Properties

Label 81.12.a.d.1.7
Level $81$
Weight $12$
Character 81.1
Self dual yes
Analytic conductor $62.236$
Analytic rank $1$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,12,Mod(1,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.2357976253\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4 x^{9} - 4167 x^{8} - 2152 x^{7} + 5690320 x^{6} + 20355744 x^{5} - 2749862760 x^{4} + \cdots - 910577483568 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{30} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(16.6610\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+23.1974 q^{2} -1509.88 q^{4} +6661.33 q^{5} -45287.0 q^{7} -82533.6 q^{8} +154526. q^{10} +412139. q^{11} +2.42329e6 q^{13} -1.05054e6 q^{14} +1.17767e6 q^{16} -2.28802e6 q^{17} -3.36923e6 q^{19} -1.00578e7 q^{20} +9.56055e6 q^{22} -5.49956e7 q^{23} -4.45478e6 q^{25} +5.62139e7 q^{26} +6.83779e7 q^{28} +6.38654e7 q^{29} -7.68718e7 q^{31} +1.96348e8 q^{32} -5.30761e7 q^{34} -3.01671e8 q^{35} +3.81919e8 q^{37} -7.81573e7 q^{38} -5.49783e8 q^{40} -6.48281e8 q^{41} -6.82862e8 q^{43} -6.22281e8 q^{44} -1.27576e9 q^{46} -1.02700e9 q^{47} +7.35813e7 q^{49} -1.03339e8 q^{50} -3.65887e9 q^{52} -5.96226e8 q^{53} +2.74539e9 q^{55} +3.73769e9 q^{56} +1.48151e9 q^{58} -9.31757e9 q^{59} +5.51863e9 q^{61} -1.78323e9 q^{62} +2.14288e9 q^{64} +1.61423e10 q^{65} -1.99744e10 q^{67} +3.45464e9 q^{68} -6.99799e9 q^{70} -1.10915e9 q^{71} -3.51189e10 q^{73} +8.85951e9 q^{74} +5.08713e9 q^{76} -1.86645e10 q^{77} -2.72212e10 q^{79} +7.84486e9 q^{80} -1.50384e10 q^{82} +5.15112e10 q^{83} -1.52413e10 q^{85} -1.58406e10 q^{86} -3.40153e10 q^{88} -9.43745e10 q^{89} -1.09743e11 q^{91} +8.30368e10 q^{92} -2.38237e10 q^{94} -2.24435e10 q^{95} +2.78835e10 q^{97} +1.70689e9 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 5110 q^{4} - 11836 q^{7} - 117642 q^{10} + 27110 q^{13} - 5117294 q^{16} - 24650908 q^{19} - 27880836 q^{22} - 43357796 q^{25} - 177204868 q^{28} - 56217184 q^{31} + 302628942 q^{34} - 636530326 q^{37}+ \cdots - 413983885420 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 23.1974 0.512595 0.256297 0.966598i \(-0.417497\pi\)
0.256297 + 0.966598i \(0.417497\pi\)
\(3\) 0 0
\(4\) −1509.88 −0.737246
\(5\) 6661.33 0.953292 0.476646 0.879095i \(-0.341852\pi\)
0.476646 + 0.879095i \(0.341852\pi\)
\(6\) 0 0
\(7\) −45287.0 −1.01844 −0.509218 0.860637i \(-0.670065\pi\)
−0.509218 + 0.860637i \(0.670065\pi\)
\(8\) −82533.6 −0.890504
\(9\) 0 0
\(10\) 154526. 0.488653
\(11\) 412139. 0.771585 0.385793 0.922585i \(-0.373928\pi\)
0.385793 + 0.922585i \(0.373928\pi\)
\(12\) 0 0
\(13\) 2.42329e6 1.81016 0.905078 0.425245i \(-0.139812\pi\)
0.905078 + 0.425245i \(0.139812\pi\)
\(14\) −1.05054e6 −0.522045
\(15\) 0 0
\(16\) 1.17767e6 0.280779
\(17\) −2.28802e6 −0.390833 −0.195416 0.980720i \(-0.562606\pi\)
−0.195416 + 0.980720i \(0.562606\pi\)
\(18\) 0 0
\(19\) −3.36923e6 −0.312166 −0.156083 0.987744i \(-0.549887\pi\)
−0.156083 + 0.987744i \(0.549887\pi\)
\(20\) −1.00578e7 −0.702811
\(21\) 0 0
\(22\) 9.56055e6 0.395511
\(23\) −5.49956e7 −1.78166 −0.890830 0.454336i \(-0.849877\pi\)
−0.890830 + 0.454336i \(0.849877\pi\)
\(24\) 0 0
\(25\) −4.45478e6 −0.0912340
\(26\) 5.62139e7 0.927877
\(27\) 0 0
\(28\) 6.83779e7 0.750839
\(29\) 6.38654e7 0.578198 0.289099 0.957299i \(-0.406644\pi\)
0.289099 + 0.957299i \(0.406644\pi\)
\(30\) 0 0
\(31\) −7.68718e7 −0.482256 −0.241128 0.970493i \(-0.577517\pi\)
−0.241128 + 0.970493i \(0.577517\pi\)
\(32\) 1.96348e8 1.03443
\(33\) 0 0
\(34\) −5.30761e7 −0.200339
\(35\) −3.01671e8 −0.970867
\(36\) 0 0
\(37\) 3.81919e8 0.905443 0.452722 0.891652i \(-0.350453\pi\)
0.452722 + 0.891652i \(0.350453\pi\)
\(38\) −7.81573e7 −0.160015
\(39\) 0 0
\(40\) −5.49783e8 −0.848910
\(41\) −6.48281e8 −0.873880 −0.436940 0.899491i \(-0.643938\pi\)
−0.436940 + 0.899491i \(0.643938\pi\)
\(42\) 0 0
\(43\) −6.82862e8 −0.708364 −0.354182 0.935177i \(-0.615241\pi\)
−0.354182 + 0.935177i \(0.615241\pi\)
\(44\) −6.22281e8 −0.568849
\(45\) 0 0
\(46\) −1.27576e9 −0.913270
\(47\) −1.02700e9 −0.653177 −0.326588 0.945167i \(-0.605899\pi\)
−0.326588 + 0.945167i \(0.605899\pi\)
\(48\) 0 0
\(49\) 7.35813e7 0.0372125
\(50\) −1.03339e8 −0.0467661
\(51\) 0 0
\(52\) −3.65887e9 −1.33453
\(53\) −5.96226e8 −0.195837 −0.0979183 0.995194i \(-0.531218\pi\)
−0.0979183 + 0.995194i \(0.531218\pi\)
\(54\) 0 0
\(55\) 2.74539e9 0.735546
\(56\) 3.73769e9 0.906921
\(57\) 0 0
\(58\) 1.48151e9 0.296381
\(59\) −9.31757e9 −1.69675 −0.848373 0.529399i \(-0.822417\pi\)
−0.848373 + 0.529399i \(0.822417\pi\)
\(60\) 0 0
\(61\) 5.51863e9 0.836598 0.418299 0.908309i \(-0.362626\pi\)
0.418299 + 0.908309i \(0.362626\pi\)
\(62\) −1.78323e9 −0.247202
\(63\) 0 0
\(64\) 2.14288e9 0.249464
\(65\) 1.61423e10 1.72561
\(66\) 0 0
