Properties

Label 81.12.c.i.55.2
Level $81$
Weight $12$
Character 81.55
Analytic conductor $62.236$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,12,Mod(28,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.28"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-1636] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.2357976253\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 182x^{6} + 32932x^{4} - 34944x^{2} + 36864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{19} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.2
Root \(-0.892104 + 0.515056i\) of defining polynomial
Character \(\chi\) \(=\) 81.55
Dual form 81.12.c.i.28.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.67631 + 4.63551i) q^{2} +(1009.67 + 1748.81i) q^{4} +(6419.60 + 11119.1i) q^{5} +(15869.3 - 27486.4i) q^{7} -21771.0 q^{8} -68723.4 q^{10} +(-342308. + 592895. i) q^{11} +(-493175. - 854204. i) q^{13} +(84942.3 + 147124. i) q^{14} +(-2.00955e6 + 3.48064e6i) q^{16} -8.95856e6 q^{17} -3.35373e6 q^{19} +(-1.29634e7 + 2.24533e7i) q^{20} +(-1.83225e6 - 3.17355e6i) q^{22} +(5.36262e6 + 9.28832e6i) q^{23} +(-5.80084e7 + 1.00474e8i) q^{25} +5.27956e6 q^{26} +6.40913e7 q^{28} +(7.77565e7 - 1.34678e8i) q^{29} +(-1.12081e8 - 1.94129e8i) q^{31} +(-3.30498e7 - 5.72440e7i) q^{32} +(2.39759e7 - 4.15275e7i) q^{34} +4.07498e8 q^{35} +2.97380e8 q^{37} +(8.97562e6 - 1.55462e7i) q^{38} +(-1.39761e8 - 2.42073e8i) q^{40} +(1.83506e8 + 3.17842e8i) q^{41} +(1.18982e8 - 2.06082e8i) q^{43} -1.38248e9 q^{44} -5.74081e7 q^{46} +(-9.07505e8 + 1.57185e9i) q^{47} +(4.84994e8 + 8.40035e8i) q^{49} +(-3.10497e8 - 5.37797e8i) q^{50} +(9.95892e8 - 1.72494e9i) q^{52} +2.49351e8 q^{53} -8.78993e9 q^{55} +(-3.45490e8 + 5.98407e8i) q^{56} +(4.16201e8 + 7.20881e8i) q^{58} +(2.62950e9 + 4.55442e9i) q^{59} +(-1.95491e9 + 3.38600e9i) q^{61} +1.19985e9 q^{62} -7.87730e9 q^{64} +(6.33197e9 - 1.09673e10i) q^{65} +(-7.99354e9 - 1.38452e10i) q^{67} +(-9.04523e9 - 1.56668e10i) q^{68} +(-1.09059e9 + 1.88896e9i) q^{70} +1.95308e10 q^{71} -9.74734e9 q^{73} +(-7.95881e8 + 1.37851e9i) q^{74} +(-3.38617e9 - 5.86503e9i) q^{76} +(1.08644e10 + 1.88177e10i) q^{77} +(-1.17184e10 + 2.02968e10i) q^{79} -5.16020e10 q^{80} -1.96448e9 q^{82} +(-1.81967e10 + 3.15175e10i) q^{83} +(-5.75104e10 - 9.96109e10i) q^{85} +(6.36864e8 + 1.10308e9i) q^{86} +(7.45239e9 - 1.29079e10i) q^{88} +1.64629e10 q^{89} -3.13053e10 q^{91} +(-1.08290e10 + 1.87564e10i) q^{92} +(-4.85753e9 - 8.41349e9i) q^{94} +(-2.15296e10 - 3.72903e10i) q^{95} +(-1.37713e10 + 2.38526e10i) q^{97} -5.19198e9 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 1636 q^{4} - 28460 q^{7} + 304992 q^{10} - 370868 q^{13} - 4128904 q^{16} + 66418792 q^{19} - 94424400 q^{22} - 142981516 q^{25} + 778081048 q^{28} - 647361104 q^{31} - 1085116176 q^{34} + 1104329752 q^{37}+ \cdots - 137541602900 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.67631 + 4.63551i −0.0591387 + 0.102431i −0.894079 0.447909i \(-0.852169\pi\)
0.834940 + 0.550340i \(0.185502\pi\)
\(3\) 0 0
\(4\) 1009.67 + 1748.81i 0.493005 + 0.853910i
\(5\) 6419.60 + 11119.1i 0.918698 + 1.59123i 0.801395 + 0.598136i \(0.204092\pi\)
0.117304 + 0.993096i \(0.462575\pi\)
\(6\) 0 0
\(7\) 15869.3 27486.4i 0.356877 0.618129i −0.630560 0.776140i \(-0.717175\pi\)
0.987437 + 0.158011i \(0.0505082\pi\)
\(8\) −21771.0 −0.234900
\(9\) 0 0
\(10\) −68723.4 −0.217322
\(11\) −342308. + 592895.i −0.640852 + 1.10999i 0.344391 + 0.938826i \(0.388085\pi\)
−0.985243 + 0.171162i \(0.945248\pi\)
\(12\) 0 0
\(13\) −493175. 854204.i −0.368394 0.638077i 0.620921 0.783873i \(-0.286759\pi\)
−0.989315 + 0.145796i \(0.953426\pi\)
\(14\) 84942.3 + 147124.i 0.0422105 + 0.0731106i
\(15\) 0 0
\(16\) −2.00955e6 + 3.48064e6i −0.479114 + 0.829849i
\(17\) −8.95856e6 −1.53027 −0.765137 0.643868i \(-0.777329\pi\)
−0.765137 + 0.643868i \(0.777329\pi\)
\(18\) 0 0
\(19\) −3.35373e6 −0.310730 −0.155365 0.987857i \(-0.549655\pi\)
−0.155365 + 0.987857i \(0.549655\pi\)
\(20\) −1.29634e7 + 2.24533e7i −0.905846 + 1.56897i
\(21\) 0 0
\(22\) −1.83225e6 3.17355e6i −0.0757983 0.131286i
\(23\) 5.36262e6 + 9.28832e6i 0.173729 + 0.300908i 0.939721 0.341943i \(-0.111085\pi\)
−0.765991 + 0.642851i \(0.777751\pi\)
\(24\) 0 0
\(25\) −5.80084e7 + 1.00474e8i −1.18801 + 2.05770i
\(26\) 5.27956e6 0.0871453
\(27\) 0 0
\(28\) 6.40913e7 0.703769
\(29\) 7.77565e7 1.34678e8i 0.703959 1.21929i −0.263107 0.964767i \(-0.584747\pi\)
0.967066 0.254526i \(-0.0819196\pi\)
\(30\) 0 0
\(31\) −1.12081e8 1.94129e8i −0.703140 1.21787i −0.967359 0.253411i \(-0.918448\pi\)
0.264219 0.964463i \(-0.414886\pi\)
\(32\) −3.30498e7 5.72440e7i −0.174118 0.301582i
\(33\) 0 0
\(34\) 2.39759e7 4.15275e7i 0.0904983 0.156748i
\(35\) 4.07498e8 1.31145
\(36\) 0 0
\(37\) 2.97380e8 0.705021 0.352510 0.935808i \(-0.385328\pi\)
0.352510 + 0.935808i \(0.385328\pi\)
\(38\) 8.97562e6 1.55462e7i 0.0183762 0.0318284i
\(39\) 0 0
\(40\) −1.39761e8 2.42073e8i −0.215802 0.373781i
\(41\) 1.83506e8 + 3.17842e8i 0.247365 + 0.428450i 0.962794 0.270236i \(-0.0871018\pi\)
−0.715429 + 0.698686i \(0.753769\pi\)
\(42\) 0 0
\(43\) 1.18982e8 2.06082e8i 0.123425 0.213778i −0.797691 0.603066i \(-0.793945\pi\)
0.921116 + 0.389288i \(0.127279\pi\)
\(44\) −1.38248e9 −1.26377
\(45\) 0 0
\(46\) −5.74081e7 −0.0410965
\(47\) −9.07505e8 + 1.57185e9i −0.577180 + 0.999704i 0.418621 + 0.908161i \(0.362513\pi\)
−0.995801 + 0.0915436i \(0.970820\pi\)
\(48\) 0 0
\(49\) 4.84994e8 + 8.40035e8i 0.245278 + 0.424834i
\(50\) −3.10497e8 5.37797e8i −0.140515 0.243379i
\(51\) 0 0
\(52\) 9.95892e8 1.72494e9i 0.363240 0.629151i
\(53\) 2.49351e8 0.0819019 0.0409510 0.999161i \(-0.486961\pi\)
0.0409510 + 0.999161i \(0.486961\pi\)
\(54\) 0 0
\(55\) −8.78993e9 −2.35500
\(56\) −3.45490e8 + 5.98407e8i −0.0838304 + 0.145199i
\(57\) 0 0
\(58\) 4.16201e8 + 7.20881e8i 0.0832624 + 0.144215i
\(59\) 2.62950e9 + 4.55442e9i 0.478836 + 0.829368i 0.999705 0.0242680i \(-0.00772550\pi\)
−0.520869 + 0.853636i \(0.674392\pi\)
\(60\) 0 0
\(61\) −1.95491e9 + 3.38600e9i −0.296355 + 0.513302i −0.975299 0.220888i \(-0.929104\pi\)
0.678944 + 0.734190i \(0.262438\pi\)
\(62\) 1.19985e9 0.166331
\(63\) 0 0
\(64\) −7.87730e9 −0.917039
\(65\) 6.33197e9 1.09673e10i 0.676886 1.17240i
\(66\) 0 0
