Properties

Label 81.12.c.l.55.1
Level $81$
Weight $12$
Character 81.55
Analytic conductor $62.236$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,12,Mod(28,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.28"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,9,0,-8709] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.2357976253\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 7011 x^{10} - 35000 x^{9} + 17884836 x^{8} - 71329410 x^{7} + 20475172451 x^{6} + \cdots + 14\!\cdots\!75 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{21} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(0.500000 + 50.7537i\) of defining polynomial
Character \(\chi\) \(=\) 81.55
Dual form 81.12.c.l.28.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-43.2040 + 74.8315i) q^{2} +(-2709.16 - 4692.41i) q^{4} +(5654.31 + 9793.56i) q^{5} +(-3828.09 + 6630.45i) q^{7} +291223. q^{8} -977155. q^{10} +(72631.6 - 125802. i) q^{11} +(-1.08595e6 - 1.88092e6i) q^{13} +(-330778. - 572924. i) q^{14} +(-7.03363e6 + 1.21826e7i) q^{16} +1.52707e6 q^{17} +1.84377e7 q^{19} +(3.06369e7 - 5.30647e7i) q^{20} +(6.27595e6 + 1.08703e7i) q^{22} +(8.46452e6 + 1.46610e7i) q^{23} +(-3.95285e7 + 6.84653e7i) q^{25} +1.87670e8 q^{26} +4.14837e7 q^{28} +(-4.94752e7 + 8.56935e7i) q^{29} +(-4.55697e7 - 7.89290e7i) q^{31} +(-3.09549e8 - 5.36154e8i) q^{32} +(-6.59755e7 + 1.14273e8i) q^{34} -8.65810e7 q^{35} +3.51689e8 q^{37} +(-7.96582e8 + 1.37972e9i) q^{38} +(1.64667e9 + 2.85211e9i) q^{40} +(5.50954e8 + 9.54281e8i) q^{41} +(-2.21288e8 + 3.83281e8i) q^{43} -7.87084e8 q^{44} -1.46280e9 q^{46} +(-5.87011e8 + 1.01673e9i) q^{47} +(9.59355e8 + 1.66165e9i) q^{49} +(-3.41557e9 - 5.91595e9i) q^{50} +(-5.88404e9 + 1.01915e10i) q^{52} +2.40091e9 q^{53} +1.64273e9 q^{55} +(-1.11483e9 + 1.93094e9i) q^{56} +(-4.27505e9 - 7.40460e9i) q^{58} +(-7.40846e8 - 1.28318e9i) q^{59} +(2.25548e9 - 3.90660e9i) q^{61} +7.87516e9 q^{62} +2.46852e10 q^{64} +(1.22806e10 - 2.12706e10i) q^{65} +(6.64818e9 + 1.15150e10i) q^{67} +(-4.13708e9 - 7.16564e9i) q^{68} +(3.74064e9 - 6.47898e9i) q^{70} -1.89679e10 q^{71} +5.25732e9 q^{73} +(-1.51944e10 + 2.63174e10i) q^{74} +(-4.99508e10 - 8.65173e10i) q^{76} +(5.56081e8 + 9.63161e8i) q^{77} +(5.05595e9 - 8.75716e9i) q^{79} -1.59081e11 q^{80} -9.52136e10 q^{82} +(-1.72968e10 + 2.99589e10i) q^{83} +(8.63453e9 + 1.49554e10i) q^{85} +(-1.91210e10 - 3.31185e10i) q^{86} +(2.11520e10 - 3.66364e10i) q^{88} +2.76357e9 q^{89} +1.66285e10 q^{91} +(4.58635e10 - 7.94380e10i) q^{92} +(-5.07224e10 - 8.78537e10i) q^{94} +(1.04253e11 + 1.80571e11i) q^{95} +(-2.55150e10 + 4.41933e10i) q^{97} -1.65792e11 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 9 q^{2} - 8709 q^{4} + 10278 q^{5} - 22944 q^{7} + 197010 q^{8} - 465462 q^{10} + 668448 q^{11} - 1861770 q^{13} + 455508 q^{14} - 15304209 q^{16} + 24634260 q^{17} + 35867472 q^{19} + 83336409 q^{20}+ \cdots - 1101686223906 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −43.2040 + 74.8315i −0.954682 + 1.65356i −0.219587 + 0.975593i \(0.570471\pi\)
−0.735095 + 0.677964i \(0.762862\pi\)
\(3\) 0 0
\(4\) −2709.16 4692.41i −1.32283 2.29122i
\(5\) 5654.31 + 9793.56i 0.809180 + 1.40154i 0.913433 + 0.406989i \(0.133421\pi\)
−0.104253 + 0.994551i \(0.533245\pi\)
\(6\) 0 0
\(7\) −3828.09 + 6630.45i −0.0860881 + 0.149109i −0.905854 0.423589i \(-0.860770\pi\)
0.819766 + 0.572698i \(0.194103\pi\)
\(8\) 291223. 3.14218
\(9\) 0 0
\(10\) −977155. −3.09004
\(11\) 72631.6 125802.i 0.135977 0.235519i −0.789993 0.613116i \(-0.789916\pi\)
0.925970 + 0.377596i \(0.123249\pi\)
\(12\) 0 0
\(13\) −1.08595e6 1.88092e6i −0.811188 1.40502i −0.912033 0.410117i \(-0.865488\pi\)
0.100845 0.994902i \(-0.467846\pi\)
\(14\) −330778. 572924.i −0.164374 0.284703i
\(15\) 0 0
\(16\) −7.03363e6 + 1.21826e7i −1.67695 + 2.90456i
\(17\) 1.52707e6 0.260849 0.130425 0.991458i \(-0.458366\pi\)
0.130425 + 0.991458i \(0.458366\pi\)
\(18\) 0 0
\(19\) 1.84377e7 1.70829 0.854146 0.520034i \(-0.174081\pi\)
0.854146 + 0.520034i \(0.174081\pi\)
\(20\) 3.06369e7 5.30647e7i 2.14082 3.70801i
\(21\) 0 0
\(22\) 6.27595e6 + 1.08703e7i 0.259630 + 0.449692i
\(23\) 8.46452e6 + 1.46610e7i 0.274220 + 0.474963i 0.969938 0.243352i \(-0.0782470\pi\)
−0.695718 + 0.718315i \(0.744914\pi\)
\(24\) 0 0
\(25\) −3.95285e7 + 6.84653e7i −0.809543 + 1.40217i
\(26\) 1.87670e8 3.09771
\(27\) 0 0
\(28\) 4.14837e7 0.455521
\(29\) −4.94752e7 + 8.56935e7i −0.447918 + 0.775816i −0.998250 0.0591293i \(-0.981168\pi\)
0.550333 + 0.834946i \(0.314501\pi\)
\(30\) 0 0
\(31\) −4.55697e7 7.89290e7i −0.285882 0.495162i 0.686941 0.726713i \(-0.258953\pi\)
−0.972823 + 0.231551i \(0.925620\pi\)
\(32\) −3.09549e8 5.36154e8i −1.63081 2.82465i
\(33\) 0 0
\(34\) −6.59755e7 + 1.14273e8i −0.249028 + 0.431329i
\(35\) −8.65810e7 −0.278643
\(36\) 0 0
\(37\) 3.51689e8 0.833775 0.416888 0.908958i \(-0.363121\pi\)
0.416888 + 0.908958i \(0.363121\pi\)
\(38\) −7.96582e8 + 1.37972e9i −1.63087 + 2.82476i
\(39\) 0 0
\(40\) 1.64667e9 + 2.85211e9i 2.54259 + 4.40389i
\(41\) 5.50954e8 + 9.54281e8i 0.742684 + 1.28637i 0.951269 + 0.308363i \(0.0997810\pi\)
−0.208585 + 0.978004i \(0.566886\pi\)
\(42\) 0 0
\(43\) −2.21288e8 + 3.83281e8i −0.229552 + 0.397595i −0.957675 0.287851i \(-0.907059\pi\)
0.728124 + 0.685446i \(0.240393\pi\)
\(44\) −7.87084e8 −0.719501
\(45\) 0 0
\(46\) −1.46280e9 −1.04717
\(47\) −5.87011e8 + 1.01673e9i −0.373343 + 0.646649i −0.990077 0.140522i \(-0.955122\pi\)
0.616735 + 0.787171i \(0.288455\pi\)
\(48\) 0 0
\(49\) 9.59355e8 + 1.66165e9i 0.485178 + 0.840352i
\(50\) −3.41557e9 5.91595e9i −1.54571 2.67725i
\(51\) 0 0
\(52\) −5.88404e9 + 1.01915e10i −2.14614 + 3.71722i
\(53\) 2.40091e9 0.788603 0.394302 0.918981i \(-0.370986\pi\)
0.394302 + 0.918981i \(0.370986\pi\)
\(54\) 0 0
\(55\) 1.64273e9 0.440120
\(56\) −1.11483e9 + 1.93094e9i −0.270504 + 0.468527i
\(57\) 0 0
\(58\) −4.27505e9 7.40460e9i −0.855238 1.48132i
\(59\) −7.40846e8 1.28318e9i −0.134909 0.233670i 0.790654 0.612264i \(-0.209741\pi\)
−0.925563 + 0.378594i \(0.876408\pi\)
\(60\) 0 0
\(61\) 2.25548e9 3.90660e9i 0.341920 0.592223i −0.642869 0.765976i \(-0.722256\pi\)
0.984789 + 0.173753i \(0.0555894\pi\)
\(62\) 7.87516e9 1.09170
\(63\) 0 0
\(64\) 2.46852e10 2.87373
