i \(0.201028\pi\)
\(594\) 0 0
\(595\) 10.5376 0.431999
\(596\) 0 0
\(597\) 17.4032 0.712266
\(598\) 0 0
\(599\) −38.7451 −1.58308 −0.791542 0.611115i \(-0.790721\pi\)
−0.791542 + 0.611115i \(0.790721\pi\)
\(600\) 0 0
\(601\) −31.5673 −1.28766 −0.643828 0.765170i \(-0.722655\pi\)
−0.643828 + 0.765170i \(0.722655\pi\)
\(602\) 0 0
\(603\) 15.9422 0.649216
\(604\) 0 0
\(605\) −28.7731 −1.16979
\(606\) 0 0
\(607\) 39.5512 1.60533 0.802667 0.596427i \(-0.203414\pi\)
0.802667 + 0.596427i \(0.203414\pi\)
\(608\) 0 0
\(609\) −19.2957 −0.781899
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −42.8092 −1.72905 −0.864524 0.502592i \(-0.832380\pi\)
−0.864524 + 0.502592i \(0.832380\pi\)
\(614\) 0 0
\(615\) −28.8407 −1.16297
\(616\) 0 0
\(617\) 19.9368 0.802626 0.401313 0.915941i \(-0.368554\pi\)
0.401313 + 0.915941i \(0.368554\pi\)
\(618\) 0 0
\(619\) −38.1555 −1.53360 −0.766799 0.641887i \(-0.778152\pi\)
−0.766799 + 0.641887i \(0.778152\pi\)
\(620\) 0 0
\(621\) 6.90073 0.276917
\(622\) 0 0
\(623\) 13.5662 0.543516
\(624\) 0 0
\(625\) −31.2422 −1.24969
\(626\) 0 0
\(627\) −4.44638 −0.177571
\(628\) 0 0
\(629\) 11.5988 0.462474
\(630\) 0 0
\(631\) 30.6027 1.21827 0.609137 0.793065i \(-0.291516\pi\)
0.609137 + 0.793065i \(0.291516\pi\)
\(632\) 0 0
\(633\) −12.4002 −0.492862
\(634\) 0 0
\(635\) 13.3519 0.529852
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −5.32056 −0.210478
\(640\) 0 0
\(641\) 25.7211 1.01592 0.507962 0.861379i \(-0.330399\pi\)
0.507962 + 0.861379i \(0.330399\pi\)
\(642\) 0 0
\(643\) 30.1373 1.18850 0.594249 0.804281i \(-0.297449\pi\)
0.594249 + 0.804281i \(0.297449\pi\)
\(644\) 0 0
\(645\) −13.8170 −0.544046
\(646\) 0 0
\(647\) −6.75127 −0.265420 −0.132710 0.991155i \(-0.542368\pi\)
−0.132710 + 0.991155i \(0.542368\pi\)
\(648\) 0 0
\(649\) 0.0841450 0.00330298
\(650\) 0 0
\(651\) 3.21447 0.125985
\(652\) 0 0
\(653\) −1.20999 −0.0473507 −0.0236754 0.999720i \(-0.507537\pi\)
−0.0236754 + 0.999720i \(0.507537\pi\)
\(654\) 0 0
\(655\) 37.9268 1.48192
\(656\) 0 0
\(657\) −3.75917 −0.146659
\(658\) 0 0
\(659\) 13.6149 0.530361 0.265181 0.964199i \(-0.414568\pi\)
0.265181 + 0.964199i \(0.414568\pi\)
\(660\) 0 0
\(661\) −10.7711 −0.418949 −0.209474 0.977814i \(-0.567175\pi\)
−0.209474 + 0.977814i \(0.567175\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 61.1174 2.37003
\(666\) 0 0
\(667\) 40.1629 1.55512
\(668\) 0 0
\(669\) −12.5356 −0.484655
\(670\) 0 0
\(671\) −7.69739 −0.297155
\(672\) 0 0
\(673\) −46.0338 −1.77447 −0.887236 0.461316i \(-0.847377\pi\)
