Properties

Label 8112.2.a.cu
Level $8112$
Weight $2$
Character orbit 8112.a
Self dual yes
Analytic conductor $64.775$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8112,2,Mod(1,8112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8112.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6,0,1,0,5,0,6,0,6,0,0,0,-1,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.7746461197\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.27700337.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 19x^{4} + 17x^{3} + 103x^{2} - 71x - 127 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4056)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + (\beta_{3} - \beta_1) q^{5} + ( - \beta_{4} - \beta_{2} + 1) q^{7} + q^{9} + ( - \beta_{5} - \beta_{4} - \beta_{3} + \cdots + 2) q^{11} + ( - \beta_{3} + \beta_1) q^{15} + ( - \beta_{3} - \beta_{2} + \beta_1 + 2) q^{17}+ \cdots + ( - \beta_{5} - \beta_{4} - \beta_{3} + \cdots + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + q^{5} + 5 q^{7} + 6 q^{9} + 6 q^{11} - q^{15} + 9 q^{17} - 7 q^{19} - 5 q^{21} - 12 q^{23} + 9 q^{25} - 6 q^{27} + 7 q^{29} + 11 q^{31} - 6 q^{33} - 6 q^{35} + 6 q^{37} + 13 q^{41} - 15 q^{43}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 19x^{4} + 17x^{3} + 103x^{2} - 71x - 127 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -4\nu^{5} + 11\nu^{4} + 15\nu^{3} - 136\nu^{2} + 160\nu + 338 ) / 167 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -9\nu^{5} - 17\nu^{4} + 159\nu^{3} + 195\nu^{2} - 642\nu - 325 ) / 167 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 10\nu^{5} + 56\nu^{4} - 121\nu^{3} - 662\nu^{2} + 268\nu + 1326 ) / 167 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -13\nu^{5} - 6\nu^{4} + 174\nu^{3} + 226\nu^{2} - 482\nu - 1156 ) / 167 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{3} - \beta_{2} + 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + 2\beta_{3} - 2\beta_{2} + 8\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 12\beta_{5} + 3\beta_{4} - 10\beta_{3} - 9\beta_{2} + 58 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{5} + 12\beta_{4} + 14\beta_{3} - 40\beta_{2} + 70\beta _1 + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.88227
3.16419
2.72245
−3.12925
−0.920510
−2.71914
0 −1.00000 0 −3.12925 0 1.48962 0 1.00000 0
1.2 0 −1.00000 0 −2.71914 0 −0.735542 0 1.00000 0
1.3 0 −1.00000 0 −0.920510 0 4.87031 0 1.00000 0
1.4 0 −1.00000 0 1.88227 0 −1.29156 0 1.00000 0
1.5 0 −1.00000 0 2.72245 0 −3.31535 0 1.00000 0
1.6 0 −1.00000 0 3.16419 0 3.98252 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8112.2.a.cu 6
4.b odd 2 1 4056.2.a.bi yes 6
13.b even 2 1 8112.2.a.ct 6
52.b odd 2 1 4056.2.a.bh 6
52.f even 4 2 4056.2.c.r 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4056.2.a.bh 6 52.b odd 2 1
4056.2.a.bi yes 6 4.b odd 2 1
4056.2.c.r 12 52.f even 4 2
8112.2.a.ct 6 13.b even 2 1
8112.2.a.cu 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8112))\):

\( T_{5}^{6} - T_{5}^{5} - 19T_{5}^{4} + 17T_{5}^{3} + 103T_{5}^{2} - 71T_{5} - 127 \) Copy content Toggle raw display
\( T_{7}^{6} - 5T_{7}^{5} - 15T_{7}^{4} + 69T_{7}^{3} + 63T_{7}^{2} - 119T_{7} - 91 \) Copy content Toggle raw display
\( T_{11}^{6} - 6T_{11}^{5} - 23T_{11}^{4} + 118T_{11}^{3} + 126T_{11}^{2} - 112T_{11} - 91 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - T^{5} + \cdots - 127 \) Copy content Toggle raw display
$7$ \( T^{6} - 5 T^{5} + \cdots - 91 \) Copy content Toggle raw display
$11$ \( T^{6} - 6 T^{5} + \cdots - 91 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 9 T^{5} + \cdots + 8 \) Copy content Toggle raw display
$19$ \( T^{6} + 7 T^{5} + \cdots + 832 \) Copy content Toggle raw display
$23$ \( T^{6} + 12 T^{5} + \cdots + 16856 \) Copy content Toggle raw display
$29$ \( T^{6} - 7 T^{5} + \cdots + 27397 \) Copy content Toggle raw display
$31$ \( T^{6} - 11 T^{5} + \cdots - 301 \) Copy content Toggle raw display
$37$ \( T^{6} - 6 T^{5} + \cdots + 664 \) Copy content Toggle raw display
$41$ \( T^{6} - 13 T^{5} + \cdots - 78728 \) Copy content Toggle raw display
$43$ \( T^{6} + 15 T^{5} + \cdots - 249992 \) Copy content Toggle raw display
$47$ \( T^{6} - 9 T^{5} + \cdots + 287552 \) Copy content Toggle raw display
$53$ \( (T^{3} - 11 T^{2} + \cdots - 13)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} - 7 T^{5} + \cdots + 1112 \) Copy content Toggle raw display
$61$ \( T^{6} - 25 T^{5} + \cdots + 22504 \) Copy content Toggle raw display
$67$ \( T^{6} + 5 T^{5} + \cdots + 7112 \) Copy content Toggle raw display
$71$ \( T^{6} + 8 T^{5} + \cdots - 23192 \) Copy content Toggle raw display
$73$ \( T^{6} - 15 T^{5} + \cdots + 109067 \) Copy content Toggle raw display
$79$ \( T^{6} + 14 T^{5} + \cdots + 784147 \) Copy content Toggle raw display
$83$ \( T^{6} - 13 T^{5} + \cdots + 598949 \) Copy content Toggle raw display
$89$ \( T^{6} - 33 T^{5} + \cdots + 786344 \) Copy content Toggle raw display
$97$ \( T^{6} - 50 T^{5} + \cdots + 711061 \) Copy content Toggle raw display
show more
show less