\(65\) 1.22806e10 2.12706e10i 1.31279 2.27383i
\(66\) 0 0
\(67\) 6.64818e9 + 1.15150e10i 0.601577 + 1.04196i 0.992582 + 0.121574i \(0.0387941\pi\)
−0.391005 + 0.920388i \(0.627873\pi\)
\(68\) −4.13708e9 7.16564e9i −0.345061 0.597662i
\(69\) 0 0
\(70\) 3.74064e9 6.47898e9i 0.266015 0.460752i
\(71\) −1.89679e10 −1.24767 −0.623833 0.781558i \(-0.714425\pi\)
−0.623833 + 0.781558i \(0.714425\pi\)
\(72\) 0 0
\(73\) 5.25732e9 0.296817 0.148408 0.988926i \(-0.452585\pi\)
0.148408 + 0.988926i \(0.452585\pi\)
\(74\) −1.51944e10 + 2.63174e10i −0.795990 + 1.37870i
\(75\) 0 0
\(76\) −4.99508e10 8.65173e10i −2.25979 3.91407i
\(77\) 5.56081e8 + 9.63161e8i 0.0234120 + 0.0405509i
\(78\) 0 0
\(79\) 5.05595e9 8.75716e9i 0.184865 0.320195i −0.758666 0.651479i \(-0.774149\pi\)
0.943531 + 0.331285i \(0.107482\pi\)
\(80\) −1.59081e11 −5.42781
\(81\) 0 0
\(82\) −9.52136e10 −2.83611
\(83\) −1.72968e10 + 2.99589e10i −0.481987 + 0.834826i −0.999786 0.0206764i \(-0.993418\pi\)
0.517799 + 0.855502i \(0.326751\pi\)
\(84\) 0 0
\(85\) 8.63453e9 + 1.49554e10i 0.211074 + 0.365591i
\(86\) −1.91210e10 3.31185e10i −0.438298 0.759154i
\(87\) 0 0
\(88\) 2.11520e10 3.66364e10i 0.427265 0.740044i
\(89\) 2.76357e9 0.0524596 0.0262298 0.999656i \(-0.491650\pi\)
0.0262298 + 0.999656i \(0.491650\pi\)
\(90\) 0 0
\(91\) 1.66285e10 0.279335
\(92\) 4.58635e10 7.94380e10i 0.725495 1.25659i
\(93\) 0 0
\(94\) −5.07224e10 8.78537e10i −0.712847 1.23469i
\(95\) 1.04253e11 + 1.80571e11i 1.38231 + 2.39424i
\(96\) 0 0
\(97\) −2.55150e10 + 4.41933e10i −0.301683 + 0.522531i −0.976517 0.215439i \(-0.930882\pi\)
0.674834 + 0.737969i \(0.264215\pi\)
\(98\) −1.65792e11 −1.85276
\(99\) 0 0
\(100\) 4.28357e11 4.28357
\(101\) 3.25776e10 5.64261e10i 0.308427 0.534211i −0.669592 0.742729i \(-0.733531\pi\)
0.978018 + 0.208519i \(0.0668642\pi\)
\(102\) 0 0
\(103\) −3.15541e10 5.46533e10i −0.268195 0.464528i 0.700201 0.713946i \(-0.253094\pi\)
−0.968396 + 0.249418i \(0.919761\pi\)
\(104\) −3.16254e11 5.47768e11i −2.54890 4.41482i
\(105\) 0 0
\(106\) −1.03729e11 + 1.79664e11i −0.752865 + 1.30400i
\(107\) 1.48137e11 1.02106 0.510531 0.859859i \(-0.329449\pi\)
0.510531 + 0.859859i \(0.329449\pi\)
\(108\) 0 0
\(109\) −1.46800e11 −0.913860 −0.456930 0.889503i \(-0.651051\pi\)
−0.456930 + 0.889503i \(0.651051\pi\)
\(110\) −7.09724e10 + 1.22928e11i −0.420174 + 0.727763i
\(111\) 0 0
\(112\) −5.38508e10 9.32722e10i −0.288731 0.500096i
\(113\) −9.24963e10 1.60208e11i −0.472273 0.818000i 0.527224 0.849726i \(-0.323233\pi\)
−0.999497 + 0.0317262i \(0.989900\pi\)
\(114\) 0 0
\(115\) −9.57221e10 + 1.65796e11i −0.443786 + 0.768661i
\(116\) 5.36145e11 2.37008
\(117\) 0 0
\(118\) 1.28030e11 0.515182
\(119\) −5.84576e9 + 1.01252e10i −0.0224560 + 0.0388950i
\(120\) 0 0
\(121\) 1.32105e11 + 2.28813e11i 0.463020 + 0.801975i
\(122\) 1.94891e11 + 3.37562e11i 0.652850 + 1.13077i
\(123\) 0 0
\(124\) −2.46912e11 + 4.27663e11i −0.756349 + 1.31003i
\(125\) −3.41847e11 −1.00190
\(126\) 0 0
\(127\) −4.84205e11 −1.30049 −0.650247 0.759723i \(-0.725335\pi\)
−0.650247 + 0.759723i \(0.725335\pi\)
\(128\) −4.32541e11 + 7.49184e11i −1.11269 + 1.92723i
\(129\) 0 0
\(130\) 1.06114e12 + 1.83795e12i 2.50660 + 4.34156i
\(131\) −1.22114e11 2.11507e11i −0.276549 0.478997i 0.693976 0.719999i \(-0.255858\pi\)
−0.970525 + 0.241001i \(0.922524\pi\)
\(132\) 0 0
\(133\) −7.05812e10 + 1.22250e11i −0.147064 + 0.254722i
\(134\) −1.14891e12 −2.29726
\(135\) 0 0
\(136\) 4.44718e11 0.819636
\(137\) 7.83077e10 1.35633e11i 0.138625 0.240105i −0.788351 0.615225i \(-0.789065\pi\)
0.926976 + 0.375120i \(0.122398\pi\)
\(138\) 0 0
\(139\) −3.41479e11 5.91458e11i −0.558190 0.966813i −0.997648 0.0685500i \(-0.978163\pi\)
0.439458 0.898263i \(-0.355171\pi\)
\(140\) 2.34562e11 + 4.06273e11i 0.368599 + 0.638431i
\(141\) 0 0
\(142\) 8.19488e11 1.41939e12i 1.19112 2.06309i
\(143\) −3.15498e11 −0.441212
\(144\) 0 0
\(145\) −1.11899e12 −1.44978
\(146\) −2.27137e11 + 3.93413e11i −0.283366 + 0.490804i
\(147\) 0 0
\(148\) −9.52783e11 1.65027e12i −1.10295 1.91036i
\(149\) 1.60013e11 + 2.77151e11i 0.178497 + 0.309166i 0.941366 0.337387i \(-0.109543\pi\)
−0.762869 + 0.646553i \(0.776210\pi\)
\(150\) 0 0
\(151\) −8.52081e11 + 1.47585e12i −0.883299 + 1.52992i −0.0356477 + 0.999364i \(0.511349\pi\)
−0.847651 + 0.530554i \(0.821984\pi\)
\(152\) 5.36949e12 5.36776
\(153\) 0 0
\(154\) −9.60997e10 −0.0894042
\(155\) 5.15331e11 8.92579e11i 0.462660 0.801350i
\(156\) 0 0
\(157\) 1.83944e11 + 3.18601e11i 0.153900 + 0.266562i 0.932658 0.360762i \(-0.117483\pi\)
−0.778758 + 0.627324i \(0.784150\pi\)
\(158\) 4.36874e11 + 7.56688e11i 0.352974 + 0.611368i
\(159\) 0 0
\(160\) 3.50057e12 6.06316e12i 2.63924 4.57130i
\(161\) −1.29612e11 −0.0944283
\(162\) 0 0
\(163\) −4.79589e11 −0.326466 −0.163233 0.986588i \(-0.552192\pi\)
−0.163233 + 0.986588i \(0.552192\pi\)
\(164\) 2.98525e12 5.17061e12i 1.96490 3.40330i
\(165\) 0 0
\(166\) −1.49458e12 2.58868e12i −0.920288 1.59399i
\(167\) 1.41658e12 + 2.45359e12i 0.843920 + 1.46171i 0.886556 + 0.462621i \(0.153091\pi\)
−0.0426362 + 0.999091i \(0.513576\pi\)
\(168\) 0 0
\(169\) −1.46250e12 + 2.53312e12i −0.816053 + 1.41345i
\(170\) −1.49218e12 −0.806034
\(171\) 0 0
\(172\) 2.39802e12 1.21464
\(173\) −3.13677e11 + 5.43305e11i −0.153897 + 0.266557i −0.932657 0.360765i \(-0.882516\pi\)
0.778760 + 0.627322i \(0.215849\pi\)
\(174\) 0 0
\(175\) −3.02637e11 5.24183e11i −0.139384 0.241420i
\(176\) 1.02173e12 + 1.76968e12i 0.456053 + 0.789907i
\(177\) 0 0
\(178\) −1.19397e11 + 2.06802e11i −0.0500822 + 0.0867449i
\(179\) −3.65808e12 −1.48786 −0.743929 0.668258i \(-0.767040\pi\)
−0.743929 + 0.668258i \(0.767040\pi\)
\(180\) 0 0
\(181\) 1.44728e12 0.553760 0.276880 0.960905i \(-0.410700\pi\)
0.276880 + 0.960905i \(0.410700\pi\)
\(182\) −7.18416e11 + 1.24433e12i −0.266676 + 0.461896i
\(183\) 0 0
\(184\) 2.46506e12 + 4.26962e12i 0.861649 + 1.49242i
\(185\) 1.98856e12 + 3.44429e12i 0.674674 + 1.16857i
\(186\) 0 0
\(187\) 1.10914e11 1.92108e11i 0.0354696 0.0614351i
\(188\) 6.36123e12 1.97548
\(189\) 0 0
\(190\) −1.80165e13 −5.27868
\(191\) 1.18911e12 2.05960e12i 0.338484 0.586272i −0.645664 0.763622i \(-0.723419\pi\)
0.984148 + 0.177350i \(0.0567525\pi\)
\(192\) 0 0