−0.887236 + 0.461316i \(0.847377\pi\)
\(674\) 0 0
\(675\) −2.41172 −0.0928272
\(676\) 0 0
\(677\) 1.84261 0.0708172 0.0354086 0.999373i \(-0.488727\pi\)
0.0354086 + 0.999373i \(0.488727\pi\)
\(678\) 0 0
\(679\) −54.7059 −2.09942
\(680\) 0 0
\(681\) 1.16802 0.0447587
\(682\) 0 0
\(683\) 23.7758 0.909757 0.454878 0.890554i \(-0.349683\pi\)
0.454878 + 0.890554i \(0.349683\pi\)
\(684\) 0 0
\(685\) −47.5309 −1.81606
\(686\) 0 0
\(687\) −21.9158 −0.836140
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1.67973 −0.0639001 −0.0319501 0.999489i \(-0.510172\pi\)
−0.0319501 + 0.999489i \(0.510172\pi\)
\(692\) 0 0
\(693\) 2.17701 0.0826976
\(694\) 0 0
\(695\) −27.0579 −1.02636
\(696\) 0 0
\(697\) −12.3680 −0.468471
\(698\) 0 0
\(699\) 3.00659 0.113720
\(700\) 0 0
\(701\) 17.8738 0.675086 0.337543 0.941310i \(-0.390404\pi\)
0.337543 + 0.941310i \(0.390404\pi\)
\(702\) 0 0
\(703\) 67.2723 2.53722
\(704\) 0 0
\(705\) −22.4429 −0.845247
\(706\) 0 0
\(707\) −47.7856 −1.79716
\(708\) 0 0
\(709\) 4.27227 0.160448 0.0802242 0.996777i \(-0.474436\pi\)
0.0802242 + 0.996777i \(0.474436\pi\)
\(710\) 0 0
\(711\) −2.17759 −0.0816661
\(712\) 0 0
\(713\) −6.69077 −0.250571
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 12.7853 0.477478
\(718\) 0 0
\(719\) 27.5341 1.02685 0.513424 0.858135i \(-0.328377\pi\)
0.513424 + 0.858135i \(0.328377\pi\)
\(720\) 0 0
\(721\) −52.1534 −1.94230
\(722\) 0 0
\(723\) −23.6123 −0.878149
\(724\) 0 0
\(725\) −14.0365 −0.521301
\(726\) 0 0
\(727\) 28.2674 1.04838 0.524189 0.851602i \(-0.324369\pi\)
0.524189 + 0.851602i \(0.324369\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −5.92528 −0.219154
\(732\) 0 0
\(733\) 25.2904 0.934123 0.467062 0.884225i \(-0.345313\pi\)
0.467062 + 0.884225i \(0.345313\pi\)
\(734\) 0 0
\(735\) −10.8667 −0.400825
\(736\) 0 0
\(737\) −10.4684 −0.385607
\(738\) 0 0
\(739\) −8.06509 −0.296679 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.2716 0.523575 0.261787 0.965126i \(-0.415688\pi\)
0.261787 + 0.965126i \(0.415688\pi\)
\(744\) 0 0
\(745\) −40.2754 −1.47558
\(746\) 0 0
\(747\) 10.8237 0.396019
\(748\) 0 0
\(749\) 30.7501 1.12359
\(750\) 0 0
\(751\) −33.0043 −1.20434 −0.602171 0.798367i \(-0.705698\pi\)
−0.602171 + 0.798367i \(0.705698\pi\)
\(752\) 0 0
\(753\) 8.22001 0.299554
\(754\) 0 0
\(755\) 31.5585 1.14853
\(756\) 0 0
\(757\) 35.2365 1.28069 0.640347 0.768086i \(-0.278791\pi\)
0.640347 + 0.768086i \(0.278791\pi\)
\(758\) 0 0
\(759\) −4.53133 −0.164477