\(67\) −7.99354e9 1.38452e10i −0.723316 1.25282i −0.959664 0.281151i \(-0.909284\pi\)
0.236348 0.971668i \(-0.424049\pi\)
\(68\) −9.04523e9 1.56668e10i −0.754433 1.30672i
\(69\) 0 0
\(70\) −1.09059e9 + 1.88896e9i −0.0775573 + 0.134333i
\(71\) 1.95308e10 1.28469 0.642347 0.766414i \(-0.277961\pi\)
0.642347 + 0.766414i \(0.277961\pi\)
\(72\) 0 0
\(73\) −9.74734e9 −0.550314 −0.275157 0.961399i \(-0.588730\pi\)
−0.275157 + 0.961399i \(0.588730\pi\)
\(74\) −7.95881e8 + 1.37851e9i −0.0416940 + 0.0722161i
\(75\) 0 0
\(76\) −3.38617e9 5.86503e9i −0.153191 0.265335i
\(77\) 1.08644e10 + 1.88177e10i 0.457411 + 0.792258i
\(78\) 0 0
\(79\) −1.17184e10 + 2.02968e10i −0.428468 + 0.742128i −0.996737 0.0807145i \(-0.974280\pi\)
0.568269 + 0.822843i \(0.307613\pi\)
\(80\) −5.16020e10 −1.76064
\(81\) 0 0
\(82\) −1.96448e9 −0.0585155
\(83\) −1.81967e10 + 3.15175e10i −0.507063 + 0.878259i 0.492903 + 0.870084i \(0.335936\pi\)
−0.999967 + 0.00817506i \(0.997398\pi\)
\(84\) 0 0
\(85\) −5.75104e10 9.96109e10i −1.40586 2.43502i
\(86\) 6.36864e8 + 1.10308e9i 0.0145984 + 0.0252852i
\(87\) 0 0
\(88\) 7.45239e9 1.29079e10i 0.150536 0.260736i
\(89\) 1.64629e10 0.312509 0.156255 0.987717i \(-0.450058\pi\)
0.156255 + 0.987717i \(0.450058\pi\)
\(90\) 0 0
\(91\) −3.13053e10 −0.525885
\(92\) −1.08290e10 + 1.87564e10i −0.171299 + 0.296699i
\(93\) 0 0
\(94\) −4.85753e9 8.41349e9i −0.0682673 0.118242i
\(95\) −2.15296e10 3.72903e10i −0.285467 0.494443i
\(96\) 0 0
\(97\) −1.37713e10 + 2.38526e10i −0.162829 + 0.282028i −0.935882 0.352313i \(-0.885395\pi\)
0.773053 + 0.634341i \(0.218729\pi\)
\(98\) −5.19198e9 −0.0580216
\(99\) 0 0
\(100\) −2.34279e11 −2.34279
\(101\) 7.23245e10 1.25270e11i 0.684727 1.18598i −0.288795 0.957391i \(-0.593255\pi\)
0.973522 0.228592i \(-0.0734121\pi\)
\(102\) 0 0
\(103\) −1.96471e10 3.40298e10i −0.166991 0.289238i 0.770369 0.637598i \(-0.220072\pi\)
−0.937361 + 0.348360i \(0.886739\pi\)
\(104\) 1.07369e10 + 1.85969e10i 0.0865357 + 0.149884i
\(105\) 0 0
\(106\) −6.67341e8 + 1.15587e9i −0.00484357 + 0.00838931i
\(107\) 7.67258e10 0.528848 0.264424 0.964407i \(-0.414818\pi\)
0.264424 + 0.964407i \(0.414818\pi\)
\(108\) 0 0
\(109\) −2.43424e11 −1.51537 −0.757683 0.652623i \(-0.773669\pi\)
−0.757683 + 0.652623i \(0.773669\pi\)
\(110\) 2.35246e10 4.07458e10i 0.139271 0.241225i
\(111\) 0 0
\(112\) 6.37802e10 + 1.10471e11i 0.341969 + 0.592308i
\(113\) 2.33726e10 + 4.04824e10i 0.119337 + 0.206698i 0.919505 0.393078i \(-0.128590\pi\)
−0.800168 + 0.599776i \(0.795256\pi\)
\(114\) 0 0
\(115\) −6.88517e10 + 1.19255e11i −0.319210 + 0.552888i
\(116\) 3.14035e11 1.38822
\(117\) 0 0
\(118\) −2.81494e10 −0.113271
\(119\) −1.42166e11 + 2.46239e11i −0.546119 + 0.945906i
\(120\) 0 0
\(121\) −9.16942e10 1.58819e11i −0.321383 0.556651i
\(122\) −1.04639e10 1.81240e10i −0.0350521 0.0607120i
\(123\) 0 0
\(124\) 2.26330e11 3.92015e11i 0.693303 1.20084i
\(125\) −8.62650e11 −2.52831
\(126\) 0 0
\(127\) 2.60792e11 0.700446 0.350223 0.936666i \(-0.386106\pi\)
0.350223 + 0.936666i \(0.386106\pi\)
\(128\) 8.87682e10 1.53751e11i 0.228351 0.395515i
\(129\) 0 0
\(130\) 3.38926e10 + 5.87038e10i 0.0800602 + 0.138668i
\(131\) −5.51292e10 9.54866e10i −0.124850 0.216247i 0.796824 0.604211i \(-0.206512\pi\)
−0.921674 + 0.387964i \(0.873178\pi\)
\(132\) 0 0
\(133\) −5.32213e10 + 9.21820e10i −0.110892 + 0.192071i
\(134\) 8.55728e10 0.171104
\(135\) 0 0
\(136\) 1.95037e11 0.359461
\(137\) −3.72246e11 + 6.44750e11i −0.658973 + 1.14137i 0.321909 + 0.946771i \(0.395675\pi\)
−0.980882 + 0.194604i \(0.937658\pi\)
\(138\) 0 0
\(139\) −2.79728e11 4.84503e11i −0.457251 0.791982i 0.541563 0.840660i \(-0.317833\pi\)
−0.998815 + 0.0486776i \(0.984499\pi\)
\(140\) 4.11441e11 + 7.12636e11i 0.646551 + 1.11986i
\(141\) 0 0
\(142\) −5.22706e10 + 9.05353e10i −0.0759751 + 0.131593i
\(143\) 6.75271e11 0.944344
\(144\) 0 0
\(145\) 1.99666e12 2.58690
\(146\) 2.60869e10 4.51839e10i 0.0325448 0.0563693i
\(147\) 0 0
\(148\) 3.00257e11 + 5.20060e11i 0.347579 + 0.602024i
\(149\) −6.32647e11 1.09578e12i −0.705727 1.22236i −0.966428 0.256936i \(-0.917287\pi\)
0.260701 0.965420i \(-0.416046\pi\)
\(150\) 0 0
\(151\) −6.02725e11 + 1.04395e12i −0.624807 + 1.08220i 0.363771 + 0.931488i \(0.381489\pi\)
−0.988578 + 0.150709i \(0.951844\pi\)
\(152\) 7.30140e10 0.0729905
\(153\) 0 0
\(154\) −1.16306e11 −0.108203
\(155\) 1.43903e12 2.49247e12i 1.29195 2.23772i
\(156\) 0 0
\(157\) 1.01675e12 + 1.76106e12i 0.850679 + 1.47342i 0.880596 + 0.473868i \(0.157143\pi\)
−0.0299166 + 0.999552i \(0.509524\pi\)
\(158\) −6.27240e10 1.08641e11i −0.0506780 0.0877769i
\(159\) 0 0
\(160\) 4.24333e11 7.34967e11i 0.319924 0.554125i
\(161\) 3.40404e11 0.248000
\(162\) 0 0
\(163\) −3.15622e11 −0.214850 −0.107425 0.994213i \(-0.534261\pi\)
−0.107425 + 0.994213i \(0.534261\pi\)
\(164\) −3.70563e11 + 6.41833e11i −0.243905 + 0.422456i
\(165\) 0 0
\(166\) −9.73998e10 1.68701e11i −0.0599741 0.103878i
\(167\) 7.33624e11 + 1.27067e12i 0.437052 + 0.756995i 0.997461 0.0712205i \(-0.0226894\pi\)
−0.560409 + 0.828216i \(0.689356\pi\)
\(168\) 0 0
\(169\) 4.09637e11 7.09513e11i 0.228572 0.395898i
\(170\) 6.15662e11 0.332563
\(171\) 0 0
\(172\) 4.80531e11 0.243397
\(173\) −1.53808e12 + 2.66404e12i −0.754616 + 1.30703i 0.190949 + 0.981600i \(0.438844\pi\)
−0.945565 + 0.325434i \(0.894490\pi\)
\(174\) 0 0
\(175\) 1.84111e12 + 3.18889e12i 0.847949 + 1.46869i
\(176\) −1.37577e12 2.38290e12i −0.614082 1.06362i
\(177\) 0 0
\(178\) −4.40600e10 + 7.63141e10i −0.0184814 + 0.0320107i
\(179\) −2.98789e12 −1.21527 −0.607635 0.794216i \(-0.707882\pi\)
−0.607635 + 0.794216i \(0.707882\pi\)
\(180\) 0 0
\(181\) 2.38164e12 0.911265 0.455633 0.890168i \(-0.349413\pi\)
0.455633 + 0.890168i \(0.349413\pi\)
\(182\) 8.37828e10 1.45116e11i 0.0311001 0.0538670i
\(183\) 0 0
\(184\) −1.16749e11 2.02216e11i −0.0408091 0.0706834i
\(185\) 1.90906e12 + 3.30659e12i 0.647701 + 1.12185i
\(186\) 0 0
\(187\) 3.06659e12 5.31149e12i 0.980679 1.69859i
\(188\) −3.66514e12 −1.13821
\(189\) 0 0
\(190\) 2.30480e11 0.0675286
\(191\) −4.48897e11 + 7.77512e11i −0.127780 + 0.221322i −0.922816 0.385240i \(-0.874119\pi\)
0.795036 + 0.606562i \(0.207452\pi\)
\(192\) 0 0
\(193\) 8.94978e11 + 1.55015e12i 0.240573 + 0.416685i 0.960878 0.276973i \(-0.0893313\pi\)
−0.720305 + 0.693658i \(0.755998\pi\)
