Properties

Label 4056.2.c.r.337.3
Level $4056$
Weight $2$
Character 4056.337
Analytic conductor $32.387$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4056,2,Mod(337,4056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4056, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4056.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4056.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,12,0,0,0,0,0,12,0,0,0,0,0,0,0,-18,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3873230598\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 39x^{10} + 601x^{8} + 4599x^{6} + 17849x^{4} + 31203x^{2} + 16129 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.3
Root \(-2.72245i\) of defining polynomial
Character \(\chi\) \(=\) 4056.337
Dual form 4056.2.c.r.337.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -2.72245i q^{5} +3.31535i q^{7} +1.00000 q^{9} +0.656645i q^{11} -2.72245i q^{15} +1.16749 q^{17} -6.77137i q^{19} +3.31535i q^{21} -6.90073 q^{23} -2.41172 q^{25} +1.00000 q^{27} -5.82010 q^{29} +0.969574i q^{31} +0.656645i q^{33} +9.02586 q^{35} -9.93482i q^{37} -10.5937i q^{41} +5.07523 q^{43} -2.72245i q^{45} -8.24364i q^{47} -3.99153 q^{49} +1.16749 q^{51} +0.841166 q^{53} +1.78768 q^{55} -6.77137i q^{57} +0.128144i q^{59} +11.7223 q^{61} +3.31535i q^{63} +15.9422i q^{67} -6.90073 q^{69} -5.32056i q^{71} -3.75917i q^{73} -2.41172 q^{75} -2.17701 q^{77} +2.17759 q^{79} +1.00000 q^{81} +10.8237i q^{83} -3.17843i q^{85} -5.82010 q^{87} -4.09193i q^{89} +0.969574i q^{93} -18.4347 q^{95} -16.5008i q^{97} +0.656645i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{3} + 12 q^{9} - 18 q^{17} - 24 q^{23} - 18 q^{25} + 12 q^{27} + 14 q^{29} + 12 q^{35} - 30 q^{43} - 26 q^{49} - 18 q^{51} + 44 q^{53} + 6 q^{55} + 50 q^{61} - 24 q^{69} - 18 q^{75} - 90 q^{77}+ \cdots - 94 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4056\mathbb{Z}\right)^\times\).

\(n\) \(1015\) \(2029\) \(2705\) \(3889\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) − 2.72245i − 1.21752i −0.793356 0.608758i \(-0.791668\pi\)
0.793356 0.608758i \(-0.208332\pi\)
\(6\) 0 0
\(7\) 3.31535i 1.25308i 0.779388 + 0.626542i \(0.215530\pi\)
−0.779388 + 0.626542i \(0.784470\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.656645i 0.197986i 0.995088 + 0.0989930i \(0.0315621\pi\)
−0.995088 + 0.0989930i \(0.968438\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) − 2.72245i − 0.702933i
\(16\) 0 0
\(17\) 1.16749 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(18\) 0 0
\(19\) − 6.77137i − 1.55346i −0.629835 0.776729i \(-0.716878\pi\)
0.629835 0.776729i \(-0.283122\pi\)
\(20\) 0 0
\(21\) 3.31535i 0.723468i
\(22\) 0 0
\(23\) −6.90073 −1.43890 −0.719451 0.694543i \(-0.755607\pi\)
−0.719451 + 0.694543i \(0.755607\pi\)
\(24\) 0 0
\(25\) −2.41172 −0.482344
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −5.82010 −1.08077 −0.540383 0.841419i \(-0.681721\pi\)
−0.540383 + 0.841419i \(0.681721\pi\)
\(30\) 0 0
\(31\) 0.969574i 0.174141i 0.996202 + 0.0870703i \(0.0277505\pi\)
−0.996202 + 0.0870703i \(0.972250\pi\)
\(32\) 0 0
\(33\) 0.656645i 0.114307i
\(34\) 0 0
\(35\) 9.02586 1.52565
\(36\) 0 0
\(37\) − 9.93482i − 1.63327i −0.577151 0.816637i \(-0.695836\pi\)
0.577151 0.816637i \(-0.304164\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 10.5937i − 1.65445i −0.561869 0.827227i \(-0.689917\pi\)
0.561869 0.827227i \(-0.310083\pi\)
\(42\) 0 0
\(43\) 5.07523 0.773965 0.386983 0.922087i \(-0.373517\pi\)
0.386983 + 0.922087i \(0.373517\pi\)
\(44\) 0 0
\(45\) − 2.72245i − 0.405839i
\(46\) 0 0
\(47\) − 8.24364i − 1.20246i −0.799077 0.601229i \(-0.794678\pi\)
0.799077 0.601229i \(-0.205322\pi\)
\(48\) 0 0
\(49\) −3.99153 −0.570218
\(50\) 0 0
\(51\) 1.16749 0.163481
\(52\) 0 0
\(53\) 0.841166 0.115543 0.0577715 0.998330i \(-0.481601\pi\)
0.0577715 + 0.998330i \(0.481601\pi\)
\(54\) 0 0
\(55\) 1.78768 0.241051
\(56\) 0 0
\(57\) − 6.77137i − 0.896889i
\(58\) 0 0
\(59\) 0.128144i 0.0166829i 0.999965 + 0.00834145i \(0.00265520\pi\)
−0.999965 + 0.00834145i \(0.997345\pi\)
\(60\) 0 0
\(61\) 11.7223 1.50089 0.750443 0.660935i \(-0.229840\pi\)
0.750443 + 0.660935i \(0.229840\pi\)
\(62\) 0 0
\(63\) 3.31535i 0.417694i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 15.9422i 1.94765i 0.227303 + 0.973824i \(0.427009\pi\)
