Properties

Label 81.9
Level 81
Weight 9
Dimension 1508
Nonzero newspaces 4
Newform subspaces 11
Sturm bound 4374
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 81 = 3^{4} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 11 \)
Sturm bound: \(4374\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(81))\).

Total New Old
Modular forms 1998 1564 434
Cusp forms 1890 1508 382
Eisenstein series 108 56 52

Trace form

\( 1508 q - 12 q^{2} - 18 q^{3} + 236 q^{4} + 429 q^{5} - 18 q^{6} - 2789 q^{7} - 9 q^{8} - 18 q^{9} + 11235 q^{10} - 28686 q^{11} - 18 q^{12} + 52045 q^{13} + 120957 q^{14} - 18 q^{15} - 234376 q^{16} - 9 q^{17}+ \cdots - 967332078 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(81))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
81.9.b \(\chi_{81}(80, \cdot)\) 81.9.b.a 14 1
81.9.b.b 16
81.9.d \(\chi_{81}(26, \cdot)\) 81.9.d.a 2 2
81.9.d.b 4
81.9.d.c 4
81.9.d.d 4
81.9.d.e 4
81.9.d.f 12
81.9.d.g 32
81.9.f \(\chi_{81}(8, \cdot)\) 81.9.f.a 138 6
81.9.h \(\chi_{81}(2, \cdot)\) 81.9.h.a 1278 18

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(81))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(81)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)