Defining parameters
| Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
| Weight: | \( k \) | \(=\) | \( 9 \) |
| Character orbit: | \([\chi]\) | \(=\) | 81.d (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(81\) | ||
| Trace bound: | \(4\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(81, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 156 | 66 | 90 |
| Cusp forms | 132 | 62 | 70 |
| Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(81, [\chi])\) into newform subspaces
Decomposition of \(S_{9}^{\mathrm{old}}(81, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(81, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)