−0.227303 + 0.973824i \(0.572991\pi\)
\(68\) 0 0
\(69\) −6.90073 −0.830750
\(70\) 0 0
\(71\) − 5.32056i − 0.631434i −0.948853 0.315717i \(-0.897755\pi\)
0.948853 0.315717i \(-0.102245\pi\)
\(72\) 0 0
\(73\) − 3.75917i − 0.439977i −0.975502 0.219989i \(-0.929398\pi\)
0.975502 0.219989i \(-0.0706020\pi\)
\(74\) 0 0
\(75\) −2.41172 −0.278482
\(76\) 0 0
\(77\) −2.17701 −0.248093
\(78\) 0 0
\(79\) 2.17759 0.244998 0.122499 0.992469i \(-0.460909\pi\)
0.122499 + 0.992469i \(0.460909\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.8237i 1.18806i 0.804444 + 0.594029i \(0.202464\pi\)
−0.804444 + 0.594029i \(0.797536\pi\)
\(84\) 0 0
\(85\) − 3.17843i − 0.344749i
\(86\) 0 0
\(87\) −5.82010 −0.623980
\(88\) 0 0
\(89\) − 4.09193i − 0.433743i −0.976200 0.216872i \(-0.930415\pi\)
0.976200 0.216872i \(-0.0695853\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0.969574i 0.100540i
\(94\) 0 0
\(95\) −18.4347 −1.89136
\(96\) 0 0
\(97\) − 16.5008i − 1.67540i −0.546127 0.837702i \(-0.683899\pi\)
0.546127 0.837702i \(-0.316101\pi\)
\(98\) 0 0
\(99\) 0.656645i 0.0659953i
\(100\) 0 0
\(101\) −14.4134 −1.43419 −0.717096 0.696975i \(-0.754529\pi\)
−0.717096 + 0.696975i \(0.754529\pi\)
\(102\) 0 0
\(103\) 15.7309 1.55001 0.775007 0.631953i \(-0.217747\pi\)
0.775007 + 0.631953i \(0.217747\pi\)
\(104\) 0 0
\(105\) 9.02586 0.880834
\(106\) 0 0
\(107\) 9.27509 0.896656 0.448328 0.893869i \(-0.352020\pi\)
0.448328 + 0.893869i \(0.352020\pi\)
\(108\) 0 0
\(109\) − 8.82889i − 0.845655i −0.906210 0.422827i \(-0.861038\pi\)
0.906210 0.422827i \(-0.138962\pi\)
\(110\) 0 0
\(111\) − 9.93482i − 0.942971i
\(112\) 0 0
\(113\) 6.45873 0.607586 0.303793 0.952738i \(-0.401747\pi\)
0.303793 + 0.952738i \(0.401747\pi\)
\(114\) 0 0
\(115\) 18.7869i 1.75189i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.87063i 0.354820i
\(120\) 0 0
\(121\) 10.5688 0.960802
\(122\) 0 0
\(123\) − 10.5937i − 0.955199i
\(124\) 0 0
\(125\) − 7.04645i − 0.630254i
\(126\) 0 0
\(127\) 4.90436 0.435191 0.217596 0.976039i \(-0.430179\pi\)
0.217596 + 0.976039i \(0.430179\pi\)
\(128\) 0 0
\(129\) 5.07523 0.446849
\(130\) 0 0
\(131\) −13.9311 −1.21717 −0.608584 0.793489i \(-0.708262\pi\)
−0.608584 + 0.793489i \(0.708262\pi\)
\(132\) 0 0
\(133\) 22.4494 1.94661
\(134\) 0 0
\(135\) − 2.72245i − 0.234311i
\(136\) 0 0
\(137\) − 17.4589i − 1.49161i −0.666163 0.745806i \(-0.732064\pi\)
0.666163 0.745806i \(-0.267936\pi\)
\(138\) 0 0
\(139\) 9.93881 0.842999 0.421499 0.906829i \(-0.361504\pi\)
0.421499 + 0.906829i \(0.361504\pi\)
\(140\) 0 0
\(141\) − 8.24364i − 0.694239i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 15.8449i 1.31585i
\(146\) 0 0
\(147\) −3.99153 −0.329216
\(148\) 0 0
\(149\) 14.7938i 1.21196i 0.795481 + 0.605979i \(0.207218\pi\)
−0.795481 + 0.605979i \(0.792782\pi\)
\(150\) 0 0
\(151\) − 11.5920i − 0.943340i −0.881775 0.471670i \(-0.843651\pi\)
0.881775 0.471670i \(-0.156349\pi\)
\(152\) 0 0
\(153\) 1.16749 0.0943859
\(154\) 0 0
\(155\) 2.63961 0.212019
\(156\) 0 0
\(157\) −16.3811 −1.30735 −0.653677 0.756773i \(-0.726775\pi\)
−0.653677 + 0.756773i \(0.726775\pi\)
\(158\) 0 0
\(159\) 0.841166 0.0667088
\(160\) 0 0
\(161\) − 22.8783i − 1.80306i
\(162\) 0 0
\(163\) − 21.2719i − 1.66615i −0.553163 0.833073i \(-0.686579\pi\)
0.553163 0.833073i \(-0.313421\pi\)
\(164\) 0 0
\(165\) 1.78768 0.139171
\(166\) 0 0
\(167\) − 10.5498i − 0.816367i −0.912900 0.408183i \(-0.866162\pi\)
0.912900 0.408183i \(-0.133838\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) − 6.77137i − 0.517819i
\(172\) 0 0
\(173\) −20.4284 −1.55314 −0.776569 0.630032i \(-0.783042\pi\)
−0.776569 + 0.630032i \(0.783042\pi\)
\(174\) 0 0
\(175\) − 7.99570i − 0.604418i
\(176\) 0 0
\(177\) 0.128144i 0.00963188i
\(178\) 0 0
\(179\) 5.71037 0.426813 0.213406 0.976964i \(-0.431544\pi\)
0.213406 + 0.976964i \(0.431544\pi\)
\(180\) 0 0
\(181\) −4.70324 −0.349589 −0.174795 0.984605i \(-0.555926\pi\)
−0.174795 + 0.984605i \(0.555926\pi\)
\(182\) 0 0
\(183\) 11.7223 0.866537
\(184\) 0 0
\(185\) −27.0470 −1.98854
\(186\) 0 0
\(187\) 0.766626i 0.0560613i
\(188\) 0 0
\(189\) 3.31535i 0.241156i
\(190\) 0 0
\(191\) 14.7128 1.06458 0.532292 0.846561i \(-0.321331\pi\)
0.532292 + 0.846561i \(0.321331\pi\)
\(192\) 0 0
