Properties

Label 81.2
Level 81
Weight 2
Dimension 164
Nonzero newspaces 4
Newform subspaces 5
Sturm bound 972
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 81 = 3^{4} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 5 \)
Sturm bound: \(972\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(81))\).

Total New Old
Modular forms 297 220 77
Cusp forms 190 164 26
Eisenstein series 107 56 51

Trace form

\( 164 q - 12 q^{2} - 18 q^{3} - 22 q^{4} - 15 q^{5} - 18 q^{6} - 23 q^{7} - 24 q^{8} - 18 q^{9} - 39 q^{10} - 21 q^{11} - 18 q^{12} - 29 q^{13} - 33 q^{14} - 18 q^{15} - 22 q^{16} - 27 q^{17} - 9 q^{18} - 23 q^{19}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
81.2.a \(\chi_{81}(1, \cdot)\) 81.2.a.a 2 1
81.2.c \(\chi_{81}(28, \cdot)\) 81.2.c.a 2 2
81.2.c.b 4
81.2.e \(\chi_{81}(10, \cdot)\) 81.2.e.a 12 6
81.2.g \(\chi_{81}(4, \cdot)\) 81.2.g.a 144 18

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(81))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(81)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 1}\)