\(67\) −1.99744e10 −1.80744 −0.903718 0.428128i \(-0.859173\pi\)
−0.903718 + 0.428128i \(0.859173\pi\)
\(68\) 3.45464e9 0.288140
\(69\) 0 0
\(70\) −6.99799e9 −0.497662
\(71\) −1.10915e9 −0.0729577 −0.0364788 0.999334i \(-0.511614\pi\)
−0.0364788 + 0.999334i \(0.511614\pi\)
\(72\) 0 0
\(73\) −3.51189e10 −1.98274 −0.991370 0.131093i \(-0.958151\pi\)
−0.991370 + 0.131093i \(0.958151\pi\)
\(74\) 8.85951e9 0.464126
\(75\) 0 0
\(76\) 5.08713e9 0.230143
\(77\) −1.86645e10 −0.785811
\(78\) 0 0
\(79\) −2.72212e10 −0.995311 −0.497656 0.867375i \(-0.665806\pi\)
−0.497656 + 0.867375i \(0.665806\pi\)
\(80\) 7.84486e9 0.267664
\(81\) 0 0
\(82\) −1.50384e10 −0.447947
\(83\) 5.15112e10 1.43540 0.717699 0.696354i \(-0.245195\pi\)
0.717699 + 0.696354i \(0.245195\pi\)
\(84\) 0 0
\(85\) −1.52413e10 −0.372578
\(86\) −1.58406e10 −0.363104
\(87\) 0 0
\(88\) −3.40153e10 −0.687100
\(89\) −9.43745e10 −1.79147 −0.895736 0.444587i \(-0.853350\pi\)
−0.895736 + 0.444587i \(0.853350\pi\)
\(90\) 0 0
\(91\) −1.09743e11 −1.84353
\(92\) 8.30368e10 1.31352
\(93\) 0 0
\(94\) −2.38237e10 −0.334815
\(95\) −2.24435e10 −0.297585
\(96\) 0 0
\(97\) 2.78835e10 0.329688 0.164844 0.986320i \(-0.447288\pi\)
0.164844 + 0.986320i \(0.447288\pi\)
\(98\) 1.70689e9 0.0190749
\(99\) 0 0
\(100\) 6.72619e9 0.0672619
\(101\) 1.28898e11 1.22033 0.610165 0.792274i \(-0.291103\pi\)
0.610165 + 0.792274i \(0.291103\pi\)
\(102\) 0 0
\(103\) −1.19799e11 −1.01824 −0.509120 0.860696i \(-0.670029\pi\)
−0.509120 + 0.860696i \(0.670029\pi\)
\(104\) −2.00002e11 −1.61195
\(105\) 0 0
\(106\) −1.38309e10 −0.100385
\(107\) 1.47222e11 1.01475 0.507377 0.861724i \(-0.330615\pi\)
0.507377 + 0.861724i \(0.330615\pi\)
\(108\) 0 0
\(109\) 1.88136e11 1.17119 0.585594 0.810605i \(-0.300861\pi\)
0.585594 + 0.810605i \(0.300861\pi\)
\(110\) 6.36860e10 0.377037
\(111\) 0 0
\(112\) −5.33332e10 −0.285955
\(113\) −7.81419e10 −0.398981 −0.199491 0.979900i \(-0.563929\pi\)
−0.199491 + 0.979900i \(0.563929\pi\)
\(114\) 0 0
\(115\) −3.66344e11 −1.69844
\(116\) −9.64292e10 −0.426275
\(117\) 0 0
\(118\) −2.16143e11 −0.869743
\(119\) 1.03617e11 0.398038
\(120\) 0 0
\(121\) −1.15453e11 −0.404656
\(122\) 1.28018e11 0.428836
\(123\) 0 0
\(124\) 1.16067e11 0.355542
\(125\) −3.54935e11 −1.04026
\(126\) 0 0
\(127\) 4.90730e10 0.131802 0.0659010 0.997826i \(-0.479008\pi\)
0.0659010 + 0.997826i \(0.479008\pi\)
\(128\) −3.52411e11 −0.906555
\(129\) 0 0
\(130\) 3.74459e11 0.884538
\(131\) −2.61853e11 −0.593015 −0.296507 0.955031i \(-0.595822\pi\)
−0.296507 + 0.955031i \(0.595822\pi\)
\(132\) 0 0
\(133\) 1.52582e11 0.317921
\(134\) −4.63355e11 −0.926482
\(135\) 0 0
\(136\) 1.88838e11 0.348038
\(137\) −2.03546e11 −0.360329 −0.180165 0.983636i \(-0.557663\pi\)
−0.180165 + 0.983636i \(0.557663\pi\)
\(138\) 0 0
\(139\) 8.83317e10 0.144389 0.0721947 0.997391i \(-0.477000\pi\)
0.0721947 + 0.997391i \(0.477000\pi\)
\(140\) 4.55488e11 0.715769
\(141\) 0 0
\(142\) −2.57295e10 −0.0373977
\(143\) 9.98730e11 1.39669
\(144\) 0 0
\(145\) 4.25429e11 0.551192
\(146\) −8.14668e11 −1.01634
\(147\) 0 0
\(148\) −5.76651e11 −0.667535
\(149\) 1.38554e12 1.54559 0.772796 0.634655i \(-0.218858\pi\)
0.772796 + 0.634655i \(0.218858\pi\)
\(150\) 0 0
\(151\) 1.04439e11 0.108265 0.0541327 0.998534i \(-0.482761\pi\)
0.0541327 + 0.998534i \(0.482761\pi\)
\(152\) 2.78074e11 0.277985
\(153\) 0 0
\(154\) −4.32968e11 −0.402802
\(155\) −5.12069e11 −0.459731
\(156\) 0 0
\(157\) 1.38080e12 1.15527 0.577635 0.816295i \(-0.303976\pi\)
0.577635 + 0.816295i \(0.303976\pi\)
\(158\) −6.31462e11 −0.510192
\(159\) 0 0
\(160\) 1.30794e12 0.986114
\(161\) 2.49058e12 1.81451
\(162\) 0 0
\(163\) 1.44400e12 0.982958 0.491479 0.870889i \(-0.336456\pi\)
0.491479 + 0.870889i \(0.336456\pi\)
\(164\) 9.78827e11 0.644265
\(165\) 0 0
\(166\) 1.19493e12 0.735777
\(167\) 1.37826e12 0.821091 0.410546 0.911840i \(-0.365338\pi\)
0.410546 + 0.911840i \(0.365338\pi\)
\(168\) 0 0
\(169\) 4.08015e12 2.27667
\(170\) −3.53558e11 −0.190981
\(171\) 0 0
\(172\) 1.03104e12 0.522239
\(173\) −3.73097e12 −1.83049 −0.915247 0.402892i \(-0.868005\pi\)
−0.915247 + 0.402892i \(0.868005\pi\)
\(174\) 0 0
\(175\) 2.01744e11 0.0929160
\(176\) 4.85365e11 0.216645
\(177\) 0 0
\(178\) −2.18924e12 −0.918299
\(179\) −3.24313e12 −1.31908 −0.659542 0.751668i \(-0.729250\pi\)
−0.659542 + 0.751668i \(0.729250\pi\)
\(180\) 0 0
\(181\) −2.12149e12 −0.811724 −0.405862 0.913934i \(-0.633029\pi\)
−0.405862 + 0.913934i \(0.633029\pi\)
\(182\) −2.54576e12 −0.944983
\(183\) 0 0
\(184\) 4.53899e12 1.58658
\(185\) 2.54409e12 0.863152
\(186\) 0 0
\(187\) −9.42982e11 −0.301561
\(188\) 1.55064e12 0.481552
\(189\) 0 0
\(190\) −5.20631e11 −0.152541
\(191\) 8.01543e11 0.228162 0.114081 0.993471i \(-0.463608\pi\)
0.114081 + 0.993471i \(0.463608\pi\)
\(192\) 0 0