\(193\) 1.50643i 0.108435i 0.998529 + 0.0542177i \(0.0172665\pi\)
−0.998529 + 0.0542177i \(0.982734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.4470i 1.24305i 0.783395 + 0.621524i \(0.213486\pi\)
−0.783395 + 0.621524i \(0.786514\pi\)
\(198\) 0 0
\(199\) −17.4032 −1.23368 −0.616841 0.787088i \(-0.711588\pi\)
−0.616841 + 0.787088i \(0.711588\pi\)
\(200\) 0 0
\(201\) 15.9422i 1.12448i
\(202\) 0 0
\(203\) − 19.2957i − 1.35429i
\(204\) 0 0
\(205\) −28.8407 −2.01432
\(206\) 0 0
\(207\) −6.90073 −0.479634
\(208\) 0 0
\(209\) 4.44638 0.307563
\(210\) 0 0
\(211\) −12.4002 −0.853662 −0.426831 0.904331i \(-0.640370\pi\)
−0.426831 + 0.904331i \(0.640370\pi\)
\(212\) 0 0
\(213\) − 5.32056i − 0.364559i
\(214\) 0 0
\(215\) − 13.8170i − 0.942315i
\(216\) 0 0
\(217\) −3.21447 −0.218213
\(218\) 0 0
\(219\) − 3.75917i − 0.254021i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 12.5356i 0.839448i 0.907652 + 0.419724i \(0.137873\pi\)
−0.907652 + 0.419724i \(0.862127\pi\)
\(224\) 0 0
\(225\) −2.41172 −0.160781
\(226\) 0 0
\(227\) − 1.16802i − 0.0775243i −0.999248 0.0387622i \(-0.987659\pi\)
0.999248 0.0387622i \(-0.0123415\pi\)
\(228\) 0 0
\(229\) 21.9158i 1.44824i 0.689675 + 0.724119i \(0.257753\pi\)
−0.689675 + 0.724119i \(0.742247\pi\)
\(230\) 0 0
\(231\) −2.17701 −0.143237
\(232\) 0 0
\(233\) 3.00659 0.196968 0.0984842 0.995139i \(-0.468601\pi\)
0.0984842 + 0.995139i \(0.468601\pi\)
\(234\) 0 0
\(235\) −22.4429 −1.46401
\(236\) 0 0
\(237\) 2.17759 0.141450
\(238\) 0 0
\(239\) − 12.7853i − 0.827015i −0.910501 0.413508i \(-0.864303\pi\)
0.910501 0.413508i \(-0.135697\pi\)
\(240\) 0 0
\(241\) 23.6123i 1.52100i 0.649339 + 0.760499i \(0.275046\pi\)
−0.649339 + 0.760499i \(0.724954\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 10.8667i 0.694249i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 10.8237i 0.685926i
\(250\) 0 0
\(251\) −8.22001 −0.518843 −0.259421 0.965764i \(-0.583532\pi\)
−0.259421 + 0.965764i \(0.583532\pi\)
\(252\) 0 0
\(253\) − 4.53133i − 0.284882i
\(254\) 0 0
\(255\) − 3.17843i − 0.199041i
\(256\) 0 0
\(257\) −27.7850 −1.73318 −0.866592 0.499018i \(-0.833694\pi\)
−0.866592 + 0.499018i \(0.833694\pi\)
\(258\) 0 0
\(259\) 32.9374 2.04663
\(260\) 0 0
\(261\) −5.82010 −0.360255
\(262\) 0 0
\(263\) 10.5270 0.649120 0.324560 0.945865i \(-0.394784\pi\)
0.324560 + 0.945865i \(0.394784\pi\)
\(264\) 0 0
\(265\) − 2.29003i − 0.140676i
\(266\) 0 0
\(267\) − 4.09193i − 0.250422i
\(268\) 0 0
\(269\) −2.51426 −0.153297 −0.0766486 0.997058i \(-0.524422\pi\)
−0.0766486 + 0.997058i \(0.524422\pi\)
\(270\) 0 0
\(271\) − 4.83460i − 0.293681i −0.989160 0.146841i \(-0.953090\pi\)
0.989160 0.146841i \(-0.0469104\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 1.58365i − 0.0954974i
\(276\) 0 0
\(277\) 15.4274 0.926941 0.463471 0.886112i \(-0.346604\pi\)
0.463471 + 0.886112i \(0.346604\pi\)
\(278\) 0 0
\(279\) 0.969574i 0.0580469i
\(280\) 0 0
\(281\) − 6.10796i − 0.364370i −0.983264 0.182185i \(-0.941683\pi\)
0.983264 0.182185i \(-0.0583170\pi\)
\(282\) 0 0
\(283\) −11.3138 −0.672538 −0.336269 0.941766i \(-0.609165\pi\)
−0.336269 + 0.941766i \(0.609165\pi\)
\(284\) 0 0
\(285\) −18.4347 −1.09198
\(286\) 0 0
\(287\) 35.1217 2.07317
\(288\) 0 0
\(289\) −15.6370 −0.919822
\(290\) 0 0
\(291\) − 16.5008i − 0.967295i
\(292\) 0 0
\(293\) 28.0013i 1.63585i 0.575322 + 0.817927i \(0.304877\pi\)
−0.575322 + 0.817927i \(0.695123\pi\)
\(294\) 0 0
\(295\) 0.348865 0.0203117
\(296\) 0 0
\(297\) 0.656645i 0.0381024i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 16.8261i 0.969843i
\(302\) 0 0
\(303\) −14.4134 −0.828031
\(304\) 0 0
\(305\) − 31.9134i − 1.82735i
\(306\) 0 0
\(307\) 18.6077i 1.06199i 0.847373 + 0.530997i \(0.178183\pi\)
−0.847373 + 0.530997i \(0.821817\pi\)
\(308\) 0 0
\(309\) 15.7309 0.894900
\(310\) 0 0
\(311\) −25.9076 −1.46909 −0.734543 0.678563i \(-0.762603\pi\)
−0.734543 + 0.678563i \(0.762603\pi\)
\(312\) 0 0
\(313\) −0.799031 −0.0451639 −0.0225819 0.999745i \(-0.507189\pi\)
−0.0225819 + 0.999745i \(0.507189\pi\)
\(314\) 0 0
\(315\) 9.02586 0.508550
\(316\) 0 0
\(317\) − 32.7072i − 1.83702i −0.395400 0.918509i \(-0.629394\pi\)
0.395400 0.918509i \(-0.370606\pi\)
\(318\) 0 0
\(319\) − 3.82174i − 0.213976i
\(320\) 0 0
\(321\) 9.27509 0.517685
\(322\) 0 0