\(193\) 5.30499e11 + 9.18851e11i 0.142600 + 0.246990i 0.928475 0.371395i \(-0.121120\pi\)
−0.785875 + 0.618385i \(0.787787\pi\)
\(194\) −2.20470e12 3.81865e12i −0.576023 0.997701i
\(195\) 0 0
\(196\) 5.19810e12 9.00337e12i 1.28362 2.22329i
\(197\) −3.65734e12 −0.878215 −0.439108 0.898434i \(-0.644705\pi\)
−0.439108 + 0.898434i \(0.644705\pi\)
\(198\) 0 0
\(199\) −4.39205e12 −0.997643 −0.498822 0.866705i \(-0.666234\pi\)
−0.498822 + 0.866705i \(0.666234\pi\)
\(200\) −1.15116e13 + 1.99387e13i −2.54373 + 4.40587i
\(201\) 0 0
\(202\) 2.81497e12 + 4.87566e12i 0.588899 + 1.02000i
\(203\) −3.78791e11 6.56085e11i −0.0771208 0.133577i
\(204\) 0 0
\(205\) −6.23054e12 + 1.07916e13i −1.20193 + 2.08180i
\(206\) 5.45305e12 1.02416
\(207\) 0 0
\(208\) 3.05527e13 5.44128
\(209\) 1.33916e12 2.31949e12i 0.232289 0.402336i
\(210\) 0 0
\(211\) 4.70703e12 + 8.15282e12i 0.774807 + 1.34200i 0.934903 + 0.354904i \(0.115486\pi\)
−0.160096 + 0.987101i \(0.551180\pi\)
\(212\) −6.50446e12 1.12661e13i −1.04319 1.80686i
\(213\) 0 0
\(214\) −6.40010e12 + 1.10853e13i −0.974790 + 1.68839i
\(215\) −5.00492e12 −0.742994
\(216\) 0 0
\(217\) 6.97780e11 0.0984442
\(218\) 6.34233e12 1.09852e13i 0.872445 1.51112i
\(219\) 0 0
\(220\) −4.45042e12 7.70836e12i −0.582206 1.00841i
\(221\) −1.65832e12 2.87230e12i −0.211598 0.366498i
\(222\) 0 0
\(223\) 4.35537e12 7.54372e12i 0.528869 0.916028i −0.470564 0.882366i \(-0.655950\pi\)
0.999433 0.0336621i \(-0.0107170\pi\)
\(224\) 4.73992e12 0.561574
\(225\) 0 0
\(226\) 1.59848e13 1.80348
\(227\) 6.30681e12 1.09237e13i 0.694493 1.20290i −0.275859 0.961198i \(-0.588962\pi\)
0.970351 0.241699i \(-0.0777045\pi\)
\(228\) 0 0
\(229\) 1.52094e12 + 2.63435e12i 0.159594 + 0.276426i 0.934723 0.355378i \(-0.115648\pi\)
−0.775128 + 0.631804i \(0.782315\pi\)
\(230\) −8.27115e12 1.43260e13i −0.847350 1.46765i
\(231\) 0 0
\(232\) −1.44083e13 + 2.49559e13i −1.40744 + 2.43775i
\(233\) 1.51645e13 1.44667 0.723336 0.690496i \(-0.242608\pi\)
0.723336 + 0.690496i \(0.242608\pi\)
\(234\) 0 0
\(235\) −1.32766e13 −1.20841
\(236\) −4.01415e12 + 6.95271e12i −0.356925 + 0.618213i
\(237\) 0 0
\(238\) −5.05120e11 8.74894e11i −0.0428767 0.0742647i
\(239\) 1.15463e13 + 1.99987e13i 0.957751 + 1.65887i 0.727943 + 0.685638i \(0.240477\pi\)
0.229809 + 0.973236i \(0.426190\pi\)
\(240\) 0 0
\(241\) −7.99086e12 + 1.38406e13i −0.633140 + 1.09663i 0.353766 + 0.935334i \(0.384901\pi\)
−0.986906 + 0.161297i \(0.948432\pi\)
\(242\) −2.28299e13 −1.76815
\(243\) 0 0
\(244\) −2.44419e13 −1.80921
\(245\) −1.08490e13 + 1.87910e13i −0.785192 + 1.35999i
\(246\) 0 0
\(247\) −2.00224e13 3.46799e13i −1.38575 2.40018i
\(248\) −1.32709e13 2.29860e13i −0.898292 1.55589i
\(249\) 0 0
\(250\) 1.47691e13 2.55809e13i 0.956499 1.65671i
\(251\) 5.48461e12 0.347488 0.173744 0.984791i \(-0.444413\pi\)
0.173744 + 0.984791i \(0.444413\pi\)
\(252\) 0 0
\(253\) 2.45917e12 0.149151
\(254\) 2.09196e13 3.62337e13i 1.24156 2.15044i
\(255\) 0 0
\(256\) −1.20974e13 2.09533e13i −0.687657 1.19106i
\(257\) 7.81957e12 + 1.35439e13i 0.435061 + 0.753548i 0.997301 0.0734263i \(-0.0233934\pi\)
−0.562239 + 0.826975i \(0.690060\pi\)
\(258\) 0 0
\(259\) −1.34630e12 + 2.33186e12i −0.0717782 + 0.124323i
\(260\) −1.33081e14 −6.94644
\(261\) 0 0
\(262\) 2.11032e13 1.05607
\(263\) −1.37196e13 + 2.37630e13i −0.672332 + 1.16451i 0.304909 + 0.952382i \(0.401374\pi\)
−0.977241 + 0.212132i \(0.931959\pi\)
\(264\) 0 0
\(265\) 1.35755e13 + 2.35135e13i 0.638122 + 1.10526i
\(266\) −6.09878e12 1.05634e13i −0.280798 0.486356i
\(267\) 0 0
\(268\) 3.60220e13 6.23920e13i 1.59157 2.75669i
\(269\) 4.06420e12 0.175929 0.0879646 0.996124i \(-0.471964\pi\)
0.0879646 + 0.996124i \(0.471964\pi\)
\(270\) 0 0
\(271\) 3.34423e13 1.38984 0.694921 0.719086i \(-0.255439\pi\)
0.694921 + 0.719086i \(0.255439\pi\)
\(272\) −1.07408e13 + 1.86037e13i −0.437431 + 0.757652i
\(273\) 0 0
\(274\) 6.76641e12 + 1.17198e13i 0.264685 + 0.458449i
\(275\) 5.74204e12 + 9.94550e12i 0.220159 + 0.381326i
\(276\) 0 0
\(277\) 4.32364e12 7.48877e12i 0.159298 0.275913i −0.775318 0.631572i \(-0.782410\pi\)
0.934616 + 0.355659i \(0.115744\pi\)
\(278\) 5.90129e13 2.13157
\(279\) 0 0
\(280\) −2.52144e13 −0.875546
\(281\) −1.83130e13 + 3.17190e13i −0.623555 + 1.08003i 0.365264 + 0.930904i \(0.380979\pi\)
−0.988818 + 0.149124i \(0.952355\pi\)
\(282\) 0 0
\(283\) −2.95929e13 5.12565e13i −0.969087 1.67851i −0.698209 0.715894i \(-0.746019\pi\)
−0.270878 0.962614i \(-0.587314\pi\)
\(284\) 5.13871e13 + 8.90051e13i 1.65045 + 2.85867i
\(285\) 0 0
\(286\) 1.36307e13 2.36091e13i 0.421218 0.729570i
\(287\) −8.43642e12 −0.255745
\(288\) 0 0
\(289\) −3.19400e13 −0.931958
\(290\) 4.83449e13 8.37358e13i 1.38408 2.39730i
\(291\) 0 0
\(292\) −1.42429e13 2.46695e13i −0.392640 0.680072i
\(293\) −3.47577e13 6.02021e13i −0.940327 1.62869i −0.764847 0.644211i \(-0.777186\pi\)
−0.175480 0.984483i \(-0.556148\pi\)
\(294\) 0 0
\(295\) 8.37795e12 1.45110e13i 0.218332 0.378161i
\(296\) 1.02420e14 2.61987
\(297\) 0 0
\(298\) −2.76528e13 −0.681631
\(299\) 1.83841e13 3.18422e13i 0.444888 0.770569i
\(300\) 0 0
\(301\) −1.69422e12 2.93447e12i −0.0395234 0.0684565i
\(302\) −7.36265e13 1.27525e14i −1.68654 2.92117i
\(303\) 0 0
\(304\) −1.29684e14 + 2.24619e14i −2.86472 + 4.96183i
\(305\) 5.10127e13 1.10670
\(306\) 0 0
\(307\) 6.45270e13 1.35046 0.675228 0.737609i \(-0.264045\pi\)
0.675228 + 0.737609i \(0.264045\pi\)
\(308\) 3.01303e12 5.21873e12i 0.0619405 0.107284i
\(309\) 0 0
\(310\) 4.45286e13 + 7.71259e13i 0.883385 + 1.53007i
\(311\) 1.58404e13 + 2.74363e13i 0.308733 + 0.534741i 0.978085 0.208204i \(-0.0667618\pi\)
−0.669353 + 0.742945i \(0.733428\pi\)
\(312\) 0 0
\(313\) 1.48249e13 2.56774e13i 0.278931 0.483123i −0.692188 0.721717i \(-0.743353\pi\)
0.971119 + 0.238594i \(0.0766866\pi\)
\(314\) −3.17885e13 −0.587702
\(315\) 0 0
\(316\) −5.47896e13 −0.978181
\(317\) −1.35650e13 + 2.34952e13i −0.238009 + 0.412243i −0.960143 0.279510i \(-0.909828\pi\)
0.722134 + 0.691753i \(0.243161\pi\)
\(318\) 0 0
\(319\) 7.18692e12 + 1.24481e13i 0.121813 + 0.210987i
\(320\) 1.39578e14 + 2.41756e14i 2.32536 + 4.02765i
\(321\) 0 0
\(322\) 5.59975e12 9.69904e12i 0.0901490 0.156143i
\(323\) 2.81557e13 0.445607
\(324\) 0 0
\(325\) 1.71704e14 2.62677