\(193\) −5.29295e12 −1.42276 −0.711382 0.702806i \(-0.751930\pi\)
−0.711382 + 0.702806i \(0.751930\pi\)
\(194\) 6.46824e11 0.168996
\(195\) 0 0
\(196\) −1.11099e11 −0.0274348
\(197\) 4.34920e12 1.04435 0.522173 0.852839i \(-0.325121\pi\)
0.522173 + 0.852839i \(0.325121\pi\)
\(198\) 0 0
\(199\) 1.76962e12 0.401966 0.200983 0.979595i \(-0.435586\pi\)
0.200983 + 0.979595i \(0.435586\pi\)
\(200\) 3.67669e11 0.0812442
\(201\) 0 0
\(202\) 2.99009e12 0.625535
\(203\) −2.89227e12 −0.588858
\(204\) 0 0
\(205\) −4.31841e12 −0.833063
\(206\) −2.77903e12 −0.521944
\(207\) 0 0
\(208\) 2.85384e12 0.508254
\(209\) −1.38859e12 −0.240863
\(210\) 0 0
\(211\) −9.86755e12 −1.62426 −0.812131 0.583476i \(-0.801692\pi\)
−0.812131 + 0.583476i \(0.801692\pi\)
\(212\) 9.00231e11 0.144380
\(213\) 0 0
\(214\) 3.41516e12 0.520157
\(215\) −4.54877e12 −0.675278
\(216\) 0 0
\(217\) 3.48129e12 0.491147
\(218\) 4.36427e12 0.600345
\(219\) 0 0
\(220\) −4.14522e12 −0.542279
\(221\) −5.54453e12 −0.707468
\(222\) 0 0
\(223\) −2.18303e11 −0.0265083 −0.0132542 0.999912i \(-0.504219\pi\)
−0.0132542 + 0.999912i \(0.504219\pi\)
\(224\) −8.89199e12 −1.05350
\(225\) 0 0
\(226\) −1.81269e12 −0.204516
\(227\) 1.06005e13 1.16730 0.583651 0.812005i \(-0.301624\pi\)
0.583651 + 0.812005i \(0.301624\pi\)
\(228\) 0 0
\(229\) 8.18469e12 0.858829 0.429415 0.903107i \(-0.358720\pi\)
0.429415 + 0.903107i \(0.358720\pi\)
\(230\) −8.49823e12 −0.870613
\(231\) 0 0
\(232\) −5.27104e12 −0.514888
\(233\) 9.83926e12 0.938652 0.469326 0.883025i \(-0.344497\pi\)
0.469326 + 0.883025i \(0.344497\pi\)
\(234\) 0 0
\(235\) −6.84117e12 −0.622668
\(236\) 1.40684e13 1.25092
\(237\) 0 0
\(238\) 2.40366e12 0.204032
\(239\) −2.05688e13 −1.70616 −0.853081 0.521778i \(-0.825269\pi\)
−0.853081 + 0.521778i \(0.825269\pi\)
\(240\) 0 0
\(241\) −9.35141e12 −0.740940 −0.370470 0.928844i \(-0.620803\pi\)
−0.370470 + 0.928844i \(0.620803\pi\)
\(242\) −2.67821e12 −0.207425
\(243\) 0 0
\(244\) −8.33247e12 −0.616779
\(245\) 4.90149e11 0.0354744
\(246\) 0 0
\(247\) −8.16460e12 −0.565069
\(248\) 6.34451e12 0.429451
\(249\) 0 0
\(250\) −8.23357e12 −0.533234
\(251\) 2.07333e12 0.131360 0.0656799 0.997841i \(-0.479078\pi\)
0.0656799 + 0.997841i \(0.479078\pi\)
\(252\) 0 0
\(253\) −2.26658e13 −1.37470
\(254\) 1.13837e12 0.0675611
\(255\) 0 0
\(256\) −1.25636e13 −0.714160
\(257\) 9.25340e12 0.514836 0.257418 0.966300i \(-0.417128\pi\)
0.257418 + 0.966300i \(0.417128\pi\)
\(258\) 0 0
\(259\) −1.72959e13 −0.922136
\(260\) −2.43730e13 −1.27220
\(261\) 0 0
\(262\) −6.07431e12 −0.303976
\(263\) 1.55658e13 0.762810 0.381405 0.924408i \(-0.375440\pi\)
0.381405 + 0.924408i \(0.375440\pi\)
\(264\) 0 0
\(265\) −3.97166e12 −0.186689
\(266\) 3.53950e12 0.162965
\(267\) 0 0
\(268\) 3.01590e13 1.33253
\(269\) 7.69864e12 0.333255 0.166627 0.986020i \(-0.446712\pi\)
0.166627 + 0.986020i \(0.446712\pi\)
\(270\) 0 0
\(271\) −2.73668e12 −0.113735 −0.0568673 0.998382i \(-0.518111\pi\)
−0.0568673 + 0.998382i \(0.518111\pi\)
\(272\) −2.69454e12 −0.109738
\(273\) 0 0
\(274\) −4.72174e12 −0.184703
\(275\) −1.83599e12 −0.0703948
\(276\) 0 0
\(277\) 1.35258e13 0.498336 0.249168 0.968460i \(-0.419843\pi\)
0.249168 + 0.968460i \(0.419843\pi\)
\(278\) 2.04907e12 0.0740133
\(279\) 0 0
\(280\) 2.48980e13 0.864561
\(281\) 5.03006e13 1.71273 0.856363 0.516374i \(-0.172719\pi\)
0.856363 + 0.516374i \(0.172719\pi\)
\(282\) 0 0
\(283\) −2.60476e13 −0.852987 −0.426493 0.904491i \(-0.640251\pi\)
−0.426493 + 0.904491i \(0.640251\pi\)
\(284\) 1.67469e12 0.0537878
\(285\) 0 0
\(286\) 2.31679e13 0.715936
\(287\) 2.93587e13 0.889992
\(288\) 0 0
\(289\) −2.90369e13 −0.847250
\(290\) 9.86884e12 0.282538
\(291\) 0 0
\(292\) 5.30254e13 1.46177
\(293\) 2.12642e13 0.575278 0.287639 0.957739i \(-0.407130\pi\)
0.287639 + 0.957739i \(0.407130\pi\)
\(294\) 0 0
\(295\) −6.20675e13 −1.61749
\(296\) −3.15211e13 −0.806300
\(297\) 0 0
\(298\) 3.21409e13 0.792262
\(299\) −1.33270e14 −3.22508
\(300\) 0 0
\(301\) 3.09247e13 0.721423
\(302\) 2.42271e12 0.0554963
\(303\) 0 0
\(304\) −3.96784e12 −0.0876496
\(305\) 3.67614e13 0.797523
\(306\) 0 0
\(307\) 2.64776e13 0.554138 0.277069 0.960850i \(-0.410637\pi\)
0.277069 + 0.960850i \(0.410637\pi\)
\(308\) 2.81812e13 0.579336
\(309\) 0 0
\(310\) −1.18787e13 −0.235656
\(311\) −6.02016e13 −1.17335 −0.586673 0.809824i \(-0.699563\pi\)
−0.586673 + 0.809824i \(0.699563\pi\)
\(312\) 0 0
\(313\) 5.56934e13 1.04788 0.523938 0.851756i \(-0.324462\pi\)
0.523938 + 0.851756i \(0.324462\pi\)
\(314\) 3.20310e13 0.592185
\(315\) 0 0
\(316\) 4.11008e13 0.733790
\(317\) −1.06838e14 −1.87456 −0.937282 0.348571i \(-0.886667\pi\)
−0.937282 + 0.348571i \(0.886667\pi\)
\(318\) 0 0
\(319\) 2.63214e13 0.446129
\(320\) 1.42745e13 0.237812
\(321\) 0 0
\(322\) 5.77751e13 0.930108
\(323\) 7.70886e12 0.122005
\(324\) 0 0