\(760\) 0 0
\(761\) 30.7212 1.11364 0.556822 0.830632i \(-0.312021\pi\)
0.556822 + 0.830632i \(0.312021\pi\)
\(762\) 0 0
\(763\) −29.2709 −1.05968
\(764\) 0 0
\(765\) −3.17843 −0.114916
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −6.95972 −0.250974 −0.125487 0.992095i \(-0.540049\pi\)
−0.125487 + 0.992095i \(0.540049\pi\)
\(770\) 0 0
\(771\) −27.7850 −1.00065
\(772\) 0 0
\(773\) −40.5717 −1.45926 −0.729632 0.683840i \(-0.760308\pi\)
−0.729632 + 0.683840i \(0.760308\pi\)
\(774\) 0 0
\(775\) 2.33834 0.0839957
\(776\) 0 0
\(777\) −32.9374 −1.18162
\(778\) 0 0
\(779\) −71.7336 −2.57012
\(780\) 0 0
\(781\) 3.49372 0.125015
\(782\) 0 0
\(783\) 5.82010 0.207993
\(784\) 0 0
\(785\) −44.5967 −1.59172
\(786\) 0 0
\(787\) 4.88731 0.174214 0.0871068 0.996199i \(-0.472238\pi\)
0.0871068 + 0.996199i \(0.472238\pi\)
\(788\) 0 0
\(789\) 10.5270 0.374769
\(790\) 0 0
\(791\) −21.4129 −0.761356
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −2.29003 −0.0812191
\(796\) 0 0
\(797\) −24.5982 −0.871314 −0.435657 0.900113i \(-0.643484\pi\)
−0.435657 + 0.900113i \(0.643484\pi\)
\(798\) 0 0
\(799\) −9.62436 −0.340485
\(800\) 0 0
\(801\) −4.09193 −0.144581
\(802\) 0 0
\(803\) 2.46844 0.0871093
\(804\) 0 0
\(805\) 62.2850 2.19526
\(806\) 0 0
\(807\) 2.51426 0.0885061
\(808\) 0 0
\(809\) 13.6525 0.479996 0.239998 0.970773i \(-0.422853\pi\)
0.239998 + 0.970773i \(0.422853\pi\)
\(810\) 0 0
\(811\) 44.2951 1.55541 0.777706 0.628628i \(-0.216383\pi\)
0.777706 + 0.628628i \(0.216383\pi\)
\(812\) 0 0
\(813\) −4.83460 −0.169557
\(814\) 0 0
\(815\) 57.9117 2.02856
\(816\) 0 0
\(817\) −34.3662 −1.20232
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 32.2133 1.12425 0.562127 0.827051i \(-0.309983\pi\)
0.562127 + 0.827051i \(0.309983\pi\)
\(822\) 0 0
\(823\) 28.6321 0.998052 0.499026 0.866587i \(-0.333691\pi\)
0.499026 + 0.866587i \(0.333691\pi\)
\(824\) 0 0
\(825\) 1.58365 0.0551355
\(826\) 0 0
\(827\) 40.8863 1.42176 0.710879 0.703315i \(-0.248298\pi\)
0.710879 + 0.703315i \(0.248298\pi\)
\(828\) 0 0
\(829\) 10.7016 0.371681 0.185841 0.982580i \(-0.440499\pi\)
0.185841 + 0.982580i \(0.440499\pi\)
\(830\) 0 0
\(831\) 15.4274 0.535170
\(832\) 0 0
\(833\) −4.66007 −0.161462
\(834\) 0 0
\(835\) 28.7212 0.993939
\(836\) 0 0
\(837\) −0.969574 −0.0335134
\(838\) 0 0
\(839\) 16.1362 0.557085 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(840\) 0 0
\(841\) 4.87357 0.168054
\(842\) 0 0
\(843\) 6.10796 0.210369
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 35.0393 1.20396