\(323\) − 7.90550i − 0.439874i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 8.82889i − 0.488239i
\(328\) 0 0
\(329\) 27.3305 1.50678
\(330\) 0 0
\(331\) − 5.69662i − 0.313115i −0.987669 0.156557i \(-0.949960\pi\)
0.987669 0.156557i \(-0.0500396\pi\)
\(332\) 0 0
\(333\) − 9.93482i − 0.544425i
\(334\) 0 0
\(335\) 43.4018 2.37129
\(336\) 0 0
\(337\) 10.4046 0.566773 0.283387 0.959006i \(-0.408542\pi\)
0.283387 + 0.959006i \(0.408542\pi\)
\(338\) 0 0
\(339\) 6.45873 0.350790
\(340\) 0 0
\(341\) −0.636666 −0.0344774
\(342\) 0 0
\(343\) 9.97413i 0.538553i
\(344\) 0 0
\(345\) 18.7869i 1.01145i
\(346\) 0 0
\(347\) 9.76863 0.524408 0.262204 0.965013i \(-0.415551\pi\)
0.262204 + 0.965013i \(0.415551\pi\)
\(348\) 0 0
\(349\) − 6.11185i − 0.327160i −0.986530 0.163580i \(-0.947696\pi\)
0.986530 0.163580i \(-0.0523041\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 21.1136i − 1.12376i −0.827217 0.561882i \(-0.810077\pi\)
0.827217 0.561882i \(-0.189923\pi\)
\(354\) 0 0
\(355\) −14.4849 −0.768781
\(356\) 0 0
\(357\) 3.87063i 0.204856i
\(358\) 0 0
\(359\) 2.37346i 0.125267i 0.998037 + 0.0626333i \(0.0199499\pi\)
−0.998037 + 0.0626333i \(0.980050\pi\)
\(360\) 0 0
\(361\) −26.8514 −1.41323
\(362\) 0 0
\(363\) 10.5688 0.554719
\(364\) 0 0
\(365\) −10.2341 −0.535679
\(366\) 0 0
\(367\) −34.1977 −1.78511 −0.892553 0.450943i \(-0.851088\pi\)
−0.892553 + 0.450943i \(0.851088\pi\)
\(368\) 0 0
\(369\) − 10.5937i − 0.551484i
\(370\) 0 0
\(371\) 2.78876i 0.144785i
\(372\) 0 0
\(373\) 4.01148 0.207707 0.103853 0.994593i \(-0.466883\pi\)
0.103853 + 0.994593i \(0.466883\pi\)
\(374\) 0 0
\(375\) − 7.04645i − 0.363877i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.282802i 0.0145265i 0.999974 + 0.00726327i \(0.00231199\pi\)
−0.999974 + 0.00726327i \(0.997688\pi\)
\(380\) 0 0
\(381\) 4.90436 0.251258
\(382\) 0 0
\(383\) 11.7130i 0.598508i 0.954173 + 0.299254i \(0.0967379\pi\)
−0.954173 + 0.299254i \(0.903262\pi\)
\(384\) 0 0
\(385\) 5.92679i 0.302057i
\(386\) 0 0
\(387\) 5.07523 0.257988
\(388\) 0 0
\(389\) 11.7485 0.595672 0.297836 0.954617i \(-0.403735\pi\)
0.297836 + 0.954617i \(0.403735\pi\)
\(390\) 0 0
\(391\) −8.05653 −0.407436
\(392\) 0 0
\(393\) −13.9311 −0.702733
\(394\) 0 0
\(395\) − 5.92838i − 0.298289i
\(396\) 0 0
\(397\) − 1.55897i − 0.0782427i −0.999234 0.0391213i \(-0.987544\pi\)
0.999234 0.0391213i \(-0.0124559\pi\)
\(398\) 0 0
\(399\) 22.4494 1.12388
\(400\) 0 0
\(401\) − 5.75468i − 0.287375i −0.989623 0.143687i \(-0.954104\pi\)
0.989623 0.143687i \(-0.0458960\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 2.72245i − 0.135280i
\(406\) 0 0
\(407\) 6.52365 0.323365
\(408\) 0 0
\(409\) − 22.5609i − 1.11557i −0.829987 0.557783i \(-0.811652\pi\)
0.829987 0.557783i \(-0.188348\pi\)
\(410\) 0 0
\(411\) − 17.4589i − 0.861183i
\(412\) 0 0
\(413\) −0.424841 −0.0209051
\(414\) 0 0
\(415\) 29.4670 1.44648
\(416\) 0 0
\(417\) 9.93881 0.486706
\(418\) 0 0
\(419\) 14.5676 0.711675 0.355837 0.934548i \(-0.384196\pi\)
0.355837 + 0.934548i \(0.384196\pi\)
\(420\) 0 0
\(421\) 40.2281i 1.96060i 0.197525 + 0.980298i \(0.436710\pi\)
−0.197525 + 0.980298i \(0.563290\pi\)
\(422\) 0 0
\(423\) − 8.24364i − 0.400819i
\(424\) 0 0
\(425\) −2.81566 −0.136580
\(426\) 0 0
\(427\) 38.8635i 1.88074i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.9559i 0.720402i 0.932875 + 0.360201i \(0.117292\pi\)
−0.932875 + 0.360201i \(0.882708\pi\)
\(432\) 0 0
\(433\) 30.1200 1.44748 0.723738 0.690074i \(-0.242422\pi\)
0.723738 + 0.690074i \(0.242422\pi\)
\(434\) 0 0
\(435\) 15.8449i 0.759706i
\(436\) 0 0
\(437\) 46.7274i 2.23527i
\(438\) 0 0
\(439\) −10.7914 −0.515043 −0.257522 0.966273i \(-0.582906\pi\)
−0.257522 + 0.966273i \(0.582906\pi\)
\(440\) 0 0
\(441\) −3.99153 −0.190073
\(442\) 0 0
\(443\) 30.6498 1.45622 0.728108 0.685463i \(-0.240400\pi\)
0.728108 + 0.685463i \(0.240400\pi\)
\(444\) 0 0
\(445\) −11.1401 −0.528089
\(446\) 0 0
\(447\) 14.7938i 0.699724i
\(448\) 0 0
\(449\) 12.3953i 0.584970i 0.956270 + 0.292485i \(0.0944821\pi\)
−0.956270 + 0.292485i \(0.905518\pi\)
\(450\) 0 0
\(451\) 6.95628 0.327558
\(452\) 0 0
\(453\) − 11.5920i − 0.544638i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 21.5121i − 1.00629i −0.864201 0.503147i \(-0.832175\pi\)
0.864201 0.503147i \(-0.167825\pi\)