\(325\) −1.07952e13 −0.165148
\(326\) 3.34970e13 0.503859
\(327\) 0 0
\(328\) 5.35049e13 0.778194
\(329\) 4.65096e13 0.665219
\(330\) 0 0
\(331\) −2.93553e13 −0.406100 −0.203050 0.979168i \(-0.565085\pi\)
−0.203050 + 0.979168i \(0.565085\pi\)
\(332\) −7.77758e13 −1.05824
\(333\) 0 0
\(334\) 3.19721e13 0.420887
\(335\) −1.33056e14 −1.72301
\(336\) 0 0
\(337\) −1.67726e13 −0.210202 −0.105101 0.994462i \(-0.533517\pi\)
−0.105101 + 0.994462i \(0.533517\pi\)
\(338\) 9.46489e13 1.16701
\(339\) 0 0
\(340\) 2.30125e13 0.274682
\(341\) −3.16819e13 −0.372102
\(342\) 0 0
\(343\) 8.62148e13 0.980538
\(344\) 5.63590e13 0.630801
\(345\) 0 0
\(346\) −8.65489e13 −0.938302
\(347\) 9.80389e13 1.04613 0.523066 0.852292i \(-0.324788\pi\)
0.523066 + 0.852292i \(0.324788\pi\)
\(348\) 0 0
\(349\) −1.15311e13 −0.119215 −0.0596074 0.998222i \(-0.518985\pi\)
−0.0596074 + 0.998222i \(0.518985\pi\)
\(350\) 4.67993e12 0.0476283
\(351\) 0 0
\(352\) 8.09225e13 0.798151
\(353\) −6.16619e13 −0.598765 −0.299382 0.954133i \(-0.596781\pi\)
−0.299382 + 0.954133i \(0.596781\pi\)
\(354\) 0 0
\(355\) −7.38844e12 −0.0695500
\(356\) 1.42494e14 1.32076
\(357\) 0 0
\(358\) −7.52321e13 −0.676156
\(359\) 2.07857e14 1.83969 0.919846 0.392279i \(-0.128313\pi\)
0.919846 + 0.392279i \(0.128313\pi\)
\(360\) 0 0
\(361\) −1.05139e14 −0.902553
\(362\) −4.92130e13 −0.416086
\(363\) 0 0
\(364\) 1.65699e14 1.35914
\(365\) −2.33939e14 −1.89013
\(366\) 0 0
\(367\) 1.39044e14 1.09016 0.545080 0.838384i \(-0.316499\pi\)
0.545080 + 0.838384i \(0.316499\pi\)
\(368\) −6.47668e13 −0.500253
\(369\) 0 0
\(370\) 5.90162e13 0.442447
\(371\) 2.70013e13 0.199447
\(372\) 0 0
\(373\) −9.20465e13 −0.660098 −0.330049 0.943964i \(-0.607065\pi\)
−0.330049 + 0.943964i \(0.607065\pi\)
\(374\) −2.18747e13 −0.154578
\(375\) 0 0
\(376\) 8.47617e13 0.581656
\(377\) 1.54764e14 1.04663
\(378\) 0 0
\(379\) −2.49260e14 −1.63733 −0.818665 0.574271i \(-0.805286\pi\)
−0.818665 + 0.574271i \(0.805286\pi\)
\(380\) 3.38871e13 0.219394
\(381\) 0 0
\(382\) 1.85937e13 0.116955
\(383\) −3.01373e13 −0.186858 −0.0934288 0.995626i \(-0.529783\pi\)
−0.0934288 + 0.995626i \(0.529783\pi\)
\(384\) 0 0
\(385\) −1.24331e14 −0.749107
\(386\) −1.22783e14 −0.729302
\(387\) 0 0
\(388\) −4.21008e13 −0.243061
\(389\) 1.50936e14 0.859150 0.429575 0.903031i \(-0.358663\pi\)
0.429575 + 0.903031i \(0.358663\pi\)
\(390\) 0 0
\(391\) 1.25831e14 0.696331
\(392\) −6.07293e12 −0.0331379
\(393\) 0 0
\(394\) 1.00890e14 0.535327
\(395\) −1.81330e14 −0.948823
\(396\) 0 0
\(397\) −1.32504e14 −0.674341 −0.337171 0.941444i \(-0.609470\pi\)
−0.337171 + 0.941444i \(0.609470\pi\)
\(398\) 4.10507e13 0.206046
\(399\) 0 0
\(400\) −5.24628e12 −0.0256166
\(401\) −1.94718e14 −0.937806 −0.468903 0.883250i \(-0.655351\pi\)
−0.468903 + 0.883250i \(0.655351\pi\)
\(402\) 0 0
\(403\) −1.86282e14 −0.872959
\(404\) −1.94620e14 −0.899684
\(405\) 0 0
\(406\) −6.70931e13 −0.301846
\(407\) 1.57404e14 0.698627
\(408\) 0 0
\(409\) −1.31584e14 −0.568493 −0.284247 0.958751i \(-0.591743\pi\)
−0.284247 + 0.958751i \(0.591743\pi\)
\(410\) −1.00176e14 −0.427024
\(411\) 0 0
\(412\) 1.80883e14 0.750693
\(413\) 4.21965e14 1.72803
\(414\) 0 0
\(415\) 3.43133e14 1.36835
\(416\) 4.75806e14 1.87248
\(417\) 0 0
\(418\) −3.22117e13 −0.123465
\(419\) 1.82316e14 0.689679 0.344840 0.938662i \(-0.387933\pi\)
0.344840 + 0.938662i \(0.387933\pi\)
\(420\) 0 0
\(421\) −3.56128e14 −1.31236 −0.656182 0.754602i \(-0.727830\pi\)
−0.656182 + 0.754602i \(0.727830\pi\)
\(422\) −2.28901e14 −0.832588
\(423\) 0 0
\(424\) 4.92087e13 0.174393
\(425\) 1.01926e13 0.0356572
\(426\) 0 0
\(427\) −2.49922e14 −0.852022
\(428\) −2.22287e14 −0.748124
\(429\) 0 0
\(430\) −1.05520e14 −0.346144
\(431\) 9.50676e13 0.307899 0.153949 0.988079i \(-0.450801\pi\)
0.153949 + 0.988079i \(0.450801\pi\)
\(432\) 0 0
\(433\) −5.78537e14 −1.82662 −0.913309 0.407266i \(-0.866482\pi\)
−0.913309 + 0.407266i \(0.866482\pi\)
\(434\) 8.07569e13 0.251760
\(435\) 0 0
\(436\) −2.84063e14 −0.863454
\(437\) 1.85293e14 0.556174
\(438\) 0 0
\(439\) −2.01434e14 −0.589627 −0.294813 0.955555i \(-0.595257\pi\)
−0.294813 + 0.955555i \(0.595257\pi\)
\(440\) −2.26587e14 −0.655007
\(441\) 0 0
\(442\) −1.28619e14 −0.362645
\(443\) −1.44356e14 −0.401988 −0.200994 0.979592i \(-0.564417\pi\)
−0.200994 + 0.979592i \(0.564417\pi\)
\(444\) 0 0
\(445\) −6.28660e14 −1.70780
\(446\) −5.06406e12 −0.0135880
\(447\) 0 0
\(448\) −9.70446e13 −0.254064
\(449\) −4.58290e14 −1.18518 −0.592592 0.805503i \(-0.701895\pi\)
−0.592592 + 0.805503i \(0.701895\pi\)
\(450\) 0 0
\(451\) −2.67182e14 −0.674273
\(452\) 1.17985e14 0.294147
\(453\) 0 0
\(454\) 2.45903e14 0.598353
\(455\) −7.31036e14 −1.75742
\(456\) 0 0
\(457\) −2.25248e14 −0.528595 −0.264297 0.964441i \(-0.585140\pi\)
−0.264297 + 0.964441i \(0.585140\pi\)
