Defining parameters
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.e (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 27 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(81, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 24 | 48 |
Cusp forms | 36 | 12 | 24 |
Eisenstein series | 36 | 12 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(81, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
81.2.e.a | $12$ | $0.647$ | 12.0.\(\cdots\).1 | None | \(6\) | \(0\) | \(3\) | \(-6\) | \(q+(1+\beta _{3}-\beta _{8})q^{2}+(1+\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(81, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(81, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)