\(458\) 0 0
\(459\) 1.16749 0.0544938
\(460\) 0 0
\(461\) 20.2208i 0.941777i 0.882193 + 0.470889i \(0.156067\pi\)
−0.882193 + 0.470889i \(0.843933\pi\)
\(462\) 0 0
\(463\) − 11.2424i − 0.522477i −0.965274 0.261239i \(-0.915869\pi\)
0.965274 0.261239i \(-0.0841310\pi\)
\(464\) 0 0
\(465\) 2.63961 0.122409
\(466\) 0 0
\(467\) 27.1166 1.25481 0.627403 0.778695i \(-0.284118\pi\)
0.627403 + 0.778695i \(0.284118\pi\)
\(468\) 0 0
\(469\) −52.8539 −2.44057
\(470\) 0 0
\(471\) −16.3811 −0.754802
\(472\) 0 0
\(473\) 3.33262i 0.153234i
\(474\) 0 0
\(475\) 16.3307i 0.749302i
\(476\) 0 0
\(477\) 0.841166 0.0385144
\(478\) 0 0
\(479\) − 13.8701i − 0.633743i −0.948468 0.316872i \(-0.897368\pi\)
0.948468 0.316872i \(-0.102632\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 22.8783i − 1.04100i
\(484\) 0 0
\(485\) −44.9226 −2.03983
\(486\) 0 0
\(487\) 0.0497164i 0.00225287i 0.999999 + 0.00112643i \(0.000358555\pi\)
−0.999999 + 0.00112643i \(0.999641\pi\)
\(488\) 0 0
\(489\) − 21.2719i − 0.961950i
\(490\) 0 0
\(491\) 21.9646 0.991248 0.495624 0.868537i \(-0.334939\pi\)
0.495624 + 0.868537i \(0.334939\pi\)
\(492\) 0 0
\(493\) −6.79491 −0.306027
\(494\) 0 0
\(495\) 1.78768 0.0803503
\(496\) 0 0
\(497\) 17.6395 0.791240
\(498\) 0 0
\(499\) 35.8347i 1.60418i 0.597202 + 0.802091i \(0.296279\pi\)
−0.597202 + 0.802091i \(0.703721\pi\)
\(500\) 0 0
\(501\) − 10.5498i − 0.471329i
\(502\) 0 0
\(503\) −0.104369 −0.00465358 −0.00232679 0.999997i \(-0.500741\pi\)
−0.00232679 + 0.999997i \(0.500741\pi\)
\(504\) 0 0
\(505\) 39.2399i 1.74615i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 1.19452i − 0.0529464i −0.999650 0.0264732i \(-0.991572\pi\)
0.999650 0.0264732i \(-0.00842766\pi\)
\(510\) 0 0
\(511\) 12.4629 0.551328
\(512\) 0 0
\(513\) − 6.77137i − 0.298963i
\(514\) 0 0
\(515\) − 42.8266i − 1.88717i
\(516\) 0 0
\(517\) 5.41314 0.238070
\(518\) 0 0
\(519\) −20.4284 −0.896705
\(520\) 0 0
\(521\) 22.8446 1.00084 0.500420 0.865783i \(-0.333179\pi\)
0.500420 + 0.865783i \(0.333179\pi\)
\(522\) 0 0
\(523\) 38.3582 1.67728 0.838642 0.544682i \(-0.183350\pi\)
0.838642 + 0.544682i \(0.183350\pi\)
\(524\) 0 0
\(525\) − 7.99570i − 0.348961i
\(526\) 0 0
\(527\) 1.13197i 0.0493093i
\(528\) 0 0
\(529\) 24.6201 1.07044
\(530\) 0 0
\(531\) 0.128144i 0.00556097i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 25.2509i − 1.09169i
\(536\) 0 0
\(537\) 5.71037 0.246420
\(538\) 0 0
\(539\) − 2.62102i − 0.112895i
\(540\) 0 0
\(541\) − 10.5126i − 0.451970i −0.974131 0.225985i \(-0.927440\pi\)
0.974131 0.225985i \(-0.0725601\pi\)
\(542\) 0 0
\(543\) −4.70324 −0.201835
\(544\) 0 0
\(545\) −24.0362 −1.02960
\(546\) 0 0
\(547\) 23.9358 1.02342 0.511711 0.859158i \(-0.329012\pi\)
0.511711 + 0.859158i \(0.329012\pi\)
\(548\) 0 0
\(549\) 11.7223 0.500296
\(550\) 0 0
\(551\) 39.4100i 1.67892i
\(552\) 0 0
\(553\) 7.21948i 0.307003i
\(554\) 0 0
\(555\) −27.0470 −1.14808
\(556\) 0 0
\(557\) 0.843060i 0.0357216i 0.999840 + 0.0178608i \(0.00568557\pi\)
−0.999840 + 0.0178608i \(0.994314\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.766626i 0.0323670i
\(562\) 0 0
\(563\) 18.4169 0.776179 0.388090 0.921622i \(-0.373135\pi\)
0.388090 + 0.921622i \(0.373135\pi\)
\(564\) 0 0
\(565\) − 17.5836i − 0.739746i
\(566\) 0 0
\(567\) 3.31535i 0.139231i
\(568\) 0 0
\(569\) 27.6396 1.15871 0.579356 0.815075i \(-0.303304\pi\)
0.579356 + 0.815075i \(0.303304\pi\)
\(570\) 0 0
\(571\) −8.23866 −0.344777 −0.172389 0.985029i \(-0.555148\pi\)
−0.172389 + 0.985029i \(0.555148\pi\)
\(572\) 0 0
\(573\) 14.7128 0.614638
\(574\) 0 0
\(575\) 16.6426 0.694046
\(576\) 0 0
\(577\) 2.60340i 0.108381i 0.998531 + 0.0541906i \(0.0172578\pi\)
−0.998531 + 0.0541906i \(0.982742\pi\)
\(578\) 0 0
\(579\) 1.50643i 0.0626052i
\(580\) 0 0
\(581\) −35.8844 −1.48874
\(582\) 0 0
\(583\) 0.552348i 0.0228759i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.62011i 0.355790i 0.984049 + 0.177895i \(0.0569287\pi\)
−0.984049 + 0.177895i \(0.943071\pi\)
\(588\) 0 0
\(589\) 6.56534 0.270520
\(590\) 0 0
\(591\) 17.4470i 0.717674i
\(592\) 0 0
\(593\) 39.3090i 1.61423i 0.590395 + 0.807114i \(0.298972\pi\)
−0.590395 + 0.807114i \(0.701028\pi\)
\(594\) 0 0
\(595\) 10.5376 0.431999
\(596\) 0 0
\(597\) −17.4032 −0.712266
\(598\) 0 0