\(326\) 2.07202e13 3.58884e13i 0.311671 0.539830i
\(327\) 0 0
\(328\) 1.60451e14 + 2.77909e14i 2.33365 + 4.04200i
\(329\) −4.49426e12 7.78429e12i −0.0642808 0.111338i
\(330\) 0 0
\(331\) 4.87551e13 8.44463e13i 0.674475 1.16823i −0.302146 0.953262i \(-0.597703\pi\)
0.976622 0.214964i \(-0.0689635\pi\)
\(332\) 1.87439e14 2.55035
\(333\) 0 0
\(334\) −2.44808e14 −3.22270
\(335\) −7.51818e13 + 1.30219e14i −0.973568 + 1.68627i
\(336\) 0 0
\(337\) 5.35413e13 + 9.27362e13i 0.671003 + 1.16221i 0.977620 + 0.210378i \(0.0674694\pi\)
−0.306618 + 0.951833i \(0.599197\pi\)
\(338\) −1.26371e14 2.18882e14i −1.55814 2.69878i
\(339\) 0 0
\(340\) 4.67847e13 8.10335e13i 0.558432 0.967232i
\(341\) −1.32392e13 −0.155494
\(342\) 0 0
\(343\) −2.98288e13 −0.339248
\(344\) −6.44441e13 + 1.11620e14i −0.721293 + 1.24932i
\(345\) 0 0
\(346\) −2.71042e13 4.69458e13i −0.293845 0.508954i
\(347\) 7.26926e13 + 1.25907e14i 0.775671 + 1.34350i 0.934416 + 0.356183i \(0.115922\pi\)
−0.158745 + 0.987320i \(0.550745\pi\)
\(348\) 0 0
\(349\) −7.40820e13 + 1.28314e14i −0.765901 + 1.32658i 0.173867 + 0.984769i \(0.444374\pi\)
−0.939769 + 0.341811i \(0.888960\pi\)
\(350\) 5.23005e13 0.532270
\(351\) 0 0
\(352\) −8.99321e13 −0.887013
\(353\) −4.11259e13 + 7.12321e13i −0.399350 + 0.691695i −0.993646 0.112552i \(-0.964098\pi\)
0.594295 + 0.804247i \(0.297431\pi\)
\(354\) 0 0
\(355\) −1.07250e14 1.85763e14i −1.00959 1.74865i
\(356\) −7.48696e12 1.29678e13i −0.0693953 0.120196i
\(357\) 0 0
\(358\) 1.58044e14 2.73740e14i 1.42043 2.46026i
\(359\) −1.09985e14 −0.973454 −0.486727 0.873554i \(-0.661809\pi\)
−0.486727 + 0.873554i \(0.661809\pi\)
\(360\) 0 0
\(361\) 2.23459e14 1.91826
\(362\) −6.25284e13 + 1.08302e14i −0.528664 + 0.915674i
\(363\) 0 0
\(364\) −4.50493e13 7.80277e13i −0.369514 0.640016i
\(365\) 2.97265e13 + 5.14879e13i 0.240178 + 0.416001i
\(366\) 0 0
\(367\) 6.35463e13 1.10065e14i 0.498227 0.862954i −0.501771 0.865001i \(-0.667318\pi\)
0.999998 + 0.00204615i \(0.000651310\pi\)
\(368\) −2.38145e14 −1.83941
\(369\) 0 0
\(370\) −3.43655e14 −2.57640
\(371\) −9.19091e12 + 1.59191e13i −0.0678894 + 0.117588i
\(372\) 0 0
\(373\) −6.89595e13 1.19441e14i −0.494533 0.856557i 0.505447 0.862858i \(-0.331328\pi\)
−0.999980 + 0.00630102i \(0.997994\pi\)
\(374\) 9.58381e12 + 1.65997e13i 0.0677243 + 0.117302i
\(375\) 0 0
\(376\) −1.70951e14 + 2.96096e14i −1.17311 + 2.03189i
\(377\) 2.14910e14 1.45338
\(378\) 0 0
\(379\) 2.38517e14 1.56676 0.783382 0.621540i \(-0.213493\pi\)
0.783382 + 0.621540i \(0.213493\pi\)
\(380\) 5.64875e14 9.78392e14i 3.65715 6.33436i
\(381\) 0 0
\(382\) 1.02748e14 + 1.77966e14i 0.646289 + 1.11941i
\(383\) −3.39198e13 5.87509e13i −0.210310 0.364268i 0.741501 0.670951i \(-0.234114\pi\)
−0.951812 + 0.306683i \(0.900781\pi\)
\(384\) 0 0
\(385\) −6.28852e12 + 1.08920e13i −0.0378891 + 0.0656258i
\(386\) −9.16786e13 −0.544550
\(387\) 0 0
\(388\) 2.76498e14 1.59631
\(389\) −8.36223e13 + 1.44838e14i −0.475992 + 0.824442i −0.999622 0.0275039i \(-0.991244\pi\)
0.523630 + 0.851946i \(0.324577\pi\)
\(390\) 0 0
\(391\) 1.29259e13 + 2.23883e13i 0.0715301 + 0.123894i
\(392\) 2.79386e14 + 4.83911e14i 1.52452 + 2.64054i
\(393\) 0 0
\(394\) 1.58012e14 2.73684e14i 0.838416 1.45218i
\(395\) 1.14352e14 0.598354
\(396\) 0 0
\(397\) −1.32401e14 −0.673817 −0.336909 0.941537i \(-0.609381\pi\)
−0.336909 + 0.941537i \(0.609381\pi\)
\(398\) 1.89754e14 3.28663e14i 0.952432 1.64966i
\(399\) 0 0
\(400\) −5.56057e14 9.63119e14i −2.71512 4.70273i
\(401\) 1.46827e14 + 2.54312e14i 0.707151 + 1.22482i 0.965910 + 0.258880i \(0.0833534\pi\)
−0.258758 + 0.965942i \(0.583313\pi\)
\(402\) 0 0
\(403\) −9.89729e13 + 1.71426e14i −0.463808 + 0.803339i
\(404\) −3.53033e14 −1.63199
\(405\) 0 0
\(406\) 6.54611e13 0.294503
\(407\) 2.55437e13 4.42431e13i 0.113374 0.196370i
\(408\) 0 0
\(409\) −4.80699e13 8.32594e13i −0.207680 0.359712i 0.743303 0.668955i \(-0.233258\pi\)
−0.950983 + 0.309242i \(0.899925\pi\)
\(410\) −5.38368e14 9.32480e14i −2.29492 3.97492i
\(411\) 0 0
\(412\) −1.70970e14 + 2.96130e14i −0.709556 + 1.22899i
\(413\) 1.13441e13 0.0464563
\(414\) 0 0
\(415\) −3.91205e14 −1.56006
\(416\) −6.72309e14 + 1.16447e15i −2.64579 + 4.58264i
\(417\) 0 0
\(418\) 1.15714e14 + 2.00423e14i 0.443524 + 0.768205i
\(419\) −9.45188e13 1.63711e14i −0.357554 0.619301i 0.629998 0.776597i \(-0.283056\pi\)
−0.987552 + 0.157296i \(0.949722\pi\)
\(420\) 0 0
\(421\) 5.16879e13 8.95261e13i 0.190475 0.329912i −0.754933 0.655802i \(-0.772331\pi\)
0.945408 + 0.325890i \(0.105664\pi\)
\(422\) −8.13449e14 −2.95878
\(423\) 0 0
\(424\) 6.99201e14 2.47793
\(425\) −6.03627e13 + 1.04551e14i −0.211169 + 0.365755i
\(426\) 0 0
\(427\) 1.72684e13 + 2.99097e13i 0.0588705 + 0.101967i
\(428\) −4.01327e14 6.95119e14i −1.35070 2.33948i
\(429\) 0 0
\(430\) 2.16232e14 3.74525e14i 0.709323 1.22858i
\(431\) −2.42262e13 −0.0784620 −0.0392310 0.999230i \(-0.512491\pi\)
−0.0392310 + 0.999230i \(0.512491\pi\)
\(432\) 0 0
\(433\) −4.82141e14 −1.52227 −0.761133 0.648596i \(-0.775356\pi\)
−0.761133 + 0.648596i \(0.775356\pi\)
\(434\) −3.01469e13 + 5.22159e13i −0.0939828 + 0.162783i
\(435\) 0 0
\(436\) 3.97705e14 + 6.88845e14i 1.20889 + 2.09385i
\(437\) 1.56066e14 + 2.70315e14i 0.468448 + 0.811375i
\(438\) 0 0
\(439\) −2.62298e13 + 4.54314e13i −0.0767786 + 0.132984i −0.901858 0.432032i \(-0.857797\pi\)
0.825080 + 0.565016i \(0.191130\pi\)
\(440\) 4.78401e14 1.38294
\(441\) 0 0
\(442\) 2.86584e14 0.808035
\(443\) 8.34812e13 1.44594e14i 0.232471 0.402651i −0.726064 0.687627i \(-0.758652\pi\)
0.958535 + 0.284976i \(0.0919857\pi\)
\(444\) 0 0
\(445\) 1.56261e13 + 2.70651e13i 0.0424492 + 0.0735242i
\(446\) 3.76338e14 + 6.51837e14i 1.00980 + 1.74903i
\(447\) 0 0
\(448\) −9.44971e13 + 1.63674e14i −0.247394 + 0.428499i
\(449\) −2.18915e14 −0.566136 −0.283068 0.959100i \(-0.591352\pi\)
−0.283068 + 0.959100i \(0.591352\pi\)
\(450\) 0 0
\(451\) 1.60067e14 0.403953
\(452\) −5.01175e14 + 8.68061e14i −1.24948 + 2.16416i
\(453\) 0 0
\(454\) 5.44959e14 + 9.43896e14i 1.32604 + 2.29677i
\(455\) 9.40227e13 + 1.62852e14i 0.226032 + 0.391499i
\(456\) 0 0
\(457\) −1.80862e14 + 3.13263e14i −0.424433 + 0.735139i −0.996367 0.0851601i \(-0.972860\pi\)
0.571934 + 0.820299i \(0.306193\pi\)
