Properties

Label 81.12.a.d.1.10
Level $81$
Weight $12$
Character 81.1
Self dual yes
Analytic conductor $62.236$
Analytic rank $1$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,12,Mod(1,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.2357976253\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4 x^{9} - 4167 x^{8} - 2152 x^{7} + 5690320 x^{6} + 20355744 x^{5} - 2749862760 x^{4} + \cdots - 910577483568 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{30} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-35.7085\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+73.5092 q^{2} +3355.60 q^{4} +3419.73 q^{5} -54197.9 q^{7} +96120.6 q^{8} +251382. q^{10} -646669. q^{11} -20727.3 q^{13} -3.98405e6 q^{14} +193480. q^{16} +5.43454e6 q^{17} -1.12341e7 q^{19} +1.14752e7 q^{20} -4.75361e7 q^{22} -5.06575e7 q^{23} -3.71336e7 q^{25} -1.52365e6 q^{26} -1.81867e8 q^{28} -5.57175e7 q^{29} +2.69221e8 q^{31} -1.82632e8 q^{32} +3.99489e8 q^{34} -1.85342e8 q^{35} -2.61847e8 q^{37} -8.25806e8 q^{38} +3.28707e8 q^{40} +9.21115e8 q^{41} +1.86274e9 q^{43} -2.16996e9 q^{44} -3.72379e9 q^{46} -1.85264e9 q^{47} +9.60090e8 q^{49} -2.72966e9 q^{50} -6.95526e7 q^{52} -2.53225e9 q^{53} -2.21143e9 q^{55} -5.20954e9 q^{56} -4.09575e9 q^{58} -5.61583e9 q^{59} -3.69275e9 q^{61} +1.97902e10 q^{62} -1.38214e10 q^{64} -7.08818e7 q^{65} -2.50794e9 q^{67} +1.82362e10 q^{68} -1.36244e10 q^{70} -5.97576e9 q^{71} +1.54028e10 q^{73} -1.92481e10 q^{74} -3.76970e10 q^{76} +3.50481e10 q^{77} -3.94570e10 q^{79} +6.61650e8 q^{80} +6.77104e10 q^{82} +1.71107e8 q^{83} +1.85847e10 q^{85} +1.36928e11 q^{86} -6.21582e10 q^{88} +7.91822e10 q^{89} +1.12338e9 q^{91} -1.69986e11 q^{92} -1.36186e11 q^{94} -3.84174e10 q^{95} +3.54701e10 q^{97} +7.05754e10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 5110 q^{4} - 11836 q^{7} - 117642 q^{10} + 27110 q^{13} - 5117294 q^{16} - 24650908 q^{19} - 27880836 q^{22} - 43357796 q^{25} - 177204868 q^{28} - 56217184 q^{31} + 302628942 q^{34} - 636530326 q^{37}+ \cdots - 413983885420 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 73.5092 1.62434 0.812169 0.583422i \(-0.198286\pi\)
0.812169 + 0.583422i \(0.198286\pi\)
\(3\) 0 0
\(4\) 3355.60 1.63848
\(5\) 3419.73 0.489392 0.244696 0.969600i \(-0.421312\pi\)
0.244696 + 0.969600i \(0.421312\pi\)
\(6\) 0 0
\(7\) −54197.9 −1.21883 −0.609416 0.792851i \(-0.708596\pi\)
−0.609416 + 0.792851i \(0.708596\pi\)
\(8\) 96120.6 1.03710
\(9\) 0 0
\(10\) 251382. 0.794938
\(11\) −646669. −1.21066 −0.605330 0.795975i \(-0.706959\pi\)
−0.605330 + 0.795975i \(0.706959\pi\)
\(12\) 0 0
\(13\) −20727.3 −0.0154830 −0.00774149 0.999970i \(-0.502464\pi\)
−0.00774149 + 0.999970i \(0.502464\pi\)
\(14\) −3.98405e6 −1.97979
\(15\) 0 0
\(16\) 193480. 0.0461293
\(17\) 5.43454e6 0.928312 0.464156 0.885753i \(-0.346358\pi\)
0.464156 + 0.885753i \(0.346358\pi\)
\(18\) 0 0
\(19\) −1.12341e7 −1.04086 −0.520429 0.853905i \(-0.674228\pi\)
−0.520429 + 0.853905i \(0.674228\pi\)
\(20\) 1.14752e7 0.801857
\(21\) 0 0
\(22\) −4.75361e7 −1.96652
\(23\) −5.06575e7 −1.64112 −0.820560 0.571560i \(-0.806339\pi\)
−0.820560 + 0.571560i \(0.806339\pi\)
\(24\) 0 0
\(25\) −3.71336e7 −0.760496
\(26\) −1.52365e6 −0.0251496
\(27\) 0 0
\(28\) −1.81867e8 −1.99703
\(29\) −5.57175e7 −0.504432 −0.252216 0.967671i \(-0.581159\pi\)
−0.252216 + 0.967671i \(0.581159\pi\)
\(30\) 0 0