\(848\) 0 0
\(849\) 11.3138 0.388290
\(850\) 0 0
\(851\) 68.5575 2.35012
\(852\) 0 0
\(853\) −15.7776 −0.540215 −0.270108 0.962830i \(-0.587059\pi\)
−0.270108 + 0.962830i \(0.587059\pi\)
\(854\) 0 0
\(855\) −18.4347 −0.630453
\(856\) 0 0
\(857\) 21.5463 0.736006 0.368003 0.929825i \(-0.380042\pi\)
0.368003 + 0.929825i \(0.380042\pi\)
\(858\) 0 0
\(859\) 4.07749 0.139122 0.0695611 0.997578i \(-0.477840\pi\)
0.0695611 + 0.997578i \(0.477840\pi\)
\(860\) 0 0
\(861\) 35.1217 1.19694
\(862\) 0 0
\(863\) −17.5883 −0.598712 −0.299356 0.954141i \(-0.596772\pi\)
−0.299356 + 0.954141i \(0.596772\pi\)
\(864\) 0 0
\(865\) 55.6151 1.89097
\(866\) 0 0
\(867\) 15.6370 0.531059
\(868\) 0 0
\(869\) 1.42991 0.0485062
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 16.5008 0.558468
\(874\) 0 0
\(875\) 23.3614 0.789761
\(876\) 0 0
\(877\) −5.07451 −0.171354 −0.0856770 0.996323i \(-0.527305\pi\)
−0.0856770 + 0.996323i \(0.527305\pi\)
\(878\) 0 0
\(879\) −28.0013 −0.944461
\(880\) 0 0
\(881\) 49.8471 1.67939 0.839696 0.543057i \(-0.182733\pi\)
0.839696 + 0.543057i \(0.182733\pi\)
\(882\) 0 0
\(883\) −46.7712 −1.57398 −0.786989 0.616967i \(-0.788361\pi\)
−0.786989 + 0.616967i \(0.788361\pi\)
\(884\) 0 0
\(885\) 0.348865 0.0117270
\(886\) 0 0
\(887\) 19.5889 0.657730 0.328865 0.944377i \(-0.393334\pi\)
0.328865 + 0.944377i \(0.393334\pi\)
\(888\) 0 0
\(889\) −16.2596 −0.545331
\(890\) 0 0
\(891\) −0.656645 −0.0219984
\(892\) 0 0
\(893\) −55.8207 −1.86797
\(894\) 0 0
\(895\) 15.5462 0.519651
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.64302 −0.188205
\(900\) 0 0
\(901\) −0.982053 −0.0327169
\(902\) 0 0
\(903\) 16.8261 0.559939
\(904\) 0 0
\(905\) 12.8043 0.425630
\(906\) 0 0
\(907\) 17.5223 0.581818 0.290909 0.956751i \(-0.406042\pi\)
0.290909 + 0.956751i \(0.406042\pi\)
\(908\) 0 0
\(909\) 14.4134 0.478064
\(910\) 0 0
\(911\) 11.6916 0.387360 0.193680 0.981065i \(-0.437958\pi\)
0.193680 + 0.981065i \(0.437958\pi\)
\(912\) 0 0
\(913\) −7.10735 −0.235219
\(914\) 0 0
\(915\) −31.9134 −1.05502
\(916\) 0 0
\(917\) −46.1865 −1.52521
\(918\) 0 0
\(919\) 42.7980 1.41177 0.705887 0.708324i \(-0.250548\pi\)
0.705887 + 0.708324i \(0.250548\pi\)
\(920\) 0 0
\(921\) 18.6077 0.613143
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −23.9600 −0.787801
\(926\) 0 0
\(927\) 15.7309 0.516671
\(928\) 0 0
\(929\) −27.8135 −0.912532 −0.456266 0.889843i \(-0.650813\pi\)
−0.456266 + 0.889843i \(0.650813\pi\)
\(930\) 0 0
\(931\) −27.0281 −0.885810