\(458\) −2.62843e14 −0.609448
\(459\) 0 0
\(460\) 1.03731e15 2.34822
\(461\) 3.84198e13 6.65450e13i 0.0859408 0.148854i −0.819851 0.572577i \(-0.805944\pi\)
0.905792 + 0.423723i \(0.139277\pi\)
\(462\) 0 0
\(463\) 1.91306e14 + 3.31352e14i 0.417863 + 0.723760i 0.995724 0.0923750i \(-0.0294459\pi\)
−0.577861 + 0.816135i \(0.696113\pi\)
\(464\) −6.95980e14 1.20547e15i −1.50227 2.60201i
\(465\) 0 0
\(466\) −6.55166e14 + 1.13478e15i −1.38111 + 2.39216i
\(467\) 3.74303e14 0.779795 0.389898 0.920858i \(-0.372510\pi\)
0.389898 + 0.920858i \(0.372510\pi\)
\(468\) 0 0
\(469\) −1.01799e14 −0.207155
\(470\) 5.73600e14 9.93505e14i 1.15364 1.99817i
\(471\) 0 0
\(472\) −2.15751e14 3.73693e14i −0.423909 0.734232i
\(473\) 3.21450e13 + 5.56767e13i 0.0624276 + 0.108128i
\(474\) 0 0
\(475\) −7.28814e14 + 1.26234e15i −1.38294 + 2.39532i
\(476\) 6.33486e13 0.118822
\(477\) 0 0
\(478\) −1.99538e15 −3.65739
\(479\) −2.56237e14 + 4.43815e14i −0.464297 + 0.804186i −0.999170 0.0407465i \(-0.987026\pi\)
0.534872 + 0.844933i \(0.320360\pi\)
\(480\) 0 0
\(481\) −3.81917e14 6.61499e14i −0.676349 1.17147i
\(482\) −6.90474e14 1.19594e15i −1.20889 2.09387i
\(483\) 0 0
\(484\) 7.15789e14 1.23978e15i 1.22500 2.12176i
\(485\) −5.77080e14 −0.976464
\(486\) 0 0
\(487\) 9.34798e13 0.154635 0.0773176 0.997007i \(-0.475364\pi\)
0.0773176 + 0.997007i \(0.475364\pi\)
\(488\) 6.56848e14 1.13769e15i 1.07437 1.86087i
\(489\) 0 0
\(490\) −9.37438e14 1.62369e15i −1.49922 2.59672i
\(491\) 4.76100e14 + 8.24630e14i 0.752922 + 1.30410i 0.946401 + 0.322995i \(0.104690\pi\)
−0.193478 + 0.981105i \(0.561977\pi\)
\(492\) 0 0
\(493\) −7.55520e13 + 1.30860e14i −0.116839 + 0.202371i
\(494\) 3.46019e15 5.29179
\(495\) 0 0
\(496\) 1.28208e15 1.91764
\(497\) 7.26109e13 1.25766e14i 0.107409 0.186038i
\(498\) 0 0
\(499\) −2.24475e13 3.88802e13i −0.0324799 0.0562569i 0.849329 0.527865i \(-0.177007\pi\)
−0.881808 + 0.471608i \(0.843674\pi\)
\(500\) 9.26119e14 + 1.60408e15i 1.32535 + 2.29558i
\(501\) 0 0
\(502\) −2.36957e14 + 4.10421e14i −0.331741 + 0.574592i
\(503\) −2.98702e14 −0.413632 −0.206816 0.978380i \(-0.566310\pi\)
−0.206816 + 0.978380i \(0.566310\pi\)
\(504\) 0 0
\(505\) 7.36817e14 0.998291
\(506\) −1.06246e14 + 1.84023e14i −0.142391 + 0.246629i
\(507\) 0 0
\(508\) 1.31179e15 + 2.27209e15i 1.72034 + 2.97971i
\(509\) 4.13266e14 + 7.15798e14i 0.536144 + 0.928629i 0.999107 + 0.0422516i \(0.0134531\pi\)
−0.462963 + 0.886378i \(0.653214\pi\)
\(510\) 0 0
\(511\) −2.01255e13 + 3.48584e13i −0.0255524 + 0.0442581i
\(512\) 3.18932e14 0.400603
\(513\) 0 0
\(514\) −1.35134e15 −1.66138
\(515\) 3.56834e14 6.18054e14i 0.434036 0.751773i
\(516\) 0 0
\(517\) 8.52711e13 + 1.47694e14i 0.101532 + 0.175859i
\(518\) −1.16331e14 2.01491e14i −0.137051 0.237379i
\(519\) 0 0
\(520\) 3.57640e15 6.19451e15i 4.12503 7.14477i
\(521\) −1.51372e15 −1.72757 −0.863787 0.503857i \(-0.831914\pi\)
−0.863787 + 0.503857i \(0.831914\pi\)
\(522\) 0 0
\(523\) −5.57360e14 −0.622840 −0.311420 0.950272i \(-0.600805\pi\)
−0.311420 + 0.950272i \(0.600805\pi\)
\(524\) −6.61653e14 + 1.14602e15i −0.731658 + 1.26727i
\(525\) 0 0
\(526\) −1.18548e15 2.05331e15i −1.28373 2.22348i
\(527\) −6.95881e13 1.20530e14i −0.0745721 0.129163i
\(528\) 0 0
\(529\) 3.33109e14 5.76961e14i 0.349607 0.605537i
\(530\) −2.34606e15 −2.43681
\(531\) 0 0
\(532\) 7.64865e14 0.778163
\(533\) 1.19662e15 2.07260e15i 1.20491 2.08697i
\(534\) 0 0
\(535\) 8.37613e14 + 1.45079e15i 0.826223 + 1.43106i
\(536\) 1.93610e15 + 3.35343e15i 1.89026 + 3.27403i
\(537\) 0 0
\(538\) −1.75590e14 + 3.04130e14i −0.167956 + 0.290909i
\(539\) 2.78718e14 0.263892
\(540\) 0 0
\(541\) −1.91740e15 −1.77880 −0.889399 0.457131i \(-0.848877\pi\)
−0.889399 + 0.457131i \(0.848877\pi\)
\(542\) −1.44484e15 + 2.50254e15i −1.32686 + 2.29818i
\(543\) 0 0
\(544\) −4.72702e14 8.18744e14i −0.425396 0.736808i
\(545\) −8.30052e14 1.43769e15i −0.739477 1.28081i
\(546\) 0 0
\(547\) −4.86823e14 + 8.43203e14i −0.425051 + 0.736210i −0.996425 0.0844798i \(-0.973077\pi\)
0.571374 + 0.820690i \(0.306410\pi\)
\(548\) −8.48594e14 −0.733512
\(549\) 0 0
\(550\) −9.92315e14 −0.840726
\(551\) −9.12208e14 + 1.57999e15i −0.765174 + 1.32532i
\(552\) 0 0
\(553\) 3.87093e13 + 6.70464e13i 0.0318293 + 0.0551299i
\(554\) 3.73597e14 + 6.47089e14i 0.304158 + 0.526818i
\(555\) 0 0
\(556\) −1.85024e15 + 3.20472e15i −1.47679 + 2.55787i
\(557\) 7.26474e14 0.574139 0.287069 0.957910i \(-0.407319\pi\)
0.287069 + 0.957910i \(0.407319\pi\)
\(558\) 0 0
\(559\) 9.61230e14 0.744839
\(560\) 6.08978e14 1.05478e15i 0.467270 0.809335i
\(561\) 0 0
\(562\) −1.58239e15 2.74078e15i −1.19059 2.06217i
\(563\) −6.50146e14 1.12609e15i −0.484412 0.839026i 0.515428 0.856933i \(-0.327633\pi\)
−0.999840 + 0.0179073i \(0.994300\pi\)
\(564\) 0 0
\(565\) 1.04601e15 1.81174e15i 0.764307 1.32382i
\(566\) 5.11413e15 3.70068
\(567\) 0 0
\(568\) −5.52389e15 −3.92039
\(569\) 8.03645e14 1.39195e15i 0.564868 0.978379i −0.432194 0.901780i \(-0.642261\pi\)
0.997062 0.0765989i \(-0.0244061\pi\)
\(570\) 0 0
\(571\) 5.18353e14 + 8.97813e14i 0.357377 + 0.618995i 0.987522 0.157482i \(-0.0503378\pi\)
−0.630145 + 0.776478i \(0.717004\pi\)
\(572\) 8.54735e14 + 1.48044e15i 0.583651 + 1.01091i
\(573\) 0 0
\(574\) 3.64487e14 6.31309e14i 0.244155 0.422889i
\(575\) −1.33836e15 −0.887972
\(576\) 0 0
\(577\) 4.84499e13 0.0315374 0.0157687 0.999876i \(-0.494980\pi\)
0.0157687 + 0.999876i \(0.494980\pi\)
\(578\) 1.37993e15 2.39011e15i 0.889723 1.54105i
\(579\) 0 0
\(580\) 3.03153e15 + 5.25077e15i 1.91782 + 3.32177i
\(581\) −1.32427e14 2.29371e14i −0.0829867 0.143737i
\(582\) 0 0
\(583\) 1.74382e14 3.02039e14i 0.107232 0.185731i
\(584\) 1.53105e15 0.932652
\(585\) 0 0
\(586\) 6.00668e15 3.59085
\(587\) 3.66564e14 6.34908e14i 0.217090 0.376012i −0.736827 0.676082i \(-0.763677\pi\)
0.953917 + 0.300070i \(0.0970100\pi\)
\(588\) 0 0
\(589\) −8.40200e14 1.45527e15i −0.488370 0.845881i
\(590\) 7.23921e14 + 1.25387e15i 0.416874 + 0.722048i
\(591\) 0 0
\(592\) −2.47365e15 + 4.28448e15i −1.39820 + 2.42175i
\(593\) 3.92847e14 0.220000 0.110000 0.993932i \(-0.464915\pi\)
0.110000 + 0.993932i \(0.464915\pi\)
\(594\) 0 0
\(595\) −1.32215e14 −0.0726839
\(596\) 8.67003e14 1.50169e15i 0.472244 0.817950i