\(194\) −7.37127e10 1.27674e11i −0.0192590 0.0333575i
\(195\) 0 0
\(196\) −9.79373e11 + 1.69632e12i −0.241846 + 0.418890i
\(197\) 7.38729e12 1.77387 0.886933 0.461899i \(-0.152832\pi\)
0.886933 + 0.461899i \(0.152832\pi\)
\(198\) 0 0
\(199\) 1.19720e12 0.271942 0.135971 0.990713i \(-0.456585\pi\)
0.135971 + 0.990713i \(0.456585\pi\)
\(200\) 1.26290e12 2.18741e12i 0.279064 0.483354i
\(201\) 0 0
\(202\) 3.87126e11 + 6.70521e11i 0.0809877 + 0.140275i
\(203\) −2.46788e12 4.27449e12i −0.502454 0.870275i
\(204\) 0 0
\(205\) −2.35607e12 + 4.08083e12i −0.454508 + 0.787232i
\(206\) 2.10327e11 0.0395026
\(207\) 0 0
\(208\) 3.96423e12 0.706010
\(209\) 1.14801e12 1.98841e12i 0.199132 0.344907i
\(210\) 0 0
\(211\) −3.04783e12 5.27899e12i −0.501692 0.868955i −0.999998 0.00195445i \(-0.999378\pi\)
0.498306 0.867001i \(-0.333955\pi\)
\(212\) 2.51764e11 + 4.36067e11i 0.0403781 + 0.0699369i
\(213\) 0 0
\(214\) −2.05342e11 + 3.55663e11i −0.0312754 + 0.0541705i
\(215\) 3.05526e12 0.453562
\(216\) 0 0
\(217\) −7.11457e12 −1.00374
\(218\) 6.51478e11 1.12839e12i 0.0896167 0.155221i
\(219\) 0 0
\(220\) −8.87497e12 1.53719e13i −1.16103 2.01096i
\(221\) 4.41814e12 + 7.65243e12i 0.563743 + 0.976432i
\(222\) 0 0
\(223\) −4.51085e12 + 7.81302e12i −0.547749 + 0.948729i 0.450680 + 0.892686i \(0.351182\pi\)
−0.998428 + 0.0560428i \(0.982152\pi\)
\(224\) −2.09791e12 −0.248555
\(225\) 0 0
\(226\) −2.50209e11 −0.0282297
\(227\) 1.74181e12 3.01691e12i 0.191805 0.332216i −0.754044 0.656824i \(-0.771899\pi\)
0.945848 + 0.324609i \(0.105233\pi\)
\(228\) 0 0
\(229\) 2.05234e12 + 3.55476e12i 0.215355 + 0.373006i 0.953382 0.301765i \(-0.0975758\pi\)
−0.738027 + 0.674771i \(0.764243\pi\)
\(230\) −3.68537e11 6.38325e11i −0.0377553 0.0653941i
\(231\) 0 0
\(232\) −1.69283e12 + 2.93208e12i −0.165360 + 0.286412i
\(233\) −5.04001e12 −0.480810 −0.240405 0.970673i \(-0.577280\pi\)
−0.240405 + 0.970673i \(0.577280\pi\)
\(234\) 0 0
\(235\) −2.33033e13 −2.12102
\(236\) −5.30988e12 + 9.19698e12i −0.472137 + 0.817766i
\(237\) 0 0
\(238\) −7.60961e11 1.31802e12i −0.0645935 0.111879i
\(239\) −7.69620e12 1.33302e13i −0.638393 1.10573i −0.985785 0.168009i \(-0.946266\pi\)
0.347393 0.937720i \(-0.387067\pi\)
\(240\) 0 0
\(241\) 5.64909e11 9.78451e11i 0.0447594 0.0775256i −0.842778 0.538262i \(-0.819081\pi\)
0.887537 + 0.460736i \(0.152415\pi\)
\(242\) 9.81609e11 0.0760246
\(243\) 0 0
\(244\) −7.89528e12 −0.584418
\(245\) −6.22694e12 + 1.07854e13i −0.450673 + 0.780588i
\(246\) 0 0
\(247\) 1.65397e12 + 2.86477e12i 0.114471 + 0.198270i
\(248\) 2.44011e12 + 4.22639e12i 0.165168 + 0.286079i
\(249\) 0 0
\(250\) 2.30872e12 3.99882e12i 0.149521 0.258977i
\(251\) −2.41866e13 −1.53239 −0.766197 0.642606i \(-0.777853\pi\)
−0.766197 + 0.642606i \(0.777853\pi\)
\(252\) 0 0
\(253\) −7.34267e12 −0.445340
\(254\) −6.97962e11 + 1.20890e12i −0.0414234 + 0.0717475i
\(255\) 0 0
\(256\) −7.59121e12 1.31484e13i −0.431511 0.747398i
\(257\) 1.33942e13 + 2.31994e13i 0.745219 + 1.29076i 0.950092 + 0.311969i \(0.100988\pi\)
−0.204873 + 0.978788i \(0.565678\pi\)
\(258\) 0 0
\(259\) 4.71921e12 8.17391e12i 0.251606 0.435794i
\(260\) 2.55729e13 1.33483
\(261\) 0 0
\(262\) 5.90172e11 0.0295339
\(263\) 5.22437e12 9.04887e12i 0.256022 0.443443i −0.709151 0.705057i \(-0.750921\pi\)
0.965173 + 0.261614i \(0.0842548\pi\)
\(264\) 0 0
\(265\) 1.60073e12 + 2.77255e12i 0.0752432 + 0.130325i
\(266\) −2.84874e11 4.93415e11i −0.0131161 0.0227177i
\(267\) 0 0
\(268\) 1.61418e13 2.79583e13i 0.713197 1.23529i
\(269\) 1.01222e13 0.438167 0.219083 0.975706i \(-0.429693\pi\)
0.219083 + 0.975706i \(0.429693\pi\)
\(270\) 0 0
\(271\) −2.07098e13 −0.860688 −0.430344 0.902665i \(-0.641608\pi\)
−0.430344 + 0.902665i \(0.641608\pi\)
\(272\) 1.80027e13 3.11815e13i 0.733175 1.26990i
\(273\) 0 0
\(274\) −1.99249e12 3.45110e12i −0.0779415 0.134999i
\(275\) −3.97136e13 6.87859e13i −1.52268 2.63736i
\(276\) 0 0
\(277\) −4.41209e12 + 7.64197e12i −0.162557 + 0.281557i −0.935785 0.352571i \(-0.885308\pi\)
0.773228 + 0.634128i \(0.218641\pi\)
\(278\) 2.99456e12 0.108165
\(279\) 0 0
\(280\) −8.87163e12 −0.308059
\(281\) 3.00188e11 5.19941e11i 0.0102214 0.0177039i −0.860869 0.508826i \(-0.830080\pi\)
0.871091 + 0.491122i \(0.163413\pi\)
\(282\) 0 0
\(283\) 5.66563e12 + 9.81316e12i 0.185534 + 0.321354i 0.943756 0.330642i \(-0.107265\pi\)
−0.758223 + 0.651996i \(0.773932\pi\)
\(284\) 1.97198e13 + 3.41557e13i 0.633361 + 1.09701i
\(285\) 0 0
\(286\) −1.80724e12 + 3.13023e12i −0.0558472 + 0.0967303i
\(287\) 1.16484e13 0.353116
\(288\) 0 0
\(289\) 4.59839e13 1.34174
\(290\) −5.34369e12 + 9.25554e12i −0.152986 + 0.264980i
\(291\) 0 0
\(292\) −9.84164e12 1.70462e13i −0.271308 0.469919i
\(293\) 2.01021e13 + 3.48179e13i 0.543839 + 0.941957i 0.998679 + 0.0513836i \(0.0163631\pi\)
−0.454840 + 0.890573i \(0.650304\pi\)
\(294\) 0 0
\(295\) −3.37607e13 + 5.84752e13i −0.879812 + 1.52388i
\(296\) −6.47425e12 −0.165609
\(297\) 0 0
\(298\) 6.77264e12 0.166943
\(299\) 5.28941e12 9.16153e12i 0.128002 0.221706i
\(300\) 0 0
\(301\) −3.77631e12 6.54076e12i −0.0880951 0.152585i
\(302\) −3.22616e12 5.58787e12i −0.0739005 0.127999i
\(303\) 0 0
\(304\) 6.73948e12 1.16731e13i 0.148875 0.257859i
\(305\) −5.01989e13 −1.08904
\(306\) 0 0
\(307\) 7.48437e13 1.56637 0.783185 0.621789i \(-0.213594\pi\)
0.783185 + 0.621789i \(0.213594\pi\)
\(308\) −2.19390e13 + 3.79994e13i −0.451012 + 0.781175i
\(309\) 0 0
\(310\) 7.70257e12 + 1.33412e13i 0.152808 + 0.264671i
\(311\) 1.61320e13 + 2.79414e13i 0.314416 + 0.544585i 0.979313 0.202350i \(-0.0648579\pi\)
−0.664897 + 0.746935i \(0.731525\pi\)
\(312\) 0 0
\(313\) −3.12405e13 + 5.41101e13i −0.587792 + 1.01809i 0.406729 + 0.913549i \(0.366669\pi\)
−0.994521 + 0.104537i \(0.966664\pi\)
\(314\) −1.08846e13 −0.201232
\(315\) 0 0
\(316\) −4.73270e13 −0.844948
\(317\) −5.22056e13 + 9.04227e13i −0.915990 + 1.58654i −0.110545 + 0.993871i \(0.535260\pi\)
−0.805445 + 0.592671i \(0.798074\pi\)
\(318\) 0 0
\(319\) 5.32334e13 + 9.22029e13i 0.902267 + 1.56277i
\(320\) −5.05691e13 8.75883e13i −0.842482 1.45922i
\(321\) 0 0
\(322\) −9.11026e11 + 1.57794e12i −0.0146664 + 0.0254030i
\(323\) 3.00446e13 0.475502
\(324\) 0 0
\(325\) 1.14433e14 1.75063
\(326\) 8.44703e11 1.46307e12i 0.0127060 0.0220074i
\(327\) 0 0
