Properties

Label 81.2.e
Level $81$
Weight $2$
Character orbit 81.e
Rep. character $\chi_{81}(10,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $12$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 81.e (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(81, [\chi])\).

Total New Old
Modular forms 72 24 48
Cusp forms 36 12 24
Eisenstein series 36 12 24

Trace form

\( 12 q + 6 q^{2} - 6 q^{4} + 3 q^{5} - 6 q^{7} - 6 q^{8} + O(q^{10}) \) \( 12 q + 6 q^{2} - 6 q^{4} + 3 q^{5} - 6 q^{7} - 6 q^{8} - 3 q^{10} - 3 q^{11} - 6 q^{13} - 15 q^{14} - 9 q^{17} - 3 q^{19} + 3 q^{20} + 3 q^{22} + 12 q^{23} + 3 q^{25} + 30 q^{26} - 12 q^{28} + 6 q^{29} + 3 q^{31} + 9 q^{34} - 12 q^{35} - 3 q^{37} - 42 q^{38} + 21 q^{40} - 15 q^{41} + 3 q^{43} - 3 q^{44} - 3 q^{46} + 15 q^{47} + 12 q^{49} + 33 q^{50} + 9 q^{52} + 18 q^{53} - 12 q^{55} + 33 q^{56} + 21 q^{58} + 12 q^{59} + 12 q^{61} + 12 q^{62} + 12 q^{64} - 3 q^{65} - 15 q^{67} - 9 q^{68} - 15 q^{70} - 27 q^{71} + 6 q^{73} - 33 q^{74} - 48 q^{76} - 15 q^{77} - 42 q^{79} - 42 q^{80} - 12 q^{82} - 39 q^{83} - 27 q^{85} - 51 q^{86} - 30 q^{88} - 9 q^{89} + 6 q^{91} + 39 q^{92} - 15 q^{94} + 33 q^{95} + 3 q^{97} + 45 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(81, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
81.2.e.a 81.e 27.e $12$ $0.647$ 12.0.\(\cdots\).1 None 27.2.e.a \(6\) \(0\) \(3\) \(-6\) $\mathrm{SU}(2)[C_{9}]$ \(q+(1+\beta _{3}-\beta _{8})q^{2}+(1+\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(81, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(81, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)