Defining parameters
Level: | \( N \) | = | \( 81 = 3^{4} \) |
Weight: | \( k \) | = | \( 9 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(4374\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(81))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1998 | 1564 | 434 |
Cusp forms | 1890 | 1508 | 382 |
Eisenstein series | 108 | 56 | 52 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(81))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
81.9.b | \(\chi_{81}(80, \cdot)\) | 81.9.b.a | 14 | 1 |
81.9.b.b | 16 | |||
81.9.d | \(\chi_{81}(26, \cdot)\) | 81.9.d.a | 2 | 2 |
81.9.d.b | 4 | |||
81.9.d.c | 4 | |||
81.9.d.d | 4 | |||
81.9.d.e | 4 | |||
81.9.d.f | 12 | |||
81.9.d.g | 32 | |||
81.9.f | \(\chi_{81}(8, \cdot)\) | 81.9.f.a | 138 | 6 |
81.9.h | \(\chi_{81}(2, \cdot)\) | 81.9.h.a | 1278 | 18 |
Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(81))\) into lower level spaces
\( S_{9}^{\mathrm{old}}(\Gamma_1(81)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)