\(328\) −3.99511e12 6.91973e12i −0.0581062 0.100643i
\(329\) 2.88029e13 + 4.98882e13i 0.411964 + 0.713543i
\(330\) 0 0
\(331\) 3.90501e13 6.76368e13i 0.540217 0.935683i −0.458674 0.888605i \(-0.651675\pi\)
0.998891 0.0470788i \(-0.0149912\pi\)
\(332\) −7.34908e13 −0.999939
\(333\) 0 0
\(334\) −7.85362e12 −0.103387
\(335\) 1.02631e14 1.77762e14i 1.32902 2.30193i
\(336\) 0 0
\(337\) 7.05365e12 + 1.22173e13i 0.0883995 + 0.153112i 0.906835 0.421486i \(-0.138491\pi\)
−0.818435 + 0.574599i \(0.805158\pi\)
\(338\) 2.19263e12 + 3.79775e12i 0.0270349 + 0.0468258i
\(339\) 0 0
\(340\) 1.16133e14 2.01149e14i 1.38619 2.40096i
\(341\) 1.53465e14 1.80243
\(342\) 0 0
\(343\) 9.35436e13 1.06389
\(344\) −2.59035e12 + 4.48661e12i −0.0289926 + 0.0502166i
\(345\) 0 0
\(346\) −8.23278e12 1.42596e13i −0.0892540 0.154592i
\(347\) 9.19204e12 + 1.59211e13i 0.0980844 + 0.169887i 0.910892 0.412645i \(-0.135395\pi\)
−0.812807 + 0.582533i \(0.802062\pi\)
\(348\) 0 0
\(349\) −4.67968e13 + 8.10545e13i −0.483812 + 0.837987i −0.999827 0.0185927i \(-0.994081\pi\)
0.516015 + 0.856579i \(0.327415\pi\)
\(350\) −1.97095e13 −0.200586
\(351\) 0 0
\(352\) 4.52529e13 0.446336
\(353\) −2.21207e13 + 3.83142e13i −0.214802 + 0.372048i −0.953211 0.302305i \(-0.902244\pi\)
0.738409 + 0.674353i \(0.235577\pi\)
\(354\) 0 0
\(355\) 1.25380e14 + 2.17165e14i 1.18025 + 2.04425i
\(356\) 1.66222e13 + 2.87905e13i 0.154069 + 0.266855i
\(357\) 0 0
\(358\) 7.99652e12 1.38504e13i 0.0718695 0.124482i
\(359\) 8.94627e13 0.791813 0.395907 0.918291i \(-0.370430\pi\)
0.395907 + 0.918291i \(0.370430\pi\)
\(360\) 0 0
\(361\) −1.05243e14 −0.903447
\(362\) −6.37402e12 + 1.10401e13i −0.0538910 + 0.0933420i
\(363\) 0 0
\(364\) −3.16082e13 5.47470e13i −0.259264 0.449059i
\(365\) −6.25740e13 1.08381e14i −0.505572 0.875677i
\(366\) 0 0
\(367\) 1.13009e13 1.95738e13i 0.0886034 0.153466i −0.818318 0.574766i \(-0.805093\pi\)
0.906921 + 0.421301i \(0.138426\pi\)
\(368\) −4.31057e13 −0.332945
\(369\) 0 0
\(370\) −2.04369e13 −0.153217
\(371\) 3.95703e12 6.85377e12i 0.0292289 0.0506260i
\(372\) 0 0
\(373\) 1.64227e13 + 2.84449e13i 0.117773 + 0.203989i 0.918885 0.394526i \(-0.129091\pi\)
−0.801112 + 0.598515i \(0.795758\pi\)
\(374\) 1.64143e13 + 2.84304e13i 0.115992 + 0.200904i
\(375\) 0 0
\(376\) 1.97573e13 3.42206e13i 0.135580 0.234831i
\(377\) −1.53390e14 −1.03734
\(378\) 0 0
\(379\) −8.18834e13 −0.537874 −0.268937 0.963158i \(-0.586672\pi\)
−0.268937 + 0.963158i \(0.586672\pi\)
\(380\) 4.34758e13 7.53022e13i 0.281473 0.487526i
\(381\) 0 0
\(382\) −2.40278e12 4.16173e12i −0.0151135 0.0261773i
\(383\) 1.93612e13 + 3.35345e13i 0.120043 + 0.207921i 0.919785 0.392424i \(-0.128363\pi\)
−0.799741 + 0.600345i \(0.795030\pi\)
\(384\) 0 0
\(385\) −1.39490e14 + 2.41604e14i −0.840445 + 1.45569i
\(386\) −9.58096e12 −0.0569087
\(387\) 0 0
\(388\) −5.56183e13 −0.321102
\(389\) −1.25714e14 + 2.17743e14i −0.715585 + 1.23943i 0.247149 + 0.968978i \(0.420506\pi\)
−0.962734 + 0.270452i \(0.912827\pi\)
\(390\) 0 0
\(391\) −4.80413e13 8.32100e13i −0.265854 0.460472i
\(392\) −1.05588e13 1.82884e13i −0.0576158 0.0997934i
\(393\) 0 0
\(394\) −1.97707e13 + 3.42438e13i −0.104904 + 0.181699i
\(395\) −3.00909e14 −1.57453
\(396\) 0 0
\(397\) 9.79611e13 0.498547 0.249273 0.968433i \(-0.419808\pi\)
0.249273 + 0.968433i \(0.419808\pi\)
\(398\) −3.20409e12 + 5.54964e12i −0.0160823 + 0.0278553i
\(399\) 0 0
\(400\) −2.33142e14 4.03813e14i −1.13839 1.97174i
\(401\) 2.28135e13 + 3.95141e13i 0.109875 + 0.190308i 0.915719 0.401818i \(-0.131622\pi\)
−0.805845 + 0.592127i \(0.798288\pi\)
\(402\) 0 0
\(403\) −1.10551e14 + 1.91480e14i −0.518065 + 0.897314i
\(404\) 2.92097e14 1.35030
\(405\) 0 0
\(406\) 2.64193e13 0.118858
\(407\) −1.01796e14 + 1.76315e14i −0.451814 + 0.782565i
\(408\) 0 0
\(409\) −9.70854e13 1.68157e14i −0.419446 0.726501i 0.576438 0.817141i \(-0.304442\pi\)
−0.995884 + 0.0906398i \(0.971109\pi\)
\(410\) −1.26112e13 2.18432e13i −0.0537581 0.0931117i
\(411\) 0 0
\(412\) 3.96744e13 6.87181e13i 0.164655 0.285191i
\(413\) 1.66913e14 0.683542
\(414\) 0 0
\(415\) −4.67261e14 −1.86335
\(416\) −3.25987e13 + 5.64626e13i −0.128288 + 0.222202i
\(417\) 0 0
\(418\) 6.14486e12 + 1.06432e13i 0.0235528 + 0.0407946i
\(419\) −5.38261e13 9.32295e13i −0.203618 0.352676i 0.746074 0.665863i \(-0.231937\pi\)
−0.949691 + 0.313187i \(0.898603\pi\)
\(420\) 0 0
\(421\) −5.06974e11 + 8.78105e11i −0.00186825 + 0.00323590i −0.866958 0.498381i \(-0.833928\pi\)
0.865090 + 0.501617i \(0.167261\pi\)
\(422\) 3.26277e13 0.118678
\(423\) 0 0
\(424\) −5.42862e12 −0.0192388
\(425\) 5.19672e14 9.00098e14i 1.81798 3.14884i
\(426\) 0 0
\(427\) 6.20460e13 + 1.07467e14i 0.211524 + 0.366371i
\(428\) 7.74681e13 + 1.34179e14i 0.260725 + 0.451589i
\(429\) 0 0
\(430\) −8.17682e12 + 1.41627e13i −0.0268230 + 0.0464588i
\(431\) 1.63749e13 0.0530338 0.0265169 0.999648i \(-0.491558\pi\)
0.0265169 + 0.999648i \(0.491558\pi\)
\(432\) 0 0
\(433\) 2.85219e13 0.0900524 0.0450262 0.998986i \(-0.485663\pi\)
0.0450262 + 0.998986i \(0.485663\pi\)
\(434\) 1.90408e13 3.29796e13i 0.0593597 0.102814i
\(435\) 0 0
\(436\) −2.45779e14 4.25702e14i −0.747083 1.29399i
\(437\) −1.79848e13 3.11505e13i −0.0539830 0.0935012i
\(438\) 0 0
\(439\) 2.84649e14 4.93027e14i 0.833212 1.44317i −0.0622659 0.998060i \(-0.519833\pi\)
0.895478 0.445106i \(-0.146834\pi\)
\(440\) 1.91365e14 0.553189
\(441\) 0 0
\(442\) −4.72972e13 −0.133356
\(443\) −1.96977e14 + 3.41174e14i −0.548523 + 0.950070i 0.449853 + 0.893103i \(0.351476\pi\)
−0.998376 + 0.0569675i \(0.981857\pi\)
\(444\) 0 0
\(445\) 1.05686e14 + 1.83053e14i 0.287102 + 0.497274i
\(446\) −2.41449e13 4.18201e13i −0.0647863 0.112213i
\(447\) 0 0
\(448\) −1.25007e14 + 2.16519e14i −0.327270 + 0.566848i
\(449\) −2.91972e14 −0.755068 −0.377534 0.925996i \(-0.623228\pi\)
−0.377534 + 0.925996i \(0.623228\pi\)
\(450\) 0 0
\(451\) −2.51263e14 −0.634099
\(452\) −4.71973e13 + 8.17482e13i −0.117667 + 0.203806i
\(453\) 0 0
\(454\) 9.32327e12 + 1.61484e13i 0.0226862 + 0.0392936i
\(455\) −2.00968e14 3.48086e14i −0.483130 0.836805i
\(456\) 0 0
\(457\) −1.20156e13 + 2.08116e13i −0.0281971 + 0.0488389i −0.879780 0.475382i \(-0.842310\pi\)
0.851582 + 0.524221i \(0.175643\pi\)
\(458\) −2.19708e13 −0.0509432
\(459\) 0 0
\(460\) −2.78071e14 −0.629489