\(458\) 1.89863e14 0.440232
\(459\) 0 0
\(460\) 5.53136e14 1.25217
\(461\) 3.41062e13 0.0762918 0.0381459 0.999272i \(-0.487855\pi\)
0.0381459 + 0.999272i \(0.487855\pi\)
\(462\) 0 0
\(463\) −1.34765e14 −0.294361 −0.147181 0.989110i \(-0.547020\pi\)
−0.147181 + 0.989110i \(0.547020\pi\)
\(464\) 7.52125e13 0.162346
\(465\) 0 0
\(466\) 2.28245e14 0.481148
\(467\) −7.23813e13 −0.150794 −0.0753969 0.997154i \(-0.524022\pi\)
−0.0753969 + 0.997154i \(0.524022\pi\)
\(468\) 0 0
\(469\) 9.04581e14 1.84076
\(470\) −1.58697e14 −0.319177
\(471\) 0 0
\(472\) 7.69013e14 1.51096
\(473\) −2.81434e14 −0.546563
\(474\) 0 0
\(475\) 1.50092e13 0.0284801
\(476\) −1.56450e14 −0.293452
\(477\) 0 0
\(478\) −4.77143e14 −0.874570
\(479\) 3.38626e14 0.613584 0.306792 0.951777i \(-0.400744\pi\)
0.306792 + 0.951777i \(0.400744\pi\)
\(480\) 0 0
\(481\) 9.25497e14 1.63899
\(482\) −2.16928e14 −0.379802
\(483\) 0 0
\(484\) 1.74320e14 0.298331
\(485\) 1.85741e14 0.314289
\(486\) 0 0
\(487\) −4.00482e14 −0.662482 −0.331241 0.943546i \(-0.607467\pi\)
−0.331241 + 0.943546i \(0.607467\pi\)
\(488\) −4.55472e14 −0.744994
\(489\) 0 0
\(490\) 1.13702e13 0.0181840
\(491\) 6.70479e14 1.06032 0.530160 0.847898i \(-0.322132\pi\)
0.530160 + 0.847898i \(0.322132\pi\)
\(492\) 0 0
\(493\) −1.46125e14 −0.225979
\(494\) −1.89397e14 −0.289651
\(495\) 0 0
\(496\) −9.05298e13 −0.135407
\(497\) 5.02302e13 0.0743027
\(498\) 0 0
\(499\) −7.12612e14 −1.03110 −0.515549 0.856860i \(-0.672412\pi\)
−0.515549 + 0.856860i \(0.672412\pi\)
\(500\) 5.35910e14 0.766932
\(501\) 0 0
\(502\) 4.80958e13 0.0673343
\(503\) 1.06773e15 1.47856 0.739280 0.673398i \(-0.235166\pi\)
0.739280 + 0.673398i \(0.235166\pi\)
\(504\) 0 0
\(505\) 8.58630e14 1.16333
\(506\) −5.25789e14 −0.704666
\(507\) 0 0
\(508\) −7.40944e13 −0.0971706
\(509\) 5.09968e14 0.661599 0.330800 0.943701i \(-0.392682\pi\)
0.330800 + 0.943701i \(0.392682\pi\)
\(510\) 0 0
\(511\) 1.59043e15 2.01929
\(512\) 4.30294e14 0.540481
\(513\) 0 0
\(514\) 2.14655e14 0.263902
\(515\) −7.98024e14 −0.970680
\(516\) 0 0
\(517\) −4.23265e14 −0.503982
\(518\) −4.01220e14 −0.472682
\(519\) 0 0
\(520\) −1.33228e15 −1.53666
\(521\) 2.78072e14 0.317358 0.158679 0.987330i \(-0.449276\pi\)
0.158679 + 0.987330i \(0.449276\pi\)
\(522\) 0 0
\(523\) −5.61857e14 −0.627865 −0.313932 0.949445i \(-0.601647\pi\)
−0.313932 + 0.949445i \(0.601647\pi\)
\(524\) 3.95367e14 0.437198
\(525\) 0 0
\(526\) 3.61087e14 0.391012
\(527\) 1.75884e14 0.188481
\(528\) 0 0
\(529\) 2.07171e15 2.17432
\(530\) −9.21322e13 −0.0956961
\(531\) 0 0
\(532\) −2.30381e14 −0.234386
\(533\) −1.57097e15 −1.58186
\(534\) 0 0
\(535\) 9.80692e14 0.967357
\(536\) 1.64856e15 1.60953
\(537\) 0 0
\(538\) 1.78588e14 0.170825
\(539\) 3.03257e13 0.0287126
\(540\) 0 0
\(541\) 1.22708e15 1.13838 0.569192 0.822204i \(-0.307256\pi\)
0.569192 + 0.822204i \(0.307256\pi\)
\(542\) −6.34838e13 −0.0582997
\(543\) 0 0
\(544\) −4.49247e14 −0.404289
\(545\) 1.25324e15 1.11648
\(546\) 0 0
\(547\) −4.33699e14 −0.378668 −0.189334 0.981913i \(-0.560633\pi\)
−0.189334 + 0.981913i \(0.560633\pi\)
\(548\) 3.07330e14 0.265652
\(549\) 0 0
\(550\) −4.25902e13 −0.0360840
\(551\) −2.15177e14 −0.180494
\(552\) 0 0
\(553\) 1.23277e15 1.01366
\(554\) 3.13762e14 0.255445
\(555\) 0 0
\(556\) −1.33370e14 −0.106451
\(557\) −1.09378e15 −0.864422 −0.432211 0.901773i \(-0.642266\pi\)
−0.432211 + 0.901773i \(0.642266\pi\)
\(558\) 0 0
\(559\) −1.65477e15 −1.28225
\(560\) −3.55270e14 −0.272599
\(561\) 0 0
\(562\) 1.16684e15 0.877935
\(563\) 9.87487e14 0.735758 0.367879 0.929874i \(-0.380084\pi\)
0.367879 + 0.929874i \(0.380084\pi\)
\(564\) 0 0
\(565\) −5.20529e14 −0.380346
\(566\) −6.04237e14 −0.437237
\(567\) 0 0
\(568\) 9.15425e13 0.0649691
\(569\) −2.06963e14 −0.145471 −0.0727354 0.997351i \(-0.523173\pi\)
−0.0727354 + 0.997351i \(0.523173\pi\)
\(570\) 0 0
\(571\) 6.41876e14 0.442540 0.221270 0.975213i \(-0.428980\pi\)
0.221270 + 0.975213i \(0.428980\pi\)
\(572\) −1.50796e15 −1.02970
\(573\) 0 0
\(574\) 6.81045e14 0.456205
\(575\) 2.44994e14 0.162548
\(576\) 0 0
\(577\) 1.89416e15 1.23296 0.616482 0.787369i \(-0.288557\pi\)
0.616482 + 0.787369i \(0.288557\pi\)
\(578\) −6.73580e14 −0.434296
\(579\) 0 0
\(580\) −6.42347e14 −0.406364
\(581\) −2.33279e15 −1.46186
\(582\) 0 0
\(583\) −2.45728e14 −0.151105
\(584\) 2.89849e15 1.76564
\(585\) 0 0
\(586\) 4.93275e14 0.294884
\(587\) 2.46549e15 1.46014 0.730068 0.683375i \(-0.239489\pi\)
0.730068 + 0.683375i \(0.239489\pi\)
\(588\) 0 0
\(589\) 2.58999e14 0.150544
\(590\) −1.43980e15 −0.829119
\(591\) 0 0
\(592\) 4.49775e14 0.254229
\(593\) −1.38178e15 −0.773817 −0.386908 0.922118i \(-0.626457\pi\)
−0.386908 + 0.922118i \(0.626457\pi\)
\(594\) 0 0
\(595\) 6.90230e14 0.379447
\(596\) −2.09200e15 −1.13948
\(597\) 0 0