\(932\) 0 0
\(933\) 25.9076 0.848177
\(934\) 0 0
\(935\) 2.08710 0.0682555
\(936\) 0 0
\(937\) 48.2544 1.57640 0.788201 0.615417i \(-0.211013\pi\)
0.788201 + 0.615417i \(0.211013\pi\)
\(938\) 0 0
\(939\) 0.799031 0.0260754
\(940\) 0 0
\(941\) 13.8449 0.451332 0.225666 0.974205i \(-0.427544\pi\)
0.225666 + 0.974205i \(0.427544\pi\)
\(942\) 0 0
\(943\) −73.1041 −2.38060
\(944\) 0 0
\(945\) 9.02586 0.293611
\(946\) 0 0
\(947\) −18.6924 −0.607422 −0.303711 0.952764i \(-0.598226\pi\)
−0.303711 + 0.952764i \(0.598226\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −32.7072 −1.06060
\(952\) 0 0
\(953\) 44.2242 1.43256 0.716281 0.697812i \(-0.245843\pi\)
0.716281 + 0.697812i \(0.245843\pi\)
\(954\) 0 0
\(955\) −40.0550 −1.29615
\(956\) 0 0
\(957\) −3.82174 −0.123539
\(958\) 0 0
\(959\) 57.8822 1.86911
\(960\) 0 0
\(961\) −30.0599 −0.969675
\(962\) 0 0
\(963\) −9.27509 −0.298885
\(964\) 0 0
\(965\) 4.10118 0.132022
\(966\) 0 0
\(967\) 36.5221 1.17447 0.587235 0.809416i \(-0.300216\pi\)
0.587235 + 0.809416i \(0.300216\pi\)
\(968\) 0 0
\(969\) −7.90550 −0.253961
\(970\) 0 0
\(971\) −34.0922 −1.09407 −0.547035 0.837110i \(-0.684244\pi\)
−0.547035 + 0.837110i \(0.684244\pi\)
\(972\) 0 0
\(973\) 32.9506 1.05635
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 59.7205 1.91063 0.955315 0.295591i \(-0.0955166\pi\)
0.955315 + 0.295591i \(0.0955166\pi\)
\(978\) 0 0
\(979\) 2.68694 0.0858751
\(980\) 0 0
\(981\) 8.82889 0.281885
\(982\) 0 0
\(983\) −49.8000 −1.58837 −0.794186 0.607674i \(-0.792103\pi\)
−0.794186 + 0.607674i \(0.792103\pi\)
\(984\) 0 0
\(985\) −47.4986 −1.51343
\(986\) 0 0
\(987\) 27.3305 0.869940
\(988\) 0 0
\(989\) −35.0228 −1.11366
\(990\) 0 0
\(991\) 17.1731 0.545522 0.272761 0.962082i \(-0.412063\pi\)
0.272761 + 0.962082i \(0.412063\pi\)
\(992\) 0 0
\(993\) 5.69662 0.180777
\(994\) 0 0
\(995\) −47.3794 −1.50203
\(996\) 0 0
\(997\) −34.9494 −1.10686 −0.553430 0.832896i \(-0.686681\pi\)
−0.553430 + 0.832896i \(0.686681\pi\)
\(998\) 0 0
\(999\) 9.93482 0.314324
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8112.2.a.cu.1.5 6
4.3 odd 2 4056.2.a.bi.1.5 yes 6
13.12 even 2 8112.2.a.ct.1.2 6
52.31 even 4 4056.2.c.r.337.3 12
52.47 even 4 4056.2.c.r.337.10 12
52.51 odd 2 4056.2.a.bh.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4056.2.a.bh.1.2 6 52.51 odd 2
4056.2.a.bi.1.5 yes 6 4.3 odd 2
4056.2.c.r.337.3 12 52.31 even 4
4056.2.c.r.337.10 12 52.47 even 4
8112.2.a.ct.1.2 6 13.12 even 2
8112.2.a.cu.1.5 6 1.1 even 1 trivial