\(461\) −3.36056e14 + 5.82065e14i −0.751720 + 1.30202i 0.195269 + 0.980750i \(0.437442\pi\)
−0.946989 + 0.321267i \(0.895891\pi\)
\(462\) 0 0
\(463\) 2.28194e14 + 3.95244e14i 0.498435 + 0.863315i 0.999998 0.00180573i \(-0.000574782\pi\)
−0.501563 + 0.865121i \(0.667241\pi\)
\(464\) 3.12511e14 + 5.41284e14i 0.674553 + 1.16836i
\(465\) 0 0
\(466\) 1.34886e13 2.33630e13i 0.0284345 0.0492500i
\(467\) 1.85626e14 0.386720 0.193360 0.981128i \(-0.438061\pi\)
0.193360 + 0.981128i \(0.438061\pi\)
\(468\) 0 0
\(469\) −5.07408e14 −1.03254
\(470\) 6.23668e13 1.08023e14i 0.125434 0.217258i
\(471\) 0 0
\(472\) −5.72468e13 9.91543e13i −0.112479 0.194819i
\(473\) 8.14568e13 + 1.41087e14i 0.158194 + 0.274001i
\(474\) 0 0
\(475\) 1.94545e14 3.36961e14i 0.369151 0.639389i
\(476\) −5.74166e14 −1.07696
\(477\) 0 0
\(478\) 8.23897e13 0.151015
\(479\) −1.83959e14 + 3.18627e14i −0.333332 + 0.577347i −0.983163 0.182731i \(-0.941506\pi\)
0.649831 + 0.760078i \(0.274840\pi\)
\(480\) 0 0
\(481\) −1.46660e14 2.54023e14i −0.259725 0.449858i
\(482\) 3.02374e12 + 5.23728e12i 0.00529403 + 0.00916953i
\(483\) 0 0
\(484\) 1.85163e14 3.20711e14i 0.316887 0.548864i
\(485\) −3.53626e14 −0.598362
\(486\) 0 0
\(487\) −6.47703e14 −1.07144 −0.535718 0.844397i \(-0.679959\pi\)
−0.535718 + 0.844397i \(0.679959\pi\)
\(488\) 4.25602e13 7.37165e13i 0.0696138 0.120575i
\(489\) 0 0
\(490\) −3.33304e13 5.77300e13i −0.0533044 0.0923258i
\(491\) 2.73516e14 + 4.73744e14i 0.432548 + 0.749195i 0.997092 0.0762077i \(-0.0242812\pi\)
−0.564544 + 0.825403i \(0.690948\pi\)
\(492\) 0 0
\(493\) −6.96586e14 + 1.20652e15i −1.07725 + 1.86585i
\(494\) −1.77062e13 −0.0270787
\(495\) 0 0
\(496\) 9.00926e14 1.34753
\(497\) 3.09940e14 5.36833e14i 0.458478 0.794106i
\(498\) 0 0
\(499\) 5.18322e14 + 8.97760e14i 0.749975 + 1.29899i 0.947834 + 0.318764i \(0.103268\pi\)
−0.197860 + 0.980230i \(0.563399\pi\)
\(500\) −8.70996e14 1.50861e15i −1.24647 2.15895i
\(501\) 0 0
\(502\) 6.47310e13 1.12117e14i 0.0906237 0.156965i
\(503\) 8.18026e14 1.13277 0.566387 0.824139i \(-0.308341\pi\)
0.566387 + 0.824139i \(0.308341\pi\)
\(504\) 0 0
\(505\) 1.85718e15 2.51623
\(506\) 1.96513e13 3.40370e13i 0.0263368 0.0456167i
\(507\) 0 0
\(508\) 2.63315e14 + 4.56076e14i 0.345323 + 0.598118i
\(509\) 1.52241e13 + 2.63689e13i 0.0197508 + 0.0342093i 0.875732 0.482798i \(-0.160379\pi\)
−0.855981 + 0.517007i \(0.827046\pi\)
\(510\) 0 0
\(511\) −1.54683e14 + 2.67920e14i −0.196394 + 0.340165i
\(512\) 4.44860e14 0.558777
\(513\) 0 0
\(514\) −1.43388e14 −0.176285
\(515\) 2.52253e14 4.36915e14i 0.306829 0.531444i
\(516\) 0 0
\(517\) −6.21293e14 1.07611e15i −0.739773 1.28133i
\(518\) 2.52601e13 + 4.37518e13i 0.0297593 + 0.0515445i
\(519\) 0 0
\(520\) −1.37853e14 + 2.38769e14i −0.159000 + 0.275397i
\(521\) 5.08860e14 0.580752 0.290376 0.956913i \(-0.406220\pi\)
0.290376 + 0.956913i \(0.406220\pi\)
\(522\) 0 0
\(523\) 1.56904e15 1.75337 0.876686 0.481062i \(-0.159749\pi\)
0.876686 + 0.481062i \(0.159749\pi\)
\(524\) 1.11325e14 1.92821e14i 0.123104 0.213222i
\(525\) 0 0
\(526\) 2.79641e13 + 4.84352e13i 0.0302816 + 0.0524492i
\(527\) 1.00408e15 + 1.73912e15i 1.07600 + 1.86368i
\(528\) 0 0
\(529\) 4.18890e14 7.25538e14i 0.439636 0.761472i
\(530\) −1.71363e13 −0.0177991
\(531\) 0 0
\(532\) −2.14945e14 −0.218682
\(533\) 1.81001e14 3.13503e14i 0.182256 0.315676i
\(534\) 0 0
\(535\) 4.92549e14 + 8.53120e14i 0.485852 + 0.841520i
\(536\) 1.74027e14 + 3.01424e14i 0.169907 + 0.294287i
\(537\) 0 0
\(538\) −2.70903e13 + 4.69217e13i −0.0259126 + 0.0448819i
\(539\) −6.64070e14 −0.628747
\(540\) 0 0
\(541\) 1.48428e15 1.37699 0.688496 0.725240i \(-0.258271\pi\)
0.688496 + 0.725240i \(0.258271\pi\)
\(542\) 5.54260e13 9.60006e13i 0.0508999 0.0881613i
\(543\) 0 0
\(544\) 2.96079e14 + 5.12824e14i 0.266449 + 0.461503i
\(545\) −1.56268e15 2.70665e15i −1.39216 2.41130i
\(546\) 0 0
\(547\) 5.46153e14 9.45965e14i 0.476853 0.825933i −0.522796 0.852458i \(-0.675111\pi\)
0.999648 + 0.0265251i \(0.00844420\pi\)
\(548\) −1.50339e15 −1.29951
\(549\) 0 0
\(550\) 4.25143e14 0.360197
\(551\) −2.60774e14 + 4.51674e14i −0.218741 + 0.378871i
\(552\) 0 0
\(553\) 3.71925e14 + 6.44192e14i 0.305821 + 0.529697i
\(554\) −2.36163e13 4.09046e13i −0.0192268 0.0333018i
\(555\) 0 0
\(556\) 5.64869e14 9.78382e14i 0.450854 0.780903i
\(557\) 1.37505e15 1.08671 0.543356 0.839503i \(-0.317153\pi\)
0.543356 + 0.839503i \(0.317153\pi\)
\(558\) 0 0
\(559\) −2.34715e14 −0.181876
\(560\) −8.18887e14 + 1.41835e15i −0.628333 + 1.08830i
\(561\) 0 0
\(562\) 1.60679e12 + 2.78305e12i 0.00120895 + 0.00209397i
\(563\) 3.14519e14 + 5.44763e14i 0.234342 + 0.405893i 0.959081 0.283131i \(-0.0913730\pi\)
−0.724739 + 0.689023i \(0.758040\pi\)
\(564\) 0 0
\(565\) −3.00085e14 + 5.19762e14i −0.219269 + 0.379785i
\(566\) −6.06520e13 −0.0438889
\(567\) 0 0
\(568\) −4.25205e14 −0.301775
\(569\) −1.74567e14 + 3.02358e14i −0.122700 + 0.212522i −0.920831 0.389961i \(-0.872489\pi\)
0.798132 + 0.602483i \(0.205822\pi\)
\(570\) 0 0
\(571\) −1.11876e15 1.93774e15i −0.771324 1.33597i −0.936837 0.349765i \(-0.886261\pi\)
0.165513 0.986208i \(-0.447072\pi\)
\(572\) 6.81804e14 + 1.18092e15i 0.465566 + 0.806385i
\(573\) 0 0
\(574\) −3.11749e13 + 5.39964e13i −0.0208828 + 0.0361701i
\(575\) −1.24431e15 −0.825572
\(576\) 0 0
\(577\) −6.58500e14 −0.428636 −0.214318 0.976764i \(-0.568753\pi\)
−0.214318 + 0.976764i \(0.568753\pi\)
\(578\) −1.23067e14 + 2.13159e14i −0.0793485 + 0.137436i
\(579\) 0 0
\(580\) 2.01598e15 + 3.49178e15i 1.27536 + 2.20898i
\(581\) 5.77536e14 + 1.00032e15i 0.361918 + 0.626861i
\(582\) 0 0
\(583\) −8.53550e13 + 1.47839e14i −0.0524870 + 0.0909102i
\(584\) 2.12209e14 0.129269
\(585\) 0 0
\(586\) −2.15198e14 −0.128648
\(587\) −7.70528e14 + 1.33459e15i −0.456330 + 0.790386i −0.998764 0.0497124i \(-0.984170\pi\)
0.542434 + 0.840098i \(0.317503\pi\)
\(588\) 0 0
\(589\) 3.75888e14 + 6.51058e14i 0.218487 + 0.378430i
\(590\) −1.80708e14 3.12995e14i −0.104062 0.180240i
\(591\) 0 0
\(592\) −5.97599e14 + 1.03507e15i −0.337785 + 0.585061i
\(593\) −1.02033e15 −0.571398 −0.285699 0.958319i \(-0.592226\pi\)
−0.285699 + 0.958319i \(0.592226\pi\)
\(594\) 0 0
\(595\) −3.65060e15 −2.00688
\(596\) 1.27754e15 2.21276e15i 0.695854 1.20526i
\(597\) 0 0
\(598\) 2.83122e13 + 4.90382e13i 0.0151397 + 0.0262227i