\(599\) 38.7451 1.58308 0.791542 0.611115i \(-0.209279\pi\)
0.791542 + 0.611115i \(0.209279\pi\)
\(600\) 0 0
\(601\) −31.5673 −1.28766 −0.643828 0.765170i \(-0.722655\pi\)
−0.643828 + 0.765170i \(0.722655\pi\)
\(602\) 0 0
\(603\) 15.9422i 0.649216i
\(604\) 0 0
\(605\) − 28.7731i − 1.16979i
\(606\) 0 0
\(607\) −39.5512 −1.60533 −0.802667 0.596427i \(-0.796586\pi\)
−0.802667 + 0.596427i \(0.796586\pi\)
\(608\) 0 0
\(609\) − 19.2957i − 0.781899i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 42.8092i 1.72905i 0.502592 + 0.864524i \(0.332380\pi\)
−0.502592 + 0.864524i \(0.667620\pi\)
\(614\) 0 0
\(615\) −28.8407 −1.16297
\(616\) 0 0
\(617\) − 19.9368i − 0.802626i −0.915941 0.401313i \(-0.868554\pi\)
0.915941 0.401313i \(-0.131446\pi\)
\(618\) 0 0
\(619\) 38.1555i 1.53360i 0.641887 + 0.766799i \(0.278152\pi\)
−0.641887 + 0.766799i \(0.721848\pi\)
\(620\) 0 0
\(621\) −6.90073 −0.276917
\(622\) 0 0
\(623\) 13.5662 0.543516
\(624\) 0 0
\(625\) −31.2422 −1.24969
\(626\) 0 0
\(627\) 4.44638 0.177571
\(628\) 0 0
\(629\) − 11.5988i − 0.462474i
\(630\) 0 0
\(631\) − 30.6027i − 1.21827i −0.793065 0.609137i \(-0.791516\pi\)
0.793065 0.609137i \(-0.208484\pi\)
\(632\) 0 0
\(633\) −12.4002 −0.492862
\(634\) 0 0
\(635\) − 13.3519i − 0.529852i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 5.32056i − 0.210478i
\(640\) 0 0
\(641\) −25.7211 −1.01592 −0.507962 0.861379i \(-0.669601\pi\)
−0.507962 + 0.861379i \(0.669601\pi\)
\(642\) 0 0
\(643\) 30.1373i 1.18850i 0.804281 + 0.594249i \(0.202551\pi\)
−0.804281 + 0.594249i \(0.797449\pi\)
\(644\) 0 0
\(645\) − 13.8170i − 0.544046i
\(646\) 0 0
\(647\) −6.75127 −0.265420 −0.132710 0.991155i \(-0.542368\pi\)
−0.132710 + 0.991155i \(0.542368\pi\)
\(648\) 0 0
\(649\) −0.0841450 −0.00330298
\(650\) 0 0
\(651\) −3.21447 −0.125985
\(652\) 0 0
\(653\) −1.20999 −0.0473507 −0.0236754 0.999720i \(-0.507537\pi\)
−0.0236754 + 0.999720i \(0.507537\pi\)
\(654\) 0 0
\(655\) 37.9268i 1.48192i
\(656\) 0 0
\(657\) − 3.75917i − 0.146659i
\(658\) 0 0
\(659\) −13.6149 −0.530361 −0.265181 0.964199i \(-0.585432\pi\)
−0.265181 + 0.964199i \(0.585432\pi\)
\(660\) 0 0
\(661\) − 10.7711i − 0.418949i −0.977814 0.209474i \(-0.932825\pi\)
0.977814 0.209474i \(-0.0671753\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 61.1174i − 2.37003i
\(666\) 0 0
\(667\) 40.1629 1.55512
\(668\) 0 0
\(669\) 12.5356i 0.484655i
\(670\) 0 0
\(671\) 7.69739i 0.297155i
\(672\) 0 0
\(673\) 46.0338 1.77447 0.887236 0.461316i \(-0.152623\pi\)
0.887236 + 0.461316i \(0.152623\pi\)
\(674\) 0 0
\(675\) −2.41172 −0.0928272
\(676\) 0 0
\(677\) 1.84261 0.0708172 0.0354086 0.999373i \(-0.488727\pi\)
0.0354086 + 0.999373i \(0.488727\pi\)
\(678\) 0 0
\(679\) 54.7059 2.09942
\(680\) 0 0
\(681\) − 1.16802i − 0.0447587i
\(682\) 0 0
\(683\) − 23.7758i − 0.909757i −0.890554 0.454878i \(-0.849683\pi\)
0.890554 0.454878i \(-0.150317\pi\)
\(684\) 0 0
\(685\) −47.5309 −1.81606
\(686\) 0 0
\(687\) 21.9158i 0.836140i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 1.67973i − 0.0639001i −0.999489 0.0319501i \(-0.989828\pi\)
0.999489 0.0319501i \(-0.0101718\pi\)
\(692\) 0 0
\(693\) −2.17701 −0.0826976
\(694\) 0 0
\(695\) − 27.0579i − 1.02636i
\(696\) 0 0
\(697\) − 12.3680i − 0.468471i
\(698\) 0 0
\(699\) 3.00659 0.113720
\(700\) 0 0
\(701\) −17.8738 −0.675086 −0.337543 0.941310i \(-0.609596\pi\)
−0.337543 + 0.941310i \(0.609596\pi\)
\(702\) 0 0
\(703\) −67.2723 −2.53722
\(704\) 0 0
\(705\) −22.4429 −0.845247
\(706\) 0 0
\(707\) − 47.7856i − 1.79716i
\(708\) 0 0
\(709\) 4.27227i 0.160448i 0.996777 + 0.0802242i \(0.0255636\pi\)
−0.996777 + 0.0802242i \(0.974436\pi\)
\(710\) 0 0
\(711\) 2.17759 0.0816661
\(712\) 0 0
\(713\) − 6.69077i − 0.250571i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 12.7853i − 0.477478i
\(718\) 0 0
\(719\) 27.5341 1.02685 0.513424 0.858135i \(-0.328377\pi\)
0.513424 + 0.858135i \(0.328377\pi\)
\(720\) 0 0
\(721\) 52.1534i 1.94230i
\(722\) 0 0
\(723\) 23.6123i 0.878149i
\(724\) 0 0
\(725\) 14.0365 0.521301
\(726\) 0 0
\(727\) 28.2674 1.04838 0.524189 0.851602i \(-0.324369\pi\)
0.524189 + 0.851602i \(0.324369\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 5.92528 0.219154
\(732\) 0 0
\(733\) − 25.2904i − 0.934123i −0.884225 0.467062i \(-0.845313\pi\)
0.884225 0.467062i \(-0.154687\pi\)