\(598\) −3.09152e15 −1.65316
\(599\) −7.33743e14 −0.388773 −0.194387 0.980925i \(-0.562272\pi\)
−0.194387 + 0.980925i \(0.562272\pi\)
\(600\) 0 0
\(601\) −1.04584e15 −0.544071 −0.272035 0.962287i \(-0.587697\pi\)
−0.272035 + 0.962287i \(0.587697\pi\)
\(602\) 7.17373e14 0.369798
\(603\) 0 0
\(604\) −1.57690e14 −0.0798183
\(605\) −7.69071e14 −0.385755
\(606\) 0 0
\(607\) −1.43172e15 −0.705214 −0.352607 0.935771i \(-0.614705\pi\)
−0.352607 + 0.935771i \(0.614705\pi\)
\(608\) −6.61540e14 −0.322913
\(609\) 0 0
\(610\) 8.52769e14 0.408806
\(611\) −2.48871e15 −1.18235
\(612\) 0 0
\(613\) −1.57774e15 −0.736212 −0.368106 0.929784i \(-0.619994\pi\)
−0.368106 + 0.929784i \(0.619994\pi\)
\(614\) 6.14212e14 0.284049
\(615\) 0 0
\(616\) 1.54045e15 0.699767
\(617\) 2.07917e15 0.936097 0.468048 0.883703i \(-0.344957\pi\)
0.468048 + 0.883703i \(0.344957\pi\)
\(618\) 0 0
\(619\) −2.06773e15 −0.914525 −0.457263 0.889332i \(-0.651170\pi\)
−0.457263 + 0.889332i \(0.651170\pi\)
\(620\) 7.73163e14 0.338935
\(621\) 0 0
\(622\) −1.39652e15 −0.601451
\(623\) 4.27394e15 1.82450
\(624\) 0 0
\(625\) −2.14682e15 −0.900442
\(626\) 1.29194e15 0.537136
\(627\) 0 0
\(628\) −2.08485e15 −0.851718
\(629\) −8.73837e14 −0.353877
\(630\) 0 0
\(631\) 4.82782e15 1.92127 0.960637 0.277807i \(-0.0896076\pi\)
0.960637 + 0.277807i \(0.0896076\pi\)
\(632\) 2.24667e15 0.886328
\(633\) 0 0
\(634\) −2.47837e15 −0.960892
\(635\) 3.26892e14 0.125646
\(636\) 0 0
\(637\) 1.78308e14 0.0673605
\(638\) 6.10589e14 0.228684
\(639\) 0 0
\(640\) −2.34752e15 −0.864212
\(641\) 3.81285e15 1.39165 0.695827 0.718210i \(-0.255038\pi\)
0.695827 + 0.718210i \(0.255038\pi\)
\(642\) 0 0
\(643\) 2.81442e15 1.00978 0.504892 0.863183i \(-0.331532\pi\)
0.504892 + 0.863183i \(0.331532\pi\)
\(644\) −3.76049e15 −1.33774
\(645\) 0 0
\(646\) 1.78825e14 0.0625389
\(647\) −5.11427e15 −1.77342 −0.886708 0.462331i \(-0.847013\pi\)
−0.886708 + 0.462331i \(0.847013\pi\)
\(648\) 0 0
\(649\) −3.84014e15 −1.30918
\(650\) −2.50421e14 −0.0846539
\(651\) 0 0
\(652\) −2.18027e15 −0.724682
\(653\) −3.49269e15 −1.15116 −0.575582 0.817744i \(-0.695225\pi\)
−0.575582 + 0.817744i \(0.695225\pi\)
\(654\) 0 0
\(655\) −1.74429e15 −0.565317
\(656\) −7.63462e14 −0.245367
\(657\) 0 0
\(658\) 1.07890e15 0.340988
\(659\) −1.05126e15 −0.329487 −0.164744 0.986336i \(-0.552680\pi\)
−0.164744 + 0.986336i \(0.552680\pi\)
\(660\) 0 0
\(661\) 3.55844e15 1.09686 0.548431 0.836196i \(-0.315225\pi\)
0.548431 + 0.836196i \(0.315225\pi\)
\(662\) −6.80967e14 −0.208165
\(663\) 0 0
\(664\) −4.25140e15 −1.27823
\(665\) 1.01640e15 0.303072
\(666\) 0 0
\(667\) −3.51232e15 −1.03015
\(668\) −2.08101e15 −0.605347
\(669\) 0 0
\(670\) −3.08656e15 −0.883209
\(671\) 2.27444e15 0.645507
\(672\) 0 0
\(673\) 2.13737e15 0.596755 0.298377 0.954448i \(-0.403555\pi\)
0.298377 + 0.954448i \(0.403555\pi\)
\(674\) −3.89081e14 −0.107748
\(675\) 0 0
\(676\) −6.16054e15 −1.67846
\(677\) 2.11604e15 0.571855 0.285927 0.958251i \(-0.407698\pi\)
0.285927 + 0.958251i \(0.407698\pi\)
\(678\) 0 0
\(679\) −1.26276e15 −0.335766
\(680\) 1.25792e15 0.331782
\(681\) 0 0
\(682\) −7.34937e14 −0.190738
\(683\) −1.01393e15 −0.261031 −0.130516 0.991446i \(-0.541663\pi\)
−0.130516 + 0.991446i \(0.541663\pi\)
\(684\) 0 0
\(685\) −1.35589e15 −0.343499
\(686\) 1.99996e15 0.502619
\(687\) 0 0
\(688\) −8.04187e14 −0.198894
\(689\) −1.44483e15 −0.354495
\(690\) 0 0
\(691\) 6.60866e15 1.59582 0.797910 0.602777i \(-0.205939\pi\)
0.797910 + 0.602777i \(0.205939\pi\)
\(692\) 5.63332e15 1.34953
\(693\) 0 0
\(694\) 2.27425e15 0.536242
\(695\) 5.88407e14 0.137645
\(696\) 0 0
\(697\) 1.48328e15 0.341541
\(698\) −2.67491e14 −0.0611089
\(699\) 0 0
\(700\) −3.04609e14 −0.0685020
\(701\) 3.22703e15 0.720037 0.360018 0.932945i \(-0.382770\pi\)
0.360018 + 0.932945i \(0.382770\pi\)
\(702\) 0 0
\(703\) −1.28677e15 −0.282648
\(704\) 8.83166e14 0.192483
\(705\) 0 0
\(706\) −1.43040e15 −0.306924
\(707\) −5.83738e15 −1.24283
\(708\) 0 0
\(709\) −2.95770e15 −0.620012 −0.310006 0.950735i \(-0.600331\pi\)
−0.310006 + 0.950735i \(0.600331\pi\)
\(710\) −1.71393e14 −0.0356510
\(711\) 0 0
\(712\) 7.78907e15 1.59531
\(713\) 4.22761e15 0.859217
\(714\) 0 0
\(715\) 6.65288e15 1.33145
\(716\) 4.89674e15 0.972490
\(717\) 0 0
\(718\) 4.82174e15 0.943017
\(719\) −3.18146e15 −0.617471 −0.308736 0.951148i \(-0.599906\pi\)
−0.308736 + 0.951148i \(0.599906\pi\)
\(720\) 0 0
\(721\) 5.42535e15 1.03701
\(722\) −2.43894e15 −0.462644
\(723\) 0 0
\(724\) 3.20319e15 0.598441
\(725\) −2.84507e14 −0.0527513
\(726\) 0 0
\(727\) 4.00650e15 0.731688 0.365844 0.930676i \(-0.380780\pi\)
0.365844 + 0.930676i \(0.380780\pi\)
\(728\) 9.05750e15 1.64167
\(729\) 0 0
\(730\) −5.42677e15 −0.968871
\(731\) 1.56240e15 0.276852
\(732\) 0 0
\(733\) −6.90271e15 −1.20489 −0.602446 0.798160i \(-0.705807\pi\)