\(599\) −4.15264e14 7.19258e14i −0.220027 0.381098i 0.734789 0.678296i \(-0.237281\pi\)
−0.954816 + 0.297198i \(0.903948\pi\)
\(600\) 0 0
\(601\) −7.36989e12 + 1.27650e13i −0.00383399 + 0.00664067i −0.867936 0.496676i \(-0.834554\pi\)
0.864102 + 0.503317i \(0.167887\pi\)
\(602\) 4.04263e13 0.0208393
\(603\) 0 0
\(604\) −2.43422e15 −1.23213
\(605\) 1.17728e15 2.03911e15i 0.590507 1.02279i
\(606\) 0 0
\(607\) −4.25308e14 7.36655e14i −0.209491 0.362850i 0.742063 0.670330i \(-0.233847\pi\)
−0.951554 + 0.307481i \(0.900514\pi\)
\(608\) 1.10840e14 + 1.91981e14i 0.0541038 + 0.0937105i
\(609\) 0 0
\(610\) 1.34348e14 2.32697e14i 0.0644045 0.111552i
\(611\) 1.79024e15 0.850518
\(612\) 0 0
\(613\) 2.88157e15 1.34461 0.672306 0.740274i \(-0.265304\pi\)
0.672306 + 0.740274i \(0.265304\pi\)
\(614\) −2.00305e14 + 3.46938e14i −0.0926330 + 0.160445i
\(615\) 0 0
\(616\) −2.36528e14 4.09679e14i −0.107446 0.186102i
\(617\) −1.31694e15 2.28100e15i −0.592920 1.02697i −0.993837 0.110853i \(-0.964642\pi\)
0.400916 0.916115i \(-0.368692\pi\)
\(618\) 0 0
\(619\) 8.69568e14 1.50614e15i 0.384596 0.666140i −0.607117 0.794612i \(-0.707674\pi\)
0.991713 + 0.128472i \(0.0410074\pi\)
\(620\) 5.81180e15 2.54775
\(621\) 0 0
\(622\) −1.72697e14 −0.0743767
\(623\) 2.61255e14 4.52508e14i 0.111527 0.193171i
\(624\) 0 0
\(625\) −2.70542e15 4.68593e15i −1.13474 1.96542i
\(626\) −1.67218e14 2.89631e14i −0.0695225 0.120416i
\(627\) 0 0
\(628\) −2.05317e15 + 3.55620e15i −0.838779 + 1.45281i
\(629\) −2.66409e15 −1.07887
\(630\) 0 0
\(631\) −8.33659e14 −0.331762 −0.165881 0.986146i \(-0.553047\pi\)
−0.165881 + 0.986146i \(0.553047\pi\)
\(632\) 2.55120e14 4.41882e14i 0.100647 0.174326i
\(633\) 0 0
\(634\) −2.79437e14 4.83998e14i −0.108341 0.187652i
\(635\) 1.67418e15 + 2.89977e15i 0.643498 + 1.11457i
\(636\) 0 0
\(637\) 4.78374e14 8.28568e14i 0.180718 0.313012i
\(638\) −5.69876e14 −0.213436
\(639\) 0 0
\(640\) 2.27942e15 0.839142
\(641\) −2.19992e14 + 3.81037e14i −0.0802948 + 0.139075i −0.903377 0.428848i \(-0.858920\pi\)
0.823082 + 0.567923i \(0.192253\pi\)
\(642\) 0 0
\(643\) −2.57010e15 4.45155e15i −0.922126 1.59717i −0.796119 0.605139i \(-0.793117\pi\)
−0.126006 0.992029i \(-0.540216\pi\)
\(644\) 3.43697e14 + 5.95301e14i 0.122265 + 0.211770i
\(645\) 0 0
\(646\) −8.04086e13 + 1.39272e14i −0.0281205 + 0.0487062i
\(647\) −3.06586e15 −1.06311 −0.531555 0.847024i \(-0.678392\pi\)
−0.531555 + 0.847024i \(0.678392\pi\)
\(648\) 0 0
\(649\) −3.60040e15 −1.22745
\(650\) −3.06259e14 + 5.30456e14i −0.103530 + 0.179319i
\(651\) 0 0
\(652\) −3.18676e14 5.51963e14i −0.105922 0.183463i
\(653\) −3.77335e14 6.53564e14i −0.124367 0.215410i 0.797118 0.603823i \(-0.206357\pi\)
−0.921485 + 0.388413i \(0.873023\pi\)
\(654\) 0 0
\(655\) 7.07815e14 1.22597e15i 0.229400 0.397332i
\(656\) −1.47506e15 −0.474065
\(657\) 0 0
\(658\) −3.08343e14 −0.0974521
\(659\) −1.24077e15 + 2.14907e15i −0.388884 + 0.673567i −0.992300 0.123860i \(-0.960473\pi\)
0.603416 + 0.797427i \(0.293806\pi\)
\(660\) 0 0
\(661\) −3.53113e14 6.11609e14i −0.108844 0.188524i 0.806458 0.591291i \(-0.201382\pi\)
−0.915302 + 0.402768i \(0.868048\pi\)
\(662\) 2.09020e14 + 3.62034e14i 0.0638954 + 0.110670i
\(663\) 0 0
\(664\) 3.96159e14 6.86168e14i 0.119109 0.206303i
\(665\) −1.36664e15 −0.407506
\(666\) 0 0
\(667\) 1.66791e15 0.489194
\(668\) −1.48144e15 + 2.56593e15i −0.430937 + 0.746405i
\(669\) 0 0
\(670\) 5.49343e14 + 9.51490e14i 0.157193 + 0.272266i
\(671\) −1.33836e15 2.31811e15i −0.379839 0.657901i
\(672\) 0 0
\(673\) −2.58308e15 + 4.47403e15i −0.721200 + 1.24915i 0.239319 + 0.970941i \(0.423076\pi\)
−0.960519 + 0.278214i \(0.910258\pi\)
\(674\) −7.55111e13 −0.0209113
\(675\) 0 0
\(676\) 1.65440e15 0.450748
\(677\) −1.61865e15 + 2.80359e15i −0.437438 + 0.757665i −0.997491 0.0707921i \(-0.977447\pi\)
0.560053 + 0.828457i \(0.310781\pi\)
\(678\) 0 0
\(679\) 4.37083e14 + 7.57049e14i 0.116220 + 0.201298i
\(680\) 1.25206e15 + 2.16863e15i 0.330236 + 0.571986i
\(681\) 0 0
\(682\) −4.10719e14 + 7.11386e14i −0.106594 + 0.184625i
\(683\) 6.24600e15 1.60801 0.804003 0.594625i \(-0.202699\pi\)
0.804003 + 0.594625i \(0.202699\pi\)
\(684\) 0 0
\(685\) −9.55869e15 −2.42159
\(686\) −2.50352e14 + 4.33622e14i −0.0629170 + 0.108975i
\(687\) 0 0
\(688\) 4.78198e14 + 8.28264e14i 0.118269 + 0.204848i
\(689\) −1.22974e14 2.12997e14i −0.0301722 0.0522597i
\(690\) 0 0
\(691\) 3.24923e15 5.62783e15i 0.784605 1.35898i −0.144630 0.989486i \(-0.546199\pi\)
0.929235 0.369490i \(-0.120468\pi\)
\(692\) −6.21185e15 −1.48812
\(693\) 0 0
\(694\) −9.84031e13 −0.0232023
\(695\) 3.59149e15 6.22064e15i 0.840152 1.45519i
\(696\) 0 0
\(697\) −1.64395e15 2.84740e15i −0.378537 0.655645i
\(698\) −2.50486e14 4.33854e14i −0.0572240 0.0991148i
\(699\) 0 0
\(700\) −3.71784e15 + 6.43948e15i −0.836086 + 1.44814i
\(701\) −1.70842e14 −0.0381194 −0.0190597 0.999818i \(-0.506067\pi\)
−0.0190597 + 0.999818i \(0.506067\pi\)
\(702\) 0 0
\(703\) −9.97331e14 −0.219071
\(704\) 2.69647e15 4.67042e15i 0.587686 1.01790i
\(705\) 0 0
\(706\) −1.18404e14 2.05081e14i −0.0254062 0.0440049i
\(707\) −2.29548e15 3.97588e15i −0.488727 0.846500i
\(708\) 0 0
\(709\) 2.09960e15 3.63661e15i 0.440130 0.762328i −0.557568 0.830131i \(-0.688266\pi\)
0.997699 + 0.0678028i \(0.0215989\pi\)
\(710\) −1.34222e15 −0.279193
\(711\) 0 0
\(712\) −3.58415e14 −0.0734084
\(713\) 1.20209e15 2.08208e15i 0.244312 0.423161i
\(714\) 0 0
\(715\) 4.33497e15 + 7.50839e15i 0.867567 + 1.50267i
\(716\) −3.01680e15 5.22524e15i −0.599135 1.03773i
\(717\) 0 0
\(718\) −2.39430e14 + 4.14705e14i −0.0468268 + 0.0811064i
\(719\) 7.52148e15 1.45980 0.729901 0.683553i \(-0.239566\pi\)
0.729901 + 0.683553i \(0.239566\pi\)
\(720\) 0 0
\(721\) −1.24714e15 −0.238382
\(722\) 2.81662e14 4.87854e14i 0.0534287 0.0925411i
\(723\) 0 0
\(724\) 2.40469e15 + 4.16504e15i 0.449259 + 0.778139i
\(725\) 9.02106e15 + 1.56249e16i 1.67263 + 2.89707i
\(726\) 0 0
\(727\) −3.62296e14 + 6.27514e14i −0.0661643 + 0.114600i −0.897210 0.441604i \(-0.854409\pi\)
0.831046 + 0.556204i \(0.187743\pi\)
\(728\) 6.81548e14 0.123530
\(729\) 0 0
\(730\) 6.69870e14 0.119596
\(731\) −1.06590e15 + 1.84620e15i −0.188874 + 0.327140i
\(732\) 0 0
\(733\) 9.69462e14 + 1.67916e15i 0.169223 + 0.293103i 0.938147 0.346238i \(-0.112541\pi\)