\(597\) 0 0
\(598\) 1.58853e15 + 2.75142e15i 0.849453 + 1.47130i
\(599\) −5.29756e14 9.17565e14i −0.280691 0.486171i 0.690864 0.722985i \(-0.257230\pi\)
−0.971555 + 0.236813i \(0.923897\pi\)
\(600\) 0 0
\(601\) −9.98869e14 + 1.73009e15i −0.519635 + 0.900035i 0.480104 + 0.877212i \(0.340599\pi\)
−0.999740 + 0.0228235i \(0.992734\pi\)
\(602\) 2.92788e14 0.150929
\(603\) 0 0
\(604\) 9.23371e15 4.67383
\(605\) −1.49393e15 + 2.58756e15i −0.749333 + 1.29788i
\(606\) 0 0
\(607\) −1.28694e15 2.22904e15i −0.633899 1.09795i −0.986747 0.162265i \(-0.948120\pi\)
0.352848 0.935681i \(-0.385213\pi\)
\(608\) −5.70736e15 9.88544e15i −2.78590 4.82532i
\(609\) 0 0
\(610\) −2.20395e15 + 3.81736e15i −1.05655 + 1.82999i
\(611\) 2.54986e15 1.21141
\(612\) 0 0
\(613\) 8.73092e14 0.407406 0.203703 0.979033i \(-0.434702\pi\)
0.203703 + 0.979033i \(0.434702\pi\)
\(614\) −2.78782e15 + 4.82865e15i −1.28926 + 2.23306i
\(615\) 0 0
\(616\) 1.61944e14 + 2.80495e14i 0.0735649 + 0.127418i
\(617\) 6.51547e14 + 1.12851e15i 0.293344 + 0.508087i 0.974598 0.223960i \(-0.0718985\pi\)
−0.681254 + 0.732047i \(0.738565\pi\)
\(618\) 0 0
\(619\) 6.93567e14 1.20129e15i 0.306754 0.531313i −0.670897 0.741551i \(-0.734091\pi\)
0.977650 + 0.210238i \(0.0674239\pi\)
\(620\) −5.58446e15 −2.44809
\(621\) 0 0
\(622\) −2.73746e15 −1.17897
\(623\) −1.05792e13 + 1.83237e13i −0.00451615 + 0.00782220i
\(624\) 0 0
\(625\) −2.80641e12 4.86085e12i −0.00117709 0.00203879i
\(626\) 1.28099e15 + 2.21873e15i 0.532581 + 0.922457i
\(627\) 0 0
\(628\) 9.96671e14 1.72628e15i 0.407168 0.705236i
\(629\) 5.37053e14 0.217490
\(630\) 0 0
\(631\) −9.63116e14 −0.383281 −0.191640 0.981465i \(-0.561381\pi\)
−0.191640 + 0.981465i \(0.561381\pi\)
\(632\) 1.47241e15 2.55029e15i 0.580878 1.00611i
\(633\) 0 0
\(634\) −1.17212e15 2.03017e15i −0.454445 0.787122i
\(635\) −2.73785e15 4.74209e15i −1.05233 1.82270i
\(636\) 0 0
\(637\) 2.08362e15 3.60894e15i 0.787141 1.36337i
\(638\) −1.24201e15 −0.465171
\(639\) 0 0
\(640\) −9.78290e15 −3.60145
\(641\) −2.02145e15 + 3.50125e15i −0.737808 + 1.27792i 0.215672 + 0.976466i \(0.430806\pi\)
−0.953480 + 0.301455i \(0.902528\pi\)
\(642\) 0 0
\(643\) 1.51378e15 + 2.62194e15i 0.543127 + 0.940723i 0.998722 + 0.0505362i \(0.0160930\pi\)
−0.455596 + 0.890187i \(0.650574\pi\)
\(644\) 3.51140e14 + 6.08192e14i 0.124913 + 0.216356i
\(645\) 0 0
\(646\) −1.21644e15 + 2.10693e15i −0.425413 + 0.736836i
\(647\) 5.21900e15 1.80973 0.904866 0.425697i \(-0.139971\pi\)
0.904866 + 0.425697i \(0.139971\pi\)
\(648\) 0 0
\(649\) −2.15235e14 −0.0733783
\(650\) −7.41829e15 + 1.28489e16i −2.50773 + 4.34351i
\(651\) 0 0
\(652\) 1.29929e15 + 2.25043e15i 0.431860 + 0.748004i
\(653\) −1.85875e13 3.21945e13i −0.00612630 0.0106111i 0.862946 0.505296i \(-0.168617\pi\)
−0.869072 + 0.494685i \(0.835283\pi\)
\(654\) 0 0
\(655\) 1.38094e15 2.39186e15i 0.447556 0.775190i
\(656\) −1.55008e16 −4.98177
\(657\) 0 0
\(658\) 7.76680e14 0.245471
\(659\) 1.34217e15 2.32471e15i 0.420666 0.728615i −0.575339 0.817915i \(-0.695130\pi\)
0.996005 + 0.0893002i \(0.0284630\pi\)
\(660\) 0 0
\(661\) 1.00239e15 + 1.73618e15i 0.308978 + 0.535165i 0.978139 0.207952i \(-0.0666799\pi\)
−0.669161 + 0.743117i \(0.733347\pi\)
\(662\) 4.21283e15 + 7.29683e15i 1.28782 + 2.23057i
\(663\) 0 0
\(664\) −5.03722e15 + 8.72471e15i −1.51449 + 2.62317i
\(665\) −1.59635e15 −0.476004
\(666\) 0 0
\(667\) −1.67513e15 −0.491312
\(668\) 7.67551e15 1.32944e16i 2.23273 3.86721i
\(669\) 0 0
\(670\) −6.49630e15 1.12519e16i −1.85889 3.21970i
\(671\) −3.27638e14 5.67486e14i −0.0929867 0.161058i
\(672\) 0 0
\(673\) 3.03717e15 5.26053e15i 0.847981 1.46875i −0.0350255 0.999386i \(-0.511151\pi\)
0.883007 0.469360i \(-0.155515\pi\)
\(674\) −9.25278e15 −2.56238
\(675\) 0 0
\(676\) 1.58486e16 4.31801
\(677\) 9.04998e14 1.56750e15i 0.244574 0.423614i −0.717438 0.696622i \(-0.754685\pi\)
0.962012 + 0.273008i \(0.0880187\pi\)
\(678\) 0 0
\(679\) −1.95348e14 3.38352e14i −0.0519427 0.0899674i
\(680\) 2.51458e15 + 4.35537e15i 0.663232 + 1.14875i
\(681\) 0 0
\(682\) 5.71986e14 9.90709e14i 0.148447 0.257118i
\(683\) −2.47421e15 −0.636976 −0.318488 0.947927i \(-0.603175\pi\)
−0.318488 + 0.947927i \(0.603175\pi\)
\(684\) 0 0
\(685\) 1.77111e15 0.448690
\(686\) 1.28872e15 2.23213e15i 0.323874 0.560967i
\(687\) 0 0
\(688\) −3.11291e15 5.39172e15i −0.769892 1.33349i
\(689\) −2.60727e15 4.51592e15i −0.639706 1.10800i
\(690\) 0 0
\(691\) 2.98889e15 5.17691e15i 0.721740 1.25009i −0.238561 0.971127i \(-0.576676\pi\)
0.960302 0.278964i \(-0.0899909\pi\)
\(692\) 3.39921e15 0.814319
\(693\) 0 0
\(694\) −1.25624e16 −2.96208
\(695\) 3.86165e15 6.68858e15i 0.903352 1.56465i
\(696\) 0 0
\(697\) 8.41345e14 + 1.45725e15i 0.193729 + 0.335548i
\(698\) −6.40127e15 1.10873e16i −1.46238 2.53292i
\(699\) 0 0
\(700\) −1.63979e15 + 2.84020e15i −0.368764 + 0.638718i
\(701\) 1.45232e14 0.0324051 0.0162026 0.999869i \(-0.494842\pi\)
0.0162026 + 0.999869i \(0.494842\pi\)
\(702\) 0 0
\(703\) 6.48433e15 1.42433
\(704\) 1.79292e15 3.10544e15i 0.390762 0.676819i
\(705\) 0 0
\(706\) −3.55360e15 6.15502e15i −0.762505 1.32070i
\(707\) 2.49420e14 + 4.32009e14i 0.0531038 + 0.0919784i
\(708\) 0 0
\(709\) −2.27704e15 + 3.94394e15i −0.477327 + 0.826754i −0.999662 0.0259858i \(-0.991728\pi\)
0.522336 + 0.852740i \(0.325061\pi\)
\(710\) 1.85346e16 3.85533
\(711\) 0 0
\(712\) 8.04815e14 0.164837
\(713\) 7.71451e14 1.33619e15i 0.156789 0.271567i
\(714\) 0 0
\(715\) −1.78392e15 3.08984e15i −0.357020 0.618377i
\(716\) 9.91034e15 + 1.71652e16i 1.96819 + 3.40901i
\(717\) 0 0
\(718\) 4.75180e15 8.23037e15i 0.929339 1.60966i
\(719\) 2.31846e15 0.449977 0.224988 0.974361i \(-0.427766\pi\)
0.224988 + 0.974361i \(0.427766\pi\)
\(720\) 0 0
\(721\) 4.83168e14 0.0923537
\(722\) −9.65430e15 + 1.67217e16i −1.83133 + 3.17195i
\(723\) 0 0
\(724\) −3.92093e15 6.79125e15i −0.732533 1.26878i
\(725\) −3.91136e15 6.77467e15i −0.725217 1.25611i
\(726\) 0 0
\(727\) 1.01125e15 1.75154e15i 0.184680 0.319875i −0.758789 0.651337i \(-0.774209\pi\)
0.943469 + 0.331462i \(0.107542\pi\)
\(728\) 4.84260e15 0.877720
\(729\) 0 0
\(730\) −5.13722e15 −0.917175
\(731\) −3.37922e14 + 5.85297e14i −0.0598784 + 0.103712i
\(732\) 0 0