−0.602446 + 0.798160i \(0.705807\pi\)
\(734\) 3.22547e15 0.558811
\(735\) 0 0
\(736\) −1.07983e16 −1.84300
\(737\) −8.23224e15 −1.39459
\(738\) 0 0
\(739\) 6.84614e15 1.14262 0.571309 0.820735i \(-0.306436\pi\)
0.571309 + 0.820735i \(0.306436\pi\)
\(740\) −3.84127e15 −0.636356
\(741\) 0 0
\(742\) 6.26359e14 0.102236
\(743\) 1.07977e16 1.74941 0.874707 0.484652i \(-0.161054\pi\)
0.874707 + 0.484652i \(0.161054\pi\)
\(744\) 0 0
\(745\) 9.22954e15 1.47340
\(746\) −2.13524e15 −0.338363
\(747\) 0 0
\(748\) 1.42379e15 0.222325
\(749\) −6.66722e15 −1.03346
\(750\) 0 0
\(751\) −1.17462e15 −0.179424 −0.0897118 0.995968i \(-0.528595\pi\)
−0.0897118 + 0.995968i \(0.528595\pi\)
\(752\) −1.20947e15 −0.183398
\(753\) 0 0
\(754\) 3.59012e15 0.536497
\(755\) 6.95703e14 0.103209
\(756\) 0 0
\(757\) −3.10476e15 −0.453943 −0.226972 0.973901i \(-0.572882\pi\)
−0.226972 + 0.973901i \(0.572882\pi\)
\(758\) −5.78218e15 −0.839287
\(759\) 0 0
\(760\) 1.85234e15 0.265001
\(761\) 2.40919e15 0.342180 0.171090 0.985255i \(-0.445271\pi\)
0.171090 + 0.985255i \(0.445271\pi\)
\(762\) 0 0
\(763\) −8.52011e15 −1.19278
\(764\) −1.21023e15 −0.168212
\(765\) 0 0
\(766\) −6.99107e14 −0.0957823
\(767\) −2.25791e16 −3.07138
\(768\) 0 0
\(769\) 8.82621e15 1.18353 0.591765 0.806110i \(-0.298431\pi\)
0.591765 + 0.806110i \(0.298431\pi\)
\(770\) −2.88415e15 −0.383988
\(771\) 0 0
\(772\) 7.99173e15 1.04893
\(773\) 3.57848e15 0.466349 0.233175 0.972435i \(-0.425089\pi\)
0.233175 + 0.972435i \(0.425089\pi\)
\(774\) 0 0
\(775\) 3.42447e14 0.0439982
\(776\) −2.30132e15 −0.293588
\(777\) 0 0
\(778\) 3.50131e15 0.440396
\(779\) 2.18420e15 0.272796
\(780\) 0 0
\(781\) −4.57126e14 −0.0562931
\(782\) 2.91895e15 0.356936
\(783\) 0 0
\(784\) 8.66546e13 0.0104485
\(785\) 9.19798e15 1.10131
\(786\) 0 0
\(787\) −6.37897e15 −0.753164 −0.376582 0.926383i \(-0.622901\pi\)
−0.376582 + 0.926383i \(0.622901\pi\)
\(788\) −6.56677e15 −0.769941
\(789\) 0 0
\(790\) −4.20638e15 −0.486362
\(791\) 3.53881e15 0.406337
\(792\) 0 0
\(793\) 1.33732e16 1.51437
\(794\) −3.07374e15 −0.345664
\(795\) 0 0
\(796\) −2.67192e15 −0.296348
\(797\) 8.33604e15 0.918204 0.459102 0.888384i \(-0.348171\pi\)
0.459102 + 0.888384i \(0.348171\pi\)
\(798\) 0 0
\(799\) 2.34979e15 0.255283
\(800\) −8.74687e14 −0.0943751
\(801\) 0 0
\(802\) −4.51696e15 −0.480714
\(803\) −1.44739e16 −1.52985
\(804\) 0 0
\(805\) 1.65906e16 1.72976
\(806\) −4.32127e15 −0.447475
\(807\) 0 0
\(808\) −1.06384e16 −1.08671
\(809\) −8.81902e15 −0.894754 −0.447377 0.894346i \(-0.647642\pi\)
−0.447377 + 0.894346i \(0.647642\pi\)
\(810\) 0 0
\(811\) 9.88676e15 0.989553 0.494777 0.869020i \(-0.335250\pi\)
0.494777 + 0.869020i \(0.335250\pi\)
\(812\) 4.36698e15 0.434134
\(813\) 0 0
\(814\) 3.65135e15 0.358113
\(815\) 9.61895e15 0.937046
\(816\) 0 0
\(817\) 2.30072e15 0.221127
\(818\) −3.05241e15 −0.291407
\(819\) 0 0
\(820\) 6.52029e15 0.614173
\(821\) 8.35385e15 0.781626 0.390813 0.920470i \(-0.372194\pi\)
0.390813 + 0.920470i \(0.372194\pi\)
\(822\) 0 0
\(823\) −1.65177e16 −1.52493 −0.762465 0.647029i \(-0.776011\pi\)
−0.762465 + 0.647029i \(0.776011\pi\)
\(824\) 9.88747e15 0.906746
\(825\) 0 0
\(826\) 9.78848e15 0.885778
\(827\) 4.87197e15 0.437950 0.218975 0.975730i \(-0.429729\pi\)
0.218975 + 0.975730i \(0.429729\pi\)
\(828\) 0 0
\(829\) −7.09701e15 −0.629543 −0.314771 0.949168i \(-0.601928\pi\)
−0.314771 + 0.949168i \(0.601928\pi\)
\(830\) 7.95980e15 0.701411
\(831\) 0 0
\(832\) 5.19282e15 0.451569
\(833\) −1.68355e14 −0.0145439
\(834\) 0 0
\(835\) 9.18107e15 0.782740
\(836\) 2.09660e15 0.177575
\(837\) 0 0
\(838\) 4.22925e15 0.353526
\(839\) 5.33515e15 0.443053 0.221527 0.975154i \(-0.428896\pi\)
0.221527 + 0.975154i \(0.428896\pi\)
\(840\) 0 0
\(841\) −8.12172e15 −0.665687
\(842\) −8.26124e15 −0.672711
\(843\) 0 0
\(844\) 1.48988e16 1.19748
\(845\) 2.71792e16 2.17033
\(846\) 0 0
\(847\) 5.22852e15 0.412116
\(848\) −7.02159e14 −0.0549868
\(849\) 0 0
\(850\) 2.36443e14 0.0182777
\(851\) −2.10038e16 −1.61319
\(852\) 0 0
\(853\) 6.44227e15 0.488449 0.244224 0.969719i \(-0.421467\pi\)
0.244224 + 0.969719i \(0.421467\pi\)
\(854\) −5.79754e15 −0.436742
\(855\) 0 0
\(856\) −1.21507e16 −0.903642
\(857\) 9.11174e15 0.673297 0.336649 0.941630i \(-0.390707\pi\)
0.336649 + 0.941630i \(0.390707\pi\)
\(858\) 0 0
\(859\) 1.20662e16 0.880257 0.440129 0.897935i \(-0.354933\pi\)
0.440129 + 0.897935i \(0.354933\pi\)
\(860\) 6.86810e15 0.497846
\(861\) 0 0
\(862\) 2.20532e15 0.157827
\(863\) −4.65821e15 −0.331253 −0.165626 0.986189i \(-0.552965\pi\)
−0.165626 + 0.986189i \(0.552965\pi\)
\(864\) 0 0
\(865\) −2.48532e16 −1.74500
\(866\) −1.34206e16 −0.936316
\(867\) 0 0
\(868\) −5.25633e15 −0.362097
\(869\) −1.12189e16 −0.767968
\(870\) 0 0
\(871\) −4.84037e16 −3.27174