−0.768924 + 0.639340i \(0.779208\pi\)
\(734\) 6.04896e13 + 1.04771e14i 0.0104798 + 0.0181515i
\(735\) 0 0
\(736\) 3.54467e14 6.13955e14i 0.0604990 0.104787i
\(737\) 1.09450e16 1.85415
\(738\) 0 0
\(739\) −3.45034e15 −0.575861 −0.287930 0.957651i \(-0.592967\pi\)
−0.287930 + 0.957651i \(0.592967\pi\)
\(740\) −3.85506e15 + 6.67716e15i −0.638640 + 1.10616i
\(741\) 0 0
\(742\) 2.11805e13 + 3.66857e13i 0.00345712 + 0.00598790i
\(743\) −4.87568e15 8.44493e15i −0.789945 1.36822i −0.926000 0.377524i \(-0.876776\pi\)
0.136055 0.990701i \(-0.456558\pi\)
\(744\) 0 0
\(745\) 8.12268e15 1.40689e16i 1.29670 2.24595i
\(746\) −1.75809e14 −0.0278597
\(747\) 0 0
\(748\) 1.23850e16 1.93392
\(749\) 1.21759e15 2.10892e15i 0.188734 0.326896i
\(750\) 0 0
\(751\) −2.61949e15 4.53708e15i −0.400126 0.693038i 0.593615 0.804749i \(-0.297700\pi\)
−0.993741 + 0.111711i \(0.964367\pi\)
\(752\) −3.64735e15 6.31740e15i −0.553069 0.957944i
\(753\) 0 0
\(754\) 4.10520e14 7.11041e14i 0.0613467 0.106256i
\(755\) −1.54770e16 −2.29604
\(756\) 0 0
\(757\) 7.83764e15 1.14593 0.572965 0.819580i \(-0.305793\pi\)
0.572965 + 0.819580i \(0.305793\pi\)
\(758\) 2.19145e14 3.79571e14i 0.0318091 0.0550950i
\(759\) 0 0
\(760\) 4.68720e14 + 8.11848e14i 0.0670562 + 0.116145i
\(761\) 4.03075e15 + 6.98147e15i 0.572494 + 0.991588i 0.996309 + 0.0858395i \(0.0273572\pi\)
−0.423815 + 0.905749i \(0.639309\pi\)
\(762\) 0 0
\(763\) −3.86296e15 + 6.69085e15i −0.540799 + 0.936691i
\(764\) −1.81296e15 −0.251985
\(765\) 0 0
\(766\) −2.07266e14 −0.0283968
\(767\) 2.59360e15 4.49226e15i 0.352801 0.611069i
\(768\) 0 0
\(769\) 6.20915e15 + 1.07546e16i 0.832602 + 1.44211i 0.895968 + 0.444118i \(0.146483\pi\)
−0.0633665 + 0.997990i \(0.520184\pi\)
\(770\) −7.46637e14 1.29321e15i −0.0994056 0.172175i
\(771\) 0 0
\(772\) −1.80727e15 + 3.13029e15i −0.237208 + 0.410856i
\(773\) −9.96695e15 −1.29890 −0.649449 0.760405i \(-0.725000\pi\)
−0.649449 + 0.760405i \(0.725000\pi\)
\(774\) 0 0
\(775\) 2.60065e16 3.34136
\(776\) 2.99815e14 5.19296e14i 0.0382485 0.0662484i
\(777\) 0 0
\(778\) −6.72900e14 1.16550e15i −0.0846375 0.146596i
\(779\) −6.15429e14 1.06595e15i −0.0768638 0.133132i
\(780\) 0 0
\(781\) −6.68556e15 + 1.15797e16i −0.823299 + 1.42600i
\(782\) 5.14294e14 0.0628889
\(783\) 0 0
\(784\) −3.89848e15 −0.470064
\(785\) −1.30543e16 + 2.26106e16i −1.56304 + 2.70726i
\(786\) 0 0
\(787\) −3.08384e15 5.34136e15i −0.364108 0.630654i 0.624524 0.781005i \(-0.285293\pi\)
−0.988633 + 0.150351i \(0.951959\pi\)
\(788\) 7.45876e15 + 1.29189e16i 0.874525 + 1.51472i
\(789\) 0 0
\(790\) 8.05326e14 1.39487e15i 0.0931157 0.161281i
\(791\) 1.48362e15 0.170354
\(792\) 0 0
\(793\) 3.85644e15 0.436701
\(794\) −2.62174e14 + 4.54100e14i −0.0294834 + 0.0510668i
\(795\) 0 0
\(796\) 1.20878e15 + 2.09368e15i 0.134069 + 0.232214i
\(797\) −1.94585e15 3.37032e15i −0.214333 0.371236i 0.738733 0.673998i \(-0.235424\pi\)
−0.953066 + 0.302762i \(0.902091\pi\)
\(798\) 0 0
\(799\) 8.12994e15 1.40815e16i 0.883243 1.52982i
\(800\) 7.66868e15 0.827419
\(801\) 0 0
\(802\) −2.44224e14 −0.0259914
\(803\) 3.33660e15 5.77915e15i 0.352670 0.610842i
\(804\) 0 0
\(805\) 2.18526e15 + 3.78497e15i 0.227837 + 0.394626i
\(806\) −5.91736e14 1.02492e15i −0.0612753 0.106132i
\(807\) 0 0
\(808\) −1.57457e15 + 2.72724e15i −0.160842 + 0.278587i
\(809\) 1.34438e16 1.36397 0.681986 0.731366i \(-0.261117\pi\)
0.681986 + 0.731366i \(0.261117\pi\)
\(810\) 0 0
\(811\) 8.13011e15 0.813733 0.406866 0.913488i \(-0.366621\pi\)
0.406866 + 0.913488i \(0.366621\pi\)
\(812\) 4.98351e15 8.63170e15i 0.495424 0.858100i
\(813\) 0 0
\(814\) −5.44873e14 9.43748e14i −0.0534394 0.0925597i
\(815\) −2.02617e15 3.50943e15i −0.197382 0.341876i
\(816\) 0 0
\(817\) −3.99032e14 + 6.91144e14i −0.0383519 + 0.0664274i
\(818\) 1.03932e15 0.0992218
\(819\) 0 0
\(820\) −9.51546e15 −0.896300
\(821\) 2.17310e15 3.76392e15i 0.203326 0.352170i −0.746272 0.665641i \(-0.768158\pi\)
0.949598 + 0.313470i \(0.101492\pi\)
\(822\) 0 0
\(823\) −1.37996e15 2.39016e15i −0.127399 0.220662i 0.795269 0.606257i \(-0.207330\pi\)
−0.922668 + 0.385595i \(0.873996\pi\)
\(824\) 4.27737e14 + 7.40862e14i 0.0392263 + 0.0679419i
\(825\) 0 0
\(826\) −4.46711e14 + 7.73727e14i −0.0404238 + 0.0700160i
\(827\) −1.63880e16 −1.47314 −0.736571 0.676361i \(-0.763556\pi\)
−0.736571 + 0.676361i \(0.763556\pi\)
\(828\) 0 0
\(829\) −9.26443e15 −0.821805 −0.410902 0.911679i \(-0.634786\pi\)
−0.410902 + 0.911679i \(0.634786\pi\)
\(830\) 1.25054e15 2.16599e15i 0.110196 0.190865i
\(831\) 0 0
\(832\) 3.88489e15 + 6.72882e15i 0.337831 + 0.585141i
\(833\) −4.34485e15 7.52550e15i −0.375342 0.650112i
\(834\) 0 0
\(835\) −9.41914e15 + 1.63144e16i −0.803037 + 1.39090i
\(836\) 4.63646e15 0.392692
\(837\) 0 0
\(838\) 5.76221e14 0.0481667
\(839\) 9.03463e15 1.56484e16i 0.750273 1.29951i −0.197417 0.980320i \(-0.563255\pi\)
0.947690 0.319191i \(-0.103411\pi\)
\(840\) 0 0
\(841\) −5.99188e15 1.03782e16i −0.491117 0.850640i
\(842\) −2.71364e12 4.70016e12i −0.000220971 0.000382733i
\(843\) 0 0
\(844\) 6.15463e15 1.06601e16i 0.494673 0.856799i
\(845\) 1.05188e16 0.839954
\(846\) 0 0
\(847\) −5.82049e15 −0.458776
\(848\) −5.01083e14 + 8.67902e14i −0.0392403 + 0.0679662i
\(849\) 0 0
\(850\) 2.78161e15 + 4.81789e15i 0.215026 + 0.372437i
\(851\) 1.59473e15 + 2.76216e15i 0.122483 + 0.212147i
\(852\) 0 0
\(853\) 9.83630e14 1.70370e15i 0.0745783 0.129173i −0.826325 0.563194i \(-0.809572\pi\)
0.900903 + 0.434021i \(0.142906\pi\)
\(854\) −6.64218e14 −0.0500371
\(855\) 0 0
\(856\) −1.67040e15 −0.124226
\(857\) −6.04333e13 + 1.04674e14i −0.00446562 + 0.00773468i −0.868250 0.496128i \(-0.834755\pi\)
0.863784 + 0.503862i \(0.168088\pi\)
\(858\) 0 0
\(859\) 6.77934e15 + 1.17422e16i 0.494567 + 0.856614i 0.999980 0.00626268i \(-0.00199349\pi\)
−0.505414 + 0.862877i \(0.668660\pi\)
\(860\) 3.08482e15 + 5.34306e15i 0.223608 + 0.387301i
\(861\) 0 0
\(862\) −4.38242e13 + 7.59058e13i −0.00313635 + 0.00543231i
\(863\) 3.86625e15 0.274935 0.137468 0.990506i \(-0.456104\pi\)
0.137468 + 0.990506i \(0.456104\pi\)
\(864\) 0 0
\(865\) −3.94955e16 −2.77306
\(866\) −7.63335e13 + 1.32213e14i −0.00532558 + 0.00922417i
\(867\) 0 0
\(868\) −7.18340e15 1.24420e16i −0.494848 0.857101i
\(869\) −8.02259e15 1.38955e16i −0.549169 0.951189i
