Properties

Label 81.12.c.i
Level $81$
Weight $12$
Character orbit 81.c
Analytic conductor $62.236$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,12,Mod(28,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.28"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-1636] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.2357976253\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 182x^{6} + 32932x^{4} - 34944x^{2} + 36864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{19} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{7} + 409 \beta_{3} - 409) q^{4} + (\beta_{6} + \beta_{5} + \cdots - 16 \beta_1) q^{5} + ( - 16 \beta_{7} + \cdots - 7115 \beta_{3}) q^{7} + ( - 2 \beta_{5} - 762 \beta_{2}) q^{8}+ \cdots + ( - 455360 \beta_{5} - 129557698 \beta_{2}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 1636 q^{4} - 28460 q^{7} + 304992 q^{10} - 370868 q^{13} - 4128904 q^{16} + 66418792 q^{19} - 94424400 q^{22} - 142981516 q^{25} + 778081048 q^{28} - 647361104 q^{31} - 1085116176 q^{34} + 1104329752 q^{37}+ \cdots - 137541602900 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 182x^{6} + 32932x^{4} - 34944x^{2} + 36864 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 91\nu^{7} - 16466\nu^{5} + 2996812\nu^{3} + 3143040\nu ) / 1053824 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -91\nu^{7} + 16466\nu^{5} - 2996812\nu^{3} + 6341376\nu ) / 1053824 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 91\nu^{6} - 16466\nu^{4} + 2996812\nu^{2} - 18432 ) / 3161472 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 27\nu^{6} + 79970436 ) / 32932 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 218447\nu^{7} - 39995914\nu^{5} + 7236576476\nu^{3} - 15312627456\nu ) / 1053824 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 222335\nu^{7} - 39995914\nu^{5} + 7236576476\nu^{3} + 7589156736\nu ) / 1053824 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -73665\nu^{6} + 13485654\nu^{4} - 2425935780\nu^{2} + 2574149760 ) / 1053824 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 9 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} - \beta_{4} + 2457\beta_{3} ) / 27 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -4\beta_{6} - 2\beta_{5} - 4858\beta_{2} + 9716\beta_1 ) / 243 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 182\beta_{7} + 441990\beta_{3} - 441990 ) / 27 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -364\beta_{6} - 728\beta_{5} - 1757944\beta_{2} + 878972\beta_1 ) / 243 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 32932\beta_{4} - 79970436 ) / 27 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 65864\beta_{6} - 65864\beta_{5} - 159040168\beta_{2} - 159040168\beta_1 ) / 243 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1 + \beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
−11.6492 6.72568i
−0.892104 0.515056i
0.892104 + 0.515056i
11.6492 + 6.72568i
−11.6492 + 6.72568i
−0.892104 + 0.515056i
0.892104 0.515056i
11.6492 6.72568i
−34.9476 60.5311i 0 −1418.67 + 2457.22i −1037.06 + 1796.24i 0 −22984.3 39810.0i 55171.8 0 144971.
28.2 −2.67631 4.63551i 0 1009.67 1748.81i 6419.60 11119.1i 0 15869.3 + 27486.4i −21771.0 0 −68723.4
28.3 2.67631 + 4.63551i 0 1009.67 1748.81i −6419.60 + 11119.1i 0 15869.3 + 27486.4i 21771.0 0 −68723.4
28.4 34.9476 + 60.5311i 0 −1418.67 + 2457.22i 1037.06 1796.24i 0 −22984.3 39810.0i −55171.8 0 144971.
55.1 −34.9476 + 60.5311i 0 −1418.67 2457.22i −1037.06 1796.24i 0 −22984.3 + 39810.0i 55171.8 0 144971.
55.2 −2.67631 + 4.63551i 0 1009.67 + 1748.81i 6419.60 + 11119.1i 0 15869.3 27486.4i −21771.0 0 −68723.4
55.3 2.67631 4.63551i 0 1009.67 + 1748.81i −6419.60 11119.1i 0 15869.3 27486.4i 21771.0 0 −68723.4
55.4 34.9476 60.5311i 0 −1418.67 2457.22i 1037.06 + 1796.24i 0 −22984.3 + 39810.0i −55171.8 0 144971.
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 28.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.12.c.i 8
3.b odd 2 1 inner 81.12.c.i 8
9.c even 3 1 27.12.a.d 4
9.c even 3 1 inner 81.12.c.i 8
9.d odd 6 1 27.12.a.d 4
9.d odd 6 1 inner 81.12.c.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.12.a.d 4 9.c even 3 1
27.12.a.d 4 9.d odd 6 1
81.12.c.i 8 1.a even 1 1 trivial
81.12.c.i 8 3.b odd 2 1 inner
81.12.c.i 8 9.c even 3 1 inner
81.12.c.i 8 9.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + 4914T_{2}^{6} + 24007428T_{2}^{4} + 687802752T_{2}^{2} + 19591041024 \) acting on \(S_{12}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + \cdots + 19591041024 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots + 50\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T^{4} + \cdots + 21\!\cdots\!21)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 33\!\cdots\!84 \) Copy content Toggle raw display
$13$ \( (T^{4} + \cdots + 62\!\cdots\!25)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + \cdots + 57\!\cdots\!72)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots - 66935139322199)^{4} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 35\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 66\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots + 49\!\cdots\!00)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots - 63\!\cdots\!75)^{4} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 16\!\cdots\!76)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 15\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( (T^{4} + \cdots + 14\!\cdots\!12)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 42\!\cdots\!44 \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots + 82\!\cdots\!01)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots + 86\!\cdots\!89)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots + 88\!\cdots\!88)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 30\!\cdots\!15)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 12\!\cdots\!25)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 18\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots + 61\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + \cdots + 12\!\cdots\!81)^{2} \) Copy content Toggle raw display
show more
show less