\(872\) −1.55275e16 −1.04295
\(873\) 0 0
\(874\) 4.29831e15 0.285092
\(875\) 1.60739e16 1.05944
\(876\) 0 0
\(877\) −9.04585e15 −0.588778 −0.294389 0.955686i \(-0.595116\pi\)
−0.294389 + 0.955686i \(0.595116\pi\)
\(878\) −4.67274e15 −0.302240
\(879\) 0 0
\(880\) 3.23317e15 0.206526
\(881\) 7.63030e15 0.484367 0.242183 0.970231i \(-0.422136\pi\)
0.242183 + 0.970231i \(0.422136\pi\)
\(882\) 0 0
\(883\) −2.52253e16 −1.58144 −0.790719 0.612180i \(-0.790293\pi\)
−0.790719 + 0.612180i \(0.790293\pi\)
\(884\) 8.37157e15 0.521578
\(885\) 0 0
\(886\) −3.34867e15 −0.206057
\(887\) 1.05582e16 0.645670 0.322835 0.946455i \(-0.395364\pi\)
0.322835 + 0.946455i \(0.395364\pi\)
\(888\) 0 0
\(889\) −2.22237e15 −0.134232
\(890\) −1.45833e16 −0.875407
\(891\) 0 0
\(892\) 3.29611e14 0.0195432
\(893\) 3.46018e15 0.203900
\(894\) 0 0
\(895\) −2.16035e16 −1.25747
\(896\) 1.59596e16 0.923269
\(897\) 0 0
\(898\) −1.06311e16 −0.607519
\(899\) −4.90945e15 −0.278840
\(900\) 0 0
\(901\) 1.36418e15 0.0765393
\(902\) −6.19792e15 −0.345629
\(903\) 0 0
\(904\) 6.44933e15 0.355294
\(905\) −1.41319e16 −0.773810
\(906\) 0 0
\(907\) 2.70513e15 0.146335 0.0731675 0.997320i \(-0.476689\pi\)
0.0731675 + 0.997320i \(0.476689\pi\)
\(908\) −1.60055e16 −0.860589
\(909\) 0 0
\(910\) −1.69581e16 −0.900845
\(911\) 3.00588e16 1.58716 0.793579 0.608467i \(-0.208215\pi\)
0.793579 + 0.608467i \(0.208215\pi\)
\(912\) 0 0
\(913\) 2.12298e16 1.10753
\(914\) −5.22518e15 −0.270955
\(915\) 0 0
\(916\) −1.23579e16 −0.633169
\(917\) 1.18585e16 0.603948
\(918\) 0 0
\(919\) −1.29261e16 −0.650478 −0.325239 0.945632i \(-0.605445\pi\)
−0.325239 + 0.945632i \(0.605445\pi\)
\(920\) 3.02357e16 1.51247
\(921\) 0 0
\(922\) 7.91174e14 0.0391068
\(923\) −2.68780e15 −0.132065
\(924\) 0 0
\(925\) −1.70136e15 −0.0826072
\(926\) −3.12619e15 −0.150888
\(927\) 0 0
\(928\) 1.25398e16 0.598105
\(929\) −1.82775e16 −0.866622 −0.433311 0.901245i \(-0.642655\pi\)
−0.433311 + 0.901245i \(0.642655\pi\)
\(930\) 0 0
\(931\) −2.47912e14 −0.0116165
\(932\) −1.48561e16 −0.692018
\(933\) 0 0
\(934\) −1.67906e15 −0.0772962
\(935\) −6.28152e15 −0.287475
\(936\) 0 0
\(937\) 2.82874e16 1.27946 0.639728 0.768601i \(-0.279047\pi\)
0.639728 + 0.768601i \(0.279047\pi\)
\(938\) 2.09839e16 0.943563
\(939\) 0 0
\(940\) 1.03293e16 0.459060
\(941\) −2.15088e16 −0.950327 −0.475163 0.879898i \(-0.657611\pi\)
−0.475163 + 0.879898i \(0.657611\pi\)
\(942\) 0 0
\(943\) 3.56526e16 1.55696
\(944\) −1.09730e16 −0.476410
\(945\) 0 0
\(946\) −6.52854e15 −0.280165
\(947\) −1.70849e16 −0.728933 −0.364467 0.931216i \(-0.618749\pi\)
−0.364467 + 0.931216i \(0.618749\pi\)
\(948\) 0 0
\(949\) −8.51032e16 −3.58907
\(950\) 3.48174e14 0.0145988
\(951\) 0 0
\(952\) −8.55192e15 −0.354454
\(953\) −7.80510e15 −0.321638 −0.160819 0.986984i \(-0.551414\pi\)
−0.160819 + 0.986984i \(0.551414\pi\)
\(954\) 0 0
\(955\) 5.33934e15 0.217505
\(956\) 3.10564e16 1.25786
\(957\) 0 0
\(958\) 7.85523e15 0.314520
\(959\) 9.21799e15 0.366973
\(960\) 0 0
\(961\) −1.94992e16 −0.767429
\(962\) 2.14691e16 0.840140
\(963\) 0 0
\(964\) 1.41195e16 0.546256
\(965\) −3.52581e16 −1.35631
\(966\) 0 0
\(967\) −1.35068e16 −0.513697 −0.256848 0.966452i \(-0.582684\pi\)
−0.256848 + 0.966452i \(0.582684\pi\)
\(968\) 9.52875e15 0.360348
\(969\) 0 0
\(970\) 4.30871e15 0.161103
\(971\) 3.28320e15 0.122065 0.0610325 0.998136i \(-0.480561\pi\)
0.0610325 + 0.998136i \(0.480561\pi\)
\(972\) 0 0
\(973\) −4.00028e15 −0.147051
\(974\) −9.29015e15 −0.339585
\(975\) 0 0
\(976\) 6.49913e15 0.234899
\(977\) −4.04914e16 −1.45527 −0.727634 0.685966i \(-0.759380\pi\)
−0.727634 + 0.685966i \(0.759380\pi\)
\(978\) 0 0
\(979\) −3.88954e16 −1.38227
\(980\) −7.40067e14 −0.0261534
\(981\) 0 0
\(982\) 1.55534e16 0.543514
\(983\) 2.83074e16 0.983684 0.491842 0.870685i \(-0.336324\pi\)
0.491842 + 0.870685i \(0.336324\pi\)
\(984\) 0 0
\(985\) 2.89714e16 0.995568
\(986\) −3.38973e15 −0.115836
\(987\) 0 0
\(988\) 1.23276e16 0.416595
\(989\) 3.75544e16 1.26206
\(990\) 0 0
\(991\) −2.80386e16 −0.931861 −0.465931 0.884821i \(-0.654280\pi\)
−0.465931 + 0.884821i \(0.654280\pi\)
\(992\) −1.50936e16 −0.498860
\(993\) 0 0
\(994\) 1.16521e15 0.0380872
\(995\) 1.17881e16 0.383191
\(996\) 0 0
\(997\) 1.62120e15 0.0521209 0.0260605 0.999660i \(-0.491704\pi\)
0.0260605 + 0.999660i \(0.491704\pi\)
\(998\) −1.65307e16 −0.528536
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.12.a.d.1.7 yes 10
3.2 odd 2 inner 81.12.a.d.1.4 10
9.2 odd 6 81.12.c.m.28.7 20
9.4 even 3 81.12.c.m.55.4 20
9.5 odd 6 81.12.c.m.55.7 20
9.7 even 3 81.12.c.m.28.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.12.a.d.1.4 10 3.2 odd 2 inner
81.12.a.d.1.7 yes 10 1.1 even 1 trivial
81.12.c.m.28.4 20 9.7 even 3
81.12.c.m.28.7 20 9.2 odd 6
81.12.c.m.55.4 20 9.4 even 3
81.12.c.m.55.7 20 9.5 odd 6