\(870\) 0 0
\(871\) −7.88443e15 + 1.36562e16i −0.532930 + 0.923062i
\(872\) 5.29958e15 0.355959
\(873\) 0 0
\(874\) 1.92531e14 0.0127699
\(875\) −1.36896e16 + 2.37112e16i −0.902294 + 1.56282i
\(876\) 0 0
\(877\) 1.15648e16 + 2.00307e16i 0.752729 + 1.30377i 0.946495 + 0.322717i \(0.104596\pi\)
−0.193766 + 0.981048i \(0.562070\pi\)
\(878\) 1.52362e15 + 2.63899e15i 0.0985501 + 0.170694i
\(879\) 0 0
\(880\) 1.76638e16 3.05946e16i 1.12831 1.95429i
\(881\) −1.74728e16 −1.10916 −0.554581 0.832130i \(-0.687121\pi\)
−0.554581 + 0.832130i \(0.687121\pi\)
\(882\) 0 0
\(883\) 2.15253e16 1.34948 0.674738 0.738057i \(-0.264257\pi\)
0.674738 + 0.738057i \(0.264257\pi\)
\(884\) −8.92176e15 + 1.54529e16i −0.555857 + 0.962772i
\(885\) 0 0
\(886\) −1.05434e15 1.82618e15i −0.0648779 0.112372i
\(887\) 4.09458e15 + 7.09202e15i 0.250397 + 0.433701i 0.963635 0.267221i \(-0.0861055\pi\)
−0.713238 + 0.700922i \(0.752772\pi\)
\(888\) 0 0
\(889\) 4.13859e15 7.16825e15i 0.249973 0.432966i
\(890\) −1.13139e15 −0.0679152
\(891\) 0 0
\(892\) −1.82180e16 −1.08017
\(893\) 3.04353e15 5.27154e15i 0.179347 0.310638i
\(894\) 0 0
\(895\) −1.91811e16 3.32226e16i −1.11647 1.93378i
\(896\) −2.81738e15 4.87984e15i −0.162986 0.282300i
\(897\) 0 0
\(898\) 7.81407e14 1.35344e15i 0.0446537 0.0773425i
\(899\) −3.48600e16 −1.97993
\(900\) 0 0
\(901\) −2.23383e15 −0.125332
\(902\) 6.72457e14 1.16473e15i 0.0374998 0.0649515i
\(903\) 0 0
\(904\) −5.08843e14 8.81343e14i −0.0280322 0.0485533i
\(905\) 1.52892e16 + 2.64817e16i 0.837178 + 1.45003i
\(906\) 0 0
\(907\) −9.30777e13 + 1.61215e14i −0.00503507 + 0.00872100i −0.868532 0.495633i \(-0.834936\pi\)
0.863497 + 0.504354i \(0.168269\pi\)
\(908\) 7.03466e15 0.378243
\(909\) 0 0
\(910\) 2.15141e15 0.114287
\(911\) 1.13431e15 1.96468e15i 0.0598935 0.103739i −0.834524 0.550972i \(-0.814257\pi\)
0.894417 + 0.447233i \(0.147591\pi\)
\(912\) 0 0
\(913\) −1.24577e16 2.15774e16i −0.649905 1.12567i
\(914\) −6.43148e13 1.11396e14i −0.00333508 0.00577653i
\(915\) 0 0
\(916\) −4.14440e15 + 7.17831e15i −0.212342 + 0.367787i
\(917\) −3.49945e15 −0.178225
\(918\) 0 0
\(919\) −8.13214e15 −0.409232 −0.204616 0.978842i \(-0.565595\pi\)
−0.204616 + 0.978842i \(0.565595\pi\)
\(920\) 1.49897e15 2.59629e15i 0.0749824 0.129873i
\(921\) 0 0
\(922\) −1.79878e15 3.11558e15i −0.0889114 0.153999i
\(923\) −9.63211e15 1.66833e16i −0.473273 0.819734i
\(924\) 0 0
\(925\) −1.72505e16 + 2.98788e16i −0.837574 + 1.45072i
\(926\) −2.44287e15 −0.117907
\(927\) 0 0
\(928\) −1.02794e16 −0.490289
\(929\) 9.14760e15 1.58441e16i 0.433732 0.751245i −0.563460 0.826144i \(-0.690530\pi\)
0.997191 + 0.0748986i \(0.0238633\pi\)
\(930\) 0 0
\(931\) −1.62654e15 2.81725e15i −0.0762151 0.132008i
\(932\) −5.08877e15 8.81401e15i −0.237042 0.410569i
\(933\) 0 0
\(934\) −4.96794e14 + 8.60473e14i −0.0228701 + 0.0396122i
\(935\) 7.87451e16 3.60379
\(936\) 0 0
\(937\) 1.24402e16 0.562677 0.281338 0.959609i \(-0.409222\pi\)
0.281338 + 0.959609i \(0.409222\pi\)
\(938\) 1.35798e15 2.35209e15i 0.0610630 0.105764i
\(939\) 0 0
\(940\) −2.35287e16 4.07530e16i −1.04567 1.81116i
\(941\) −1.20714e16 2.09083e16i −0.533355 0.923797i −0.999241 0.0389527i \(-0.987598\pi\)
0.465886 0.884845i \(-0.345736\pi\)
\(942\) 0 0
\(943\) −1.96814e15 + 3.40893e15i −0.0859494 + 0.148869i
\(944\) −2.11364e16 −0.917667
\(945\) 0 0
\(946\) −8.72015e14 −0.0374216
\(947\) −4.24023e15 + 7.34429e15i −0.180911 + 0.313347i −0.942191 0.335076i \(-0.891238\pi\)
0.761280 + 0.648423i \(0.224571\pi\)
\(948\) 0 0
\(949\) 4.80714e15 + 8.32622e15i 0.202732 + 0.351143i
\(950\) 1.04132e15 + 1.80363e15i 0.0436622 + 0.0756252i
\(951\) 0 0
\(952\) 3.09509e15 5.36086e15i 0.128283 0.222193i
\(953\) −1.81730e16 −0.748884 −0.374442 0.927250i \(-0.622166\pi\)
−0.374442 + 0.927250i \(0.622166\pi\)
\(954\) 0 0
\(955\) −1.15270e16 −0.469565
\(956\) 1.55413e16 2.69184e16i 0.629462 1.09026i
\(957\) 0 0
\(958\) −9.84665e14 1.70549e15i −0.0394256 0.0682871i
\(959\) 1.18146e16 + 2.04634e16i 0.470344 + 0.814660i
\(960\) 0 0
\(961\) −1.24199e16 + 2.15120e16i −0.488811 + 0.846645i
\(962\) 1.57003e15 0.0614393
\(963\) 0 0
\(964\) 2.28150e15 0.0882666
\(965\) −1.14908e16 + 1.99027e16i −0.442028 + 0.765616i
\(966\) 0 0
\(967\) 5.24249e15 + 9.08026e15i 0.199385 + 0.345345i 0.948329 0.317288i \(-0.102772\pi\)
−0.748944 + 0.662633i \(0.769439\pi\)
\(968\) 1.99627e15 + 3.45765e15i 0.0754928 + 0.130757i
\(969\) 0 0
\(970\) 9.46412e14 1.63923e15i 0.0353864 0.0612910i
\(971\) 3.04177e16 1.13089 0.565445 0.824786i \(-0.308704\pi\)
0.565445 + 0.824786i \(0.308704\pi\)
\(972\) 0 0
\(973\) −1.77564e16 −0.652730
\(974\) 1.73345e15 3.00243e15i 0.0633634 0.109749i
\(975\) 0 0
\(976\) −7.85696e15 1.36087e16i −0.283975 0.491860i
\(977\) 1.46347e16 + 2.53480e16i 0.525972 + 0.911011i 0.999542 + 0.0302547i \(0.00963183\pi\)
−0.473570 + 0.880756i \(0.657035\pi\)
\(978\) 0 0
\(979\) −5.63541e15 + 9.76081e15i −0.200272 + 0.346881i
\(980\) −2.51487e16 −0.888736
\(981\) 0 0
\(982\) −2.92806e15 −0.102321
\(983\) 6.21882e15 1.07713e16i 0.216104 0.374304i −0.737509 0.675337i \(-0.763998\pi\)
0.953614 + 0.301033i \(0.0973315\pi\)
\(984\) 0 0
\(985\) 4.74234e16 + 8.21398e16i 1.62965 + 2.82263i
\(986\) −3.72856e15 6.45806e15i −0.127414 0.220688i
\(987\) 0 0
\(988\) −3.33995e15 + 5.78497e15i −0.112870 + 0.195496i
\(989\) 2.55221e15 0.0857703
\(990\) 0 0
\(991\) 1.42821e16 0.474666 0.237333 0.971428i \(-0.423727\pi\)
0.237333 + 0.971428i \(0.423727\pi\)
\(992\) −7.40850e15 + 1.28319e16i −0.244859 + 0.424108i
\(993\) 0 0
\(994\) 1.65899e15 + 2.87346e15i 0.0542275 + 0.0939248i
\(995\) 7.68556e15 + 1.33118e16i 0.249832 + 0.432722i
\(996\) 0 0
\(997\) −4.55514e15 + 7.88974e15i −0.146446 + 0.253653i −0.929912 0.367783i \(-0.880117\pi\)
0.783465 + 0.621436i \(0.213450\pi\)
\(998\) −5.54876e15 −0.177410
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.12.c.i.55.2 8
3.2 odd 2 inner 81.12.c.i.55.3 8
9.2 odd 6 27.12.a.d.1.2 4
9.4 even 3 inner 81.12.c.i.28.2 8
9.5 odd 6 inner 81.12.c.i.28.3 8
9.7 even 3 27.12.a.d.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.12.a.d.1.2 4 9.2 odd 6
27.12.a.d.1.3 yes 4 9.7 even 3
81.12.c.i.28.2 8 9.4 even 3 inner
81.12.c.i.28.3 8 9.5 odd 6 inner
81.12.c.i.55.2 8 1.1 even 1 trivial
81.12.c.i.55.3 8 3.2 odd 2 inner