\(733\) 3.34140e15 + 5.78747e15i 0.583252 + 1.01022i 0.995091 + 0.0989651i \(0.0315532\pi\)
−0.411839 + 0.911257i \(0.635113\pi\)
\(734\) 5.49091e15 + 9.51053e15i 0.951296 + 1.64769i
\(735\) 0 0
\(736\) 5.24036e15 9.07657e15i 0.894402 1.54915i
\(737\) 1.93147e15 0.327203
\(738\) 0 0
\(739\) −5.14189e15 −0.858180 −0.429090 0.903262i \(-0.641166\pi\)
−0.429090 + 0.903262i \(0.641166\pi\)
\(740\) 1.07747e16 1.86623e16i 1.78496 3.09165i
\(741\) 0 0
\(742\) −7.94167e14 1.37554e15i −0.129626 0.224518i
\(743\) −1.90712e15 3.30323e15i −0.308986 0.535180i 0.669155 0.743123i \(-0.266656\pi\)
−0.978141 + 0.207943i \(0.933323\pi\)
\(744\) 0 0
\(745\) −1.80953e15 + 3.13419e15i −0.288872 + 0.500341i
\(746\) 1.19173e16 1.88849
\(747\) 0 0
\(748\) −1.20193e15 −0.187681
\(749\) −5.67082e14 + 9.82215e14i −0.0879014 + 0.152250i
\(750\) 0 0
\(751\) −2.90785e14 5.03655e14i −0.0444174 0.0769331i 0.842962 0.537973i \(-0.180810\pi\)
−0.887379 + 0.461040i \(0.847476\pi\)
\(752\) −8.25763e15 1.43026e16i −1.25215 2.16879i
\(753\) 0 0
\(754\) −9.28498e15 + 1.60821e16i −1.38752 + 2.40325i
\(755\) −1.92717e16 −2.85899
\(756\) 0 0
\(757\) 4.29778e15 0.628372 0.314186 0.949362i \(-0.398269\pi\)
0.314186 + 0.949362i \(0.398269\pi\)
\(758\) −1.03049e16 + 1.78486e16i −1.49576 + 2.59074i
\(759\) 0 0
\(760\) 3.03608e16 + 5.25864e16i 4.34348 + 7.52313i
\(761\) 3.03268e15 + 5.25275e15i 0.430735 + 0.746055i 0.996937 0.0782114i \(-0.0249209\pi\)
−0.566201 + 0.824267i \(0.691588\pi\)
\(762\) 0 0
\(763\) 5.61963e14 9.73349e14i 0.0786725 0.136265i
\(764\) −1.28860e16 −1.79103
\(765\) 0 0
\(766\) 5.86188e15 0.803117
\(767\) −1.60904e15 + 2.78695e15i −0.218874 + 0.379100i
\(768\) 0 0
\(769\) 5.11903e15 + 8.86641e15i 0.686424 + 1.18892i 0.972987 + 0.230860i \(0.0741539\pi\)
−0.286563 + 0.958061i \(0.592513\pi\)
\(770\) −5.43378e14 9.41158e14i −0.0723441 0.125304i
\(771\) 0 0
\(772\) 2.87442e15 4.97864e15i 0.377272 0.653454i
\(773\) 4.29417e15 0.559619 0.279810 0.960056i \(-0.409729\pi\)
0.279810 + 0.960056i \(0.409729\pi\)
\(774\) 0 0
\(775\) 7.20520e15 0.925735
\(776\) −7.43056e15 + 1.28701e16i −0.947943 + 1.64189i
\(777\) 0 0
\(778\) −7.22563e15 1.25152e16i −0.908841 1.57416i
\(779\) 1.01583e16 + 1.75947e16i 1.26872 + 2.19749i
\(780\) 0 0
\(781\) −1.37767e15 + 2.38619e15i −0.169654 + 0.293849i
\(782\) −2.23380e15 −0.273154
\(783\) 0 0
\(784\) −2.69910e16 −3.25447
\(785\) −2.08016e15 + 3.60294e15i −0.249065 + 0.431394i
\(786\) 0 0
\(787\) −5.88679e15 1.01962e16i −0.695052 1.20387i −0.970163 0.242453i \(-0.922048\pi\)
0.275111 0.961413i \(-0.411285\pi\)
\(788\) 9.90834e15 + 1.71617e16i 1.16173 + 2.01218i
\(789\) 0 0
\(790\) −4.94044e15 + 8.55710e15i −0.571238 + 0.989413i
\(791\) 1.41634e15 0.162628
\(792\) 0 0
\(793\) −9.79736e15 −1.10945
\(794\) 5.72023e15 9.90773e15i 0.643281 1.11420i
\(795\) 0 0
\(796\) 1.18988e16 + 2.06093e16i 1.31972 + 2.28582i
\(797\) −4.34099e15 7.51881e15i −0.478154 0.828187i 0.521532 0.853232i \(-0.325361\pi\)
−0.999686 + 0.0250444i \(0.992027\pi\)
\(798\) 0 0
\(799\) −8.96406e14 + 1.55262e15i −0.0973862 + 0.168678i
\(800\) 4.89439e16 5.28085
\(801\) 0 0
\(802\) −2.53741e16 −2.70042
\(803\) 3.81848e14 6.61380e14i 0.0403603 0.0699061i
\(804\) 0 0
\(805\) −7.32866e14 1.26936e15i −0.0764095 0.132345i
\(806\) −8.55204e15 1.48126e16i −0.885578 1.53387i
\(807\) 0 0
\(808\) 9.48736e15 1.64326e16i 0.969132 1.67859i
\(809\) 1.41762e16 1.43827 0.719137 0.694868i \(-0.244537\pi\)
0.719137 + 0.694868i \(0.244537\pi\)
\(810\) 0 0
\(811\) −5.37994e15 −0.538472 −0.269236 0.963074i \(-0.586771\pi\)
−0.269236 + 0.963074i \(0.586771\pi\)
\(812\) −2.05241e15 + 3.55489e15i −0.204036 + 0.353401i
\(813\) 0 0
\(814\) 2.20718e15 + 3.82295e15i 0.216473 + 0.374942i
\(815\) −2.71175e15 4.69689e15i −0.264170 0.457555i
\(816\) 0 0
\(817\) −4.08004e15 + 7.06683e15i −0.392141 + 0.679209i
\(818\) 8.30723e15 0.793073
\(819\) 0 0
\(820\) 6.75182e16 6.35982
\(821\) 2.59589e14 4.49622e14i 0.0242884 0.0420688i −0.853626 0.520887i \(-0.825601\pi\)
0.877914 + 0.478818i \(0.158935\pi\)
\(822\) 0 0
\(823\) −3.00259e15 5.20064e15i −0.277203 0.480129i 0.693486 0.720470i \(-0.256074\pi\)
−0.970688 + 0.240341i \(0.922741\pi\)
\(824\) −9.18928e15 1.59163e16i −0.842718 1.45963i
\(825\) 0 0
\(826\) −4.90110e14 + 8.48896e14i −0.0443510 + 0.0768182i
\(827\) −1.03022e15 −0.0926085 −0.0463043 0.998927i \(-0.514744\pi\)
−0.0463043 + 0.998927i \(0.514744\pi\)
\(828\) 0 0
\(829\) −1.78974e16 −1.58759 −0.793796 0.608184i \(-0.791898\pi\)
−0.793796 + 0.608184i \(0.791898\pi\)
\(830\) 1.69016e16 2.92745e16i 1.48936 2.57964i
\(831\) 0 0
\(832\) −2.68069e16 4.64309e16i −2.33114 4.03765i
\(833\) 1.46500e15 + 2.53746e15i 0.126558 + 0.219205i
\(834\) 0 0
\(835\) −1.60196e16 + 2.77468e16i −1.36577 + 2.36557i
\(836\) −1.45120e16 −1.22912
\(837\) 0 0
\(838\) 1.63344e16 1.36540
\(839\) 8.61564e15 1.49227e16i 0.715479 1.23925i −0.247296 0.968940i \(-0.579542\pi\)
0.962775 0.270306i \(-0.0871248\pi\)
\(840\) 0 0
\(841\) 1.20467e15 + 2.08655e15i 0.0987394 + 0.171022i
\(842\) 4.46624e15 + 7.73576e15i 0.363686 + 0.629922i
\(843\) 0 0
\(844\) 2.55042e16 4.41746e16i 2.04988 3.55050i
\(845\) −3.30777e16 −2.64133
\(846\) 0 0
\(847\) −2.02284e15 −0.159442
\(848\) −1.68871e16 + 2.92493e16i −1.32245 + 2.29054i
\(849\) 0 0
\(850\) −5.21582e15 9.03406e15i −0.403198 0.698359i
\(851\) 2.97688e15 + 5.15610e15i 0.228638 + 0.396012i
\(852\) 0 0
\(853\) −2.79547e15 + 4.84190e15i −0.211951 + 0.367110i −0.952325 0.305085i \(-0.901315\pi\)
0.740374 + 0.672195i \(0.234648\pi\)
\(854\) −2.98425e15 −0.224810
\(855\) 0 0
\(856\) 4.31409e16 3.20836
\(857\) 3.56838e15 6.18062e15i 0.263680 0.456707i −0.703537 0.710659i \(-0.748397\pi\)
0.967217 + 0.253952i \(0.0817304\pi\)
\(858\) 0 0
\(859\) 2.79683e15 + 4.84425e15i 0.204035 + 0.353398i 0.949825 0.312783i \(-0.101261\pi\)
−0.745790 + 0.666181i \(0.767928\pi\)
\(860\) 1.35591e16 + 2.34851e16i 0.982858 + 1.70236i
\(861\) 0 0
\(862\) 1.04667e15 1.81288e15i 0.0749063 0.129741i
\(863\) 2.08114e16 1.47993 0.739966 0.672645i \(-0.234842\pi\)
0.739966 + 0.672645i \(0.234842\pi\)
\(864\) 0 0
\(865\) −7.09452e15 −0.498120
\(866\) 2.08304e16 3.60793e16i 1.45328 2.51715i
\(867\) 0 0
\(868\) −1.89040e15 3.27427e15i −0.130225 0.225557i