\(734\) 0 0
\(735\) 10.8667i 0.400825i
\(736\) 0 0
\(737\) −10.4684 −0.385607
\(738\) 0 0
\(739\) 8.06509i 0.296679i 0.988936 + 0.148340i \(0.0473929\pi\)
−0.988936 + 0.148340i \(0.952607\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.2716i 0.523575i 0.965126 + 0.261787i \(0.0843119\pi\)
−0.965126 + 0.261787i \(0.915688\pi\)
\(744\) 0 0
\(745\) 40.2754 1.47558
\(746\) 0 0
\(747\) 10.8237i 0.396019i
\(748\) 0 0
\(749\) 30.7501i 1.12359i
\(750\) 0 0
\(751\) −33.0043 −1.20434 −0.602171 0.798367i \(-0.705698\pi\)
−0.602171 + 0.798367i \(0.705698\pi\)
\(752\) 0 0
\(753\) −8.22001 −0.299554
\(754\) 0 0
\(755\) −31.5585 −1.14853
\(756\) 0 0
\(757\) 35.2365 1.28069 0.640347 0.768086i \(-0.278791\pi\)
0.640347 + 0.768086i \(0.278791\pi\)
\(758\) 0 0
\(759\) − 4.53133i − 0.164477i
\(760\) 0 0
\(761\) 30.7212i 1.11364i 0.830632 + 0.556822i \(0.187979\pi\)
−0.830632 + 0.556822i \(0.812021\pi\)
\(762\) 0 0
\(763\) 29.2709 1.05968
\(764\) 0 0
\(765\) − 3.17843i − 0.114916i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 6.95972i 0.250974i 0.992095 + 0.125487i \(0.0400494\pi\)
−0.992095 + 0.125487i \(0.959951\pi\)
\(770\) 0 0
\(771\) −27.7850 −1.00065
\(772\) 0 0
\(773\) 40.5717i 1.45926i 0.683840 + 0.729632i \(0.260308\pi\)
−0.683840 + 0.729632i \(0.739692\pi\)
\(774\) 0 0
\(775\) − 2.33834i − 0.0839957i
\(776\) 0 0
\(777\) 32.9374 1.18162
\(778\) 0 0
\(779\) −71.7336 −2.57012
\(780\) 0 0
\(781\) 3.49372 0.125015
\(782\) 0 0
\(783\) −5.82010 −0.207993
\(784\) 0 0
\(785\) 44.5967i 1.59172i
\(786\) 0 0
\(787\) − 4.88731i − 0.174214i −0.996199 0.0871068i \(-0.972238\pi\)
0.996199 0.0871068i \(-0.0277622\pi\)
\(788\) 0 0
\(789\) 10.5270 0.374769
\(790\) 0 0
\(791\) 21.4129i 0.761356i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 2.29003i − 0.0812191i
\(796\) 0 0
\(797\) 24.5982 0.871314 0.435657 0.900113i \(-0.356516\pi\)
0.435657 + 0.900113i \(0.356516\pi\)
\(798\) 0 0
\(799\) − 9.62436i − 0.340485i
\(800\) 0 0
\(801\) − 4.09193i − 0.144581i
\(802\) 0 0
\(803\) 2.46844 0.0871093
\(804\) 0 0
\(805\) −62.2850 −2.19526
\(806\) 0 0
\(807\) −2.51426 −0.0885061
\(808\) 0 0
\(809\) 13.6525 0.479996 0.239998 0.970773i \(-0.422853\pi\)
0.239998 + 0.970773i \(0.422853\pi\)
\(810\) 0 0
\(811\) 44.2951i 1.55541i 0.628628 + 0.777706i \(0.283617\pi\)
−0.628628 + 0.777706i \(0.716383\pi\)
\(812\) 0 0
\(813\) − 4.83460i − 0.169557i
\(814\) 0 0
\(815\) −57.9117 −2.02856
\(816\) 0 0
\(817\) − 34.3662i − 1.20232i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 32.2133i − 1.12425i −0.827051 0.562127i \(-0.809983\pi\)
0.827051 0.562127i \(-0.190017\pi\)
\(822\) 0 0
\(823\) 28.6321 0.998052 0.499026 0.866587i \(-0.333691\pi\)
0.499026 + 0.866587i \(0.333691\pi\)
\(824\) 0 0
\(825\) − 1.58365i − 0.0551355i
\(826\) 0 0
\(827\) − 40.8863i − 1.42176i −0.703315 0.710879i \(-0.748298\pi\)
0.703315 0.710879i \(-0.251702\pi\)
\(828\) 0 0
\(829\) −10.7016 −0.371681 −0.185841 0.982580i \(-0.559501\pi\)
−0.185841 + 0.982580i \(0.559501\pi\)
\(830\) 0 0
\(831\) 15.4274 0.535170
\(832\) 0 0
\(833\) −4.66007 −0.161462
\(834\) 0 0
\(835\) −28.7212 −0.993939
\(836\) 0 0
\(837\) 0.969574i 0.0335134i
\(838\) 0 0
\(839\) − 16.1362i − 0.557085i −0.960424 0.278543i \(-0.910149\pi\)
0.960424 0.278543i \(-0.0898513\pi\)
\(840\) 0 0
\(841\) 4.87357 0.168054
\(842\) 0 0
\(843\) − 6.10796i − 0.210369i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 35.0393i 1.20396i
\(848\) 0 0
\(849\) −11.3138 −0.388290
\(850\) 0 0
\(851\) 68.5575i 2.35012i
\(852\) 0 0
\(853\) − 15.7776i − 0.540215i −0.962830 0.270108i \(-0.912941\pi\)
0.962830 0.270108i \(-0.0870593\pi\)
\(854\) 0 0
\(855\) −18.4347 −0.630453
\(856\) 0 0
\(857\) −21.5463 −0.736006 −0.368003 0.929825i \(-0.619958\pi\)
−0.368003 + 0.929825i \(0.619958\pi\)
\(858\) 0 0
\(859\) −4.07749 −0.139122 −0.0695611 0.997578i \(-0.522160\pi\)
−0.0695611 + 0.997578i \(0.522160\pi\)
\(860\) 0 0
\(861\) 35.1217 1.19694
\(862\) 0 0
\(863\) − 17.5883i − 0.598712i −0.954141 0.299356i \(-0.903228\pi\)
0.954141 0.299356i \(-0.0967718\pi\)
\(864\) 0 0
\(865\) 55.6151i 1.89097i
\(866\) 0 0
\(867\) −15.6370 −0.531059
\(868\) 0 0
\(869\) 1.42991i 0.0485062i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) − 16.5008i − 0.558468i
\(874\) 0 0
\(875\) 23.3614 0.789761
\(876\) 0 0
\(877\) 5.07451i 0.171354i 0.996323 + 0.0856770i \(0.0273053\pi\)
−0.996323 + 0.0856770i \(0.972695\pi\)
\(878\) 0 0
\(879\) 28.0013i 0.944461i
\(880\) 0 0
\(881\) −49.8471 −1.67939 −0.839696 0.543057i \(-0.817267\pi\)
−0.839696 + 0.543057i \(0.817267\pi\)
\(882\) 0 0
\(883\) −46.7712 −1.57398 −0.786989 0.616967i \(-0.788361\pi\)
−0.786989 + 0.616967i \(0.788361\pi\)
\(884\) 0 0
\(885\) 0.348865 0.0117270
\(886\) 0 0
\(887\) −19.5889 −0.657730 −0.328865 0.944377i \(-0.606666\pi\)
−0.328865 + 0.944377i \(0.606666\pi\)
\(888\) 0 0
\(889\) 16.2596i 0.545331i
\(890\) 0 0
\(891\) 0.656645i 0.0219984i
\(892\) 0 0
\(893\) −55.8207 −1.86797
\(894\) 0 0
\(895\) − 15.5462i − 0.519651i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 5.64302i − 0.188205i
\(900\) 0 0
\(901\) 0.982053 0.0327169
\(902\) 0 0
\(903\) 16.8261i 0.559939i
\(904\) 0 0
\(905\) 12.8043i 0.425630i
\(906\) 0 0
\(907\) 17.5223 0.581818 0.290909 0.956751i \(-0.406042\pi\)
0.290909 + 0.956751i \(0.406042\pi\)
\(908\) 0 0
\(909\) −14.4134 −0.478064
\(910\) 0 0
\(911\) −11.6916 −0.387360 −0.193680 0.981065i \(-0.562042\pi\)
−0.193680 + 0.981065i \(0.562042\pi\)
\(912\) 0 0
\(913\) −7.10735 −0.235219
\(914\) 0 0
\(915\) − 31.9134i − 1.05502i
\(916\) 0 0
\(917\) − 46.1865i − 1.52521i
\(918\) 0 0
\(919\) −42.7980 −1.41177 −0.705887 0.708324i \(-0.749452\pi\)
−0.705887 + 0.708324i \(0.749452\pi\)
\(920\) 0 0
\(921\) 18.6077i 0.613143i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 23.9600i 0.787801i
\(926\) 0 0
\(927\) 15.7309 0.516671
\(928\) 0 0
\(929\) 27.8135i 0.912532i 0.889843 + 0.456266i \(0.150813\pi\)
−0.889843 + 0.456266i \(0.849187\pi\)
\(930\) 0 0
\(931\) 27.0281i 0.885810i
\(932\) 0 0
\(933\) −25.9076 −0.848177
\(934\) 0 0
\(935\) 2.08710 0.0682555
\(936\) 0 0
\(937\) 48.2544 1.57640 0.788201 0.615417i \(-0.211013\pi\)
0.788201 + 0.615417i \(0.211013\pi\)
\(938\) 0 0
\(939\) −0.799031 −0.0260754
\(940\) 0 0
\(941\) − 13.8449i − 0.451332i −0.974205 0.225666i \(-0.927544\pi\)
0.974205 0.225666i \(-0.0724557\pi\)
\(942\) 0 0
\(943\) 73.1041i 2.38060i
\(944\) 0 0
\(945\) 9.02586 0.293611
\(946\) 0 0
\(947\) 18.6924i 0.607422i 0.952764 + 0.303711i \(0.0982258\pi\)
−0.952764 + 0.303711i \(0.901774\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 32.7072i − 1.06060i
\(952\) 0 0
\(953\) −44.2242 −1.43256 −0.716281 0.697812i \(-0.754157\pi\)
−0.716281 + 0.697812i \(0.754157\pi\)
\(954\) 0 0
\(955\) − 40.0550i − 1.29615i
\(956\) 0 0
\(957\) − 3.82174i − 0.123539i
\(958\) 0 0
\(959\) 57.8822 1.86911
\(960\) 0 0
\(961\) 30.0599 0.969675
\(962\) 0 0
\(963\) 9.27509 0.298885
\(964\) 0 0
\(965\) 4.10118 0.132022
\(966\) 0 0
\(967\) 36.5221i 1.17447i 0.809416 + 0.587235i \(0.199784\pi\)
−0.809416 + 0.587235i \(0.800216\pi\)
\(968\) 0 0
\(969\) − 7.90550i − 0.253961i
\(970\) 0 0
\(971\) 34.0922 1.09407 0.547035 0.837110i \(-0.315756\pi\)
0.547035 + 0.837110i \(0.315756\pi\)
\(972\) 0 0
\(973\) 32.9506i 1.05635i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 59.7205i − 1.91063i −0.295591 0.955315i \(-0.595517\pi\)
0.295591 0.955315i \(-0.404483\pi\)
\(978\) 0 0
\(979\) 2.68694 0.0858751
\(980\) 0 0
\(981\) − 8.82889i − 0.281885i
\(982\) 0 0
\(983\) 49.8000i 1.58837i 0.607674 + 0.794186i \(0.292103\pi\)
−0.607674 + 0.794186i \(0.707897\pi\)
\(984\) 0 0
\(985\) 47.4986 1.51343
\(986\) 0 0
\(987\) 27.3305 0.869940
\(988\) 0 0
\(989\) −35.0228 −1.11366
\(990\) 0 0
\(991\) −17.1731 −0.545522 −0.272761 0.962082i \(-0.587937\pi\)
−0.272761 + 0.962082i \(0.587937\pi\)
\(992\) 0 0
\(993\) − 5.69662i − 0.180777i
\(994\) 0 0
\(995\) 47.3794i 1.50203i
\(996\) 0 0
\(997\) −34.9494 −1.10686 −0.553430 0.832896i \(-0.686681\pi\)
−0.553430 + 0.832896i \(0.686681\pi\)
\(998\) 0 0
\(999\) − 9.93482i − 0.314324i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4056.2.c.r.337.3 12
13.5 odd 4 4056.2.a.bh.1.2 6
13.8 odd 4 4056.2.a.bi.1.5 yes 6
13.12 even 2 inner 4056.2.c.r.337.10 12
52.31 even 4 8112.2.a.ct.1.2 6
52.47 even 4 8112.2.a.cu.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4056.2.a.bh.1.2 6 13.5 odd 4
4056.2.a.bi.1.5 yes 6 13.8 odd 4
4056.2.c.r.337.3 12 1.1 even 1 trivial
4056.2.c.r.337.10 12 13.12 even 2 inner
8112.2.a.ct.1.2 6 52.31 even 4
8112.2.a.cu.1.5 6 52.47 even 4