\(869\) −7.34444e14 1.27209e15i −0.0502747 0.0870784i
\(870\) 0 0
\(871\) 1.44392e16 2.50094e16i 0.975985 1.69046i
\(872\) −4.27515e16 −2.87151
\(873\) 0 0
\(874\) −2.69707e16 −1.78887
\(875\) 1.30862e15 2.26660e15i 0.0862520 0.149393i
\(876\) 0 0
\(877\) 4.48976e15 + 7.77650e15i 0.292231 + 0.506158i 0.974337 0.225095i \(-0.0722692\pi\)
−0.682106 + 0.731253i \(0.738936\pi\)
\(878\) −2.26646e15 3.92563e15i −0.146598 0.253916i
\(879\) 0 0
\(880\) −1.15543e16 + 2.00127e16i −0.738058 + 1.27835i
\(881\) −1.86114e16 −1.18144 −0.590721 0.806876i \(-0.701157\pi\)
−0.590721 + 0.806876i \(0.701157\pi\)
\(882\) 0 0
\(883\) −2.75230e16 −1.72549 −0.862743 0.505642i \(-0.831255\pi\)
−0.862743 + 0.505642i \(0.831255\pi\)
\(884\) −8.98534e15 + 1.55631e16i −0.559818 + 0.969633i
\(885\) 0 0
\(886\) 7.21344e15 + 1.24940e16i 0.443871 + 0.768807i
\(887\) −4.56886e15 7.91350e15i −0.279401 0.483937i 0.691835 0.722056i \(-0.256803\pi\)
−0.971236 + 0.238119i \(0.923469\pi\)
\(888\) 0 0
\(889\) 1.85358e15 3.21050e15i 0.111957 0.193915i
\(890\) −2.70043e15 −0.162102
\(891\) 0 0
\(892\) −4.71976e16 −2.79842
\(893\) −1.08231e16 + 1.87462e16i −0.637778 + 1.10466i
\(894\) 0 0
\(895\) −2.06839e16 3.58256e16i −1.20394 2.08529i
\(896\) −3.31162e15 5.73589e15i −0.191578 0.331823i
\(897\) 0 0
\(898\) 9.45800e15 1.63817e16i 0.540480 0.936138i
\(899\) 9.01827e15 0.512206
\(900\) 0 0
\(901\) 3.66636e15 0.205707
\(902\) −6.91552e15 + 1.19780e16i −0.385646 + 0.667959i
\(903\) 0 0
\(904\) −2.69371e16 4.66564e16i −1.48397 2.57030i
\(905\) 8.18340e15 + 1.41741e16i 0.448091 + 0.776117i
\(906\) 0 0
\(907\) −1.20959e16 + 2.09507e16i −0.654332 + 1.13334i 0.327729 + 0.944772i \(0.393717\pi\)
−0.982061 + 0.188564i \(0.939617\pi\)
\(908\) −6.83448e16 −3.67480
\(909\) 0 0
\(910\) −1.62486e16 −0.863154
\(911\) 6.72908e15 1.16551e16i 0.355308 0.615411i −0.631863 0.775080i \(-0.717709\pi\)
0.987171 + 0.159669i \(0.0510427\pi\)
\(912\) 0 0
\(913\) 2.51258e15 + 4.35192e15i 0.131078 + 0.227035i
\(914\) −1.56279e16 2.70684e16i −0.810396 1.40365i
\(915\) 0 0
\(916\) 8.24097e15 1.42738e16i 0.422234 0.731331i
\(917\) 1.86985e15 0.0952305
\(918\) 0 0
\(919\) 2.13639e16 1.07509 0.537546 0.843234i \(-0.319351\pi\)
0.537546 + 0.843234i \(0.319351\pi\)
\(920\) −2.78765e16 + 4.82835e16i −1.39446 + 2.41527i
\(921\) 0 0
\(922\) 3.31977e15 + 5.75001e15i 0.164092 + 0.284216i
\(923\) 2.05982e16 + 3.56771e16i 1.01209 + 1.75299i
\(924\) 0 0
\(925\) −1.39017e16 + 2.40785e16i −0.674977 + 1.16909i
\(926\) −3.30608e16 −1.59570
\(927\) 0 0
\(928\) 6.12599e16 2.92188
\(929\) −1.76745e16 + 3.06131e16i −0.838033 + 1.45151i 0.0535048 + 0.998568i \(0.482961\pi\)
−0.891537 + 0.452947i \(0.850373\pi\)
\(930\) 0 0
\(931\) 1.76883e16 + 3.06370e16i 0.828825 + 1.43557i
\(932\) −4.10831e16 7.11580e16i −1.91371 3.31464i
\(933\) 0 0
\(934\) −1.61714e16 + 2.80096e16i −0.744456 + 1.28944i
\(935\) 2.50856e15 0.114805
\(936\) 0 0
\(937\) 1.94562e16 0.880017 0.440008 0.897994i \(-0.354975\pi\)
0.440008 + 0.897994i \(0.354975\pi\)
\(938\) 4.39814e15 7.61780e15i 0.197767 0.342542i
\(939\) 0 0
\(940\) 3.59684e16 + 6.22991e16i 1.59852 + 2.76872i
\(941\) 2.21948e16 + 3.84425e16i 0.980636 + 1.69851i 0.659920 + 0.751336i \(0.270590\pi\)
0.320717 + 0.947175i \(0.396076\pi\)
\(942\) 0 0
\(943\) −9.32712e15 + 1.61550e16i −0.407318 + 0.705495i
\(944\) 2.08433e16 0.904943
\(945\) 0 0
\(946\) −5.55516e15 −0.238394
\(947\) 3.38488e15 5.86279e15i 0.144417 0.250138i −0.784738 0.619827i \(-0.787203\pi\)
0.929155 + 0.369690i \(0.120536\pi\)
\(948\) 0 0
\(949\) −5.70919e15 9.88861e15i −0.240774 0.417033i
\(950\) −6.29753e16 1.09076e17i −2.64053 4.57353i
\(951\) 0 0
\(952\) −1.70242e15 + 2.94868e15i −0.0705609 + 0.122215i
\(953\) 3.24089e16 1.33553 0.667764 0.744373i \(-0.267252\pi\)
0.667764 + 0.744373i \(0.267252\pi\)
\(954\) 0 0
\(955\) 2.68944e16 1.09558
\(956\) 6.25614e16 1.08360e17i 2.53389 4.38883i
\(957\) 0 0
\(958\) −2.21409e16 3.83491e16i −0.886512 1.53548i
\(959\) 5.99538e14 + 1.03843e15i 0.0238679 + 0.0413405i
\(960\) 0 0
\(961\) 8.55105e15 1.48108e16i 0.336543 0.582910i
\(962\) 6.60013e16 2.58279
\(963\) 0 0
\(964\) 8.65943e16 3.35016
\(965\) −5.99921e15 + 1.03909e16i −0.230778 + 0.399719i
\(966\) 0 0
\(967\) 7.89694e15 + 1.36779e16i 0.300340 + 0.520204i 0.976213 0.216814i \(-0.0695665\pi\)
−0.675873 + 0.737018i \(0.736233\pi\)
\(968\) 3.84721e16 + 6.66356e16i 1.45489 + 2.51995i
\(969\) 0 0
\(970\) 2.49321e16 4.31837e16i 0.932212 1.61464i
\(971\) −1.26754e16 −0.471254 −0.235627 0.971844i \(-0.575714\pi\)
−0.235627 + 0.971844i \(0.575714\pi\)
\(972\) 0 0
\(973\) 5.22885e15 0.192214
\(974\) −4.03870e15 + 6.99523e15i −0.147627 + 0.255698i
\(975\) 0 0
\(976\) 3.17284e16 + 5.49552e16i 1.14676 + 1.98625i
\(977\) 1.57622e16 + 2.73009e16i 0.566496 + 0.981200i 0.996909 + 0.0785679i \(0.0250347\pi\)
−0.430413 + 0.902632i \(0.641632\pi\)
\(978\) 0 0
\(979\) 2.00722e14 3.47661e14i 0.00713331 0.0123553i
\(980\) 1.17567e17 4.15471
\(981\) 0 0
\(982\) −8.22777e16 −2.87521
\(983\) −8.78298e15 + 1.52126e16i −0.305209 + 0.528638i −0.977308 0.211824i \(-0.932060\pi\)
0.672099 + 0.740462i \(0.265393\pi\)
\(984\) 0 0
\(985\) −2.06797e16 3.58184e16i −0.710634 1.23085i
\(986\) −6.52829e15 1.13073e16i −0.223088 0.386400i
\(987\) 0 0
\(988\) −1.08488e17 + 1.87907e17i −3.66623 + 6.35009i
\(989\) −7.49237e15 −0.251791
\(990\) 0 0
\(991\) 3.80581e16 1.26486 0.632430 0.774618i \(-0.282058\pi\)
0.632430 + 0.774618i \(0.282058\pi\)
\(992\) −2.82121e16 + 4.88647e16i −0.932439 + 1.61503i
\(993\) 0 0
\(994\) 6.27415e15 + 1.08672e16i 0.205083 + 0.355214i
\(995\) −2.48340e16 4.30138e16i −0.807272 1.39824i
\(996\) 0 0
\(997\) 2.11041e16 3.65534e16i 0.678491 1.17518i −0.296944 0.954895i \(-0.595967\pi\)
0.975435 0.220286i \(-0.0706992\pi\)
\(998\) 3.87928e15 0.124032
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.12.c.l.55.1 12
3.2 odd 2 81.12.c.k.55.6 12
9.2 odd 6 81.12.a.b.1.1 yes 6
9.4 even 3 inner 81.12.c.l.28.1 12
9.5 odd 6 81.12.c.k.28.6 12
9.7 even 3 81.12.a.a.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.12.a.a.1.6 6 9.7 even 3
81.12.a.b.1.1 yes 6 9.2 odd 6
81.12.c.k.28.6 12 9.5 odd 6
81.12.c.k.55.6 12 3.2 odd 2
81.12.c.l.28.1 12 9.4 even 3 inner
81.12.c.l.55.1 12 1.1 even 1 trivial