\(31\) 2.69221e8 1.68896 0.844479 0.535588i \(-0.179910\pi\)
0.844479 + 0.535588i \(0.179910\pi\)
\(32\) −1.82632e8 −0.962173
\(33\) 0 0
\(34\) 3.99489e8 1.50789
\(35\) −1.85342e8 −0.596486
\(36\) 0 0
\(37\) −2.61847e8 −0.620780 −0.310390 0.950609i \(-0.600460\pi\)
−0.310390 + 0.950609i \(0.600460\pi\)
\(38\) −8.25806e8 −1.69071
\(39\) 0 0
\(40\) 3.28707e8 0.507550
\(41\) 9.21115e8 1.24166 0.620830 0.783945i \(-0.286796\pi\)
0.620830 + 0.783945i \(0.286796\pi\)
\(42\) 0 0
\(43\) 1.86274e9 1.93230 0.966152 0.257974i \(-0.0830550\pi\)
0.966152 + 0.257974i \(0.0830550\pi\)
\(44\) −2.16996e9 −1.98364
\(45\) 0 0
\(46\) −3.72379e9 −2.66574
\(47\) −1.85264e9 −1.17829 −0.589146 0.808026i \(-0.700536\pi\)
−0.589146 + 0.808026i \(0.700536\pi\)
\(48\) 0 0
\(49\) 9.60090e8 0.485549
\(50\) −2.72966e9 −1.23530
\(51\) 0 0
\(52\) −6.95526e7 −0.0253685
\(53\) −2.53225e9 −0.831743 −0.415872 0.909423i \(-0.636523\pi\)
−0.415872 + 0.909423i \(0.636523\pi\)
\(54\) 0 0
\(55\) −2.21143e9 −0.592487
\(56\) −5.20954e9 −1.26405
\(57\) 0 0
\(58\) −4.09575e9 −0.819368
\(59\) −5.61583e9 −1.02265 −0.511326 0.859387i \(-0.670845\pi\)
−0.511326 + 0.859387i \(0.670845\pi\)
\(60\) 0 0
\(61\) −3.69275e9 −0.559804 −0.279902 0.960029i \(-0.590302\pi\)
−0.279902 + 0.960029i \(0.590302\pi\)
\(62\) 1.97902e10 2.74344
\(63\) 0 0
\(64\) −1.38214e10 −1.60902
\(65\) −7.08818e7 −0.00757725
\(66\) 0 0
\(67\) −2.50794e9 −0.226938 −0.113469 0.993542i \(-0.536196\pi\)
−0.113469 + 0.993542i \(0.536196\pi\)
\(68\) 1.82362e10 1.52102
\(69\) 0 0
\(70\) −1.36244e10 −0.968895
\(71\) −5.97576e9 −0.393072 −0.196536 0.980497i \(-0.562969\pi\)
−0.196536 + 0.980497i \(0.562969\pi\)
\(72\) 0 0
\(73\) 1.54028e10 0.869608 0.434804 0.900525i \(-0.356818\pi\)
0.434804 + 0.900525i \(0.356818\pi\)
\(74\) −1.92481e10 −1.00836
\(75\) 0 0
\(76\) −3.76970e10 −1.70542
\(77\) 3.50481e10 1.47559
\(78\) 0 0
\(79\) −3.94570e10 −1.44270 −0.721349 0.692572i \(-0.756478\pi\)
−0.721349 + 0.692572i \(0.756478\pi\)
\(80\) 6.61650e8 0.0225753
\(81\) 0 0
\(82\) 6.77104e10 2.01688
\(83\) 1.71107e8 0.00476803 0.00238401 0.999997i \(-0.499241\pi\)
0.00238401 + 0.999997i \(0.499241\pi\)
\(84\) 0 0
\(85\) 1.85847e10 0.454308
\(86\) 1.36928e11 3.13872
\(87\) 0 0
\(88\) −6.21582e10 −1.25558
\(89\) 7.91822e10 1.50308 0.751541 0.659686i \(-0.229311\pi\)
0.751541 + 0.659686i \(0.229311\pi\)
\(90\) 0 0
\(91\) 1.12338e9 0.0188711
\(92\) −1.69986e11 −2.68894
\(93\) 0 0
\(94\) −1.36186e11 −1.91395
\(95\) −3.84174e10 −0.509387
\(96\) 0 0
\(97\) 3.54701e10 0.419389 0.209695 0.977767i \(-0.432753\pi\)
0.209695 + 0.977767i \(0.432753\pi\)
\(98\) 7.05754e10 0.788697
\(99\) 0 0
\(100\) −1.24605e11 −1.24605
\(101\) 8.89197e10 0.841842 0.420921 0.907097i \(-0.361707\pi\)
0.420921 + 0.907097i \(0.361707\pi\)
\(102\) 0 0
\(103\) −1.77812e10 −0.151132 −0.0755660 0.997141i \(-0.524076\pi\)
−0.0755660 + 0.997141i \(0.524076\pi\)
\(104\) −1.99232e9 −0.0160574
\(105\) 0 0
\(106\) −1.86144e11 −1.35103
\(107\) 4.82012e10 0.332236 0.166118 0.986106i \(-0.446877\pi\)
0.166118 + 0.986106i \(0.446877\pi\)
\(108\) 0 0
\(109\) −2.59616e11 −1.61616 −0.808082 0.589069i \(-0.799494\pi\)
−0.808082 + 0.589069i \(0.799494\pi\)
\(110\) −1.62561e11 −0.962400
\(111\) 0 0
\(112\) −1.04862e10 −0.0562238
\(113\) −8.50226e10 −0.434113 −0.217056 0.976159i \(-0.569646\pi\)
−0.217056 + 0.976159i \(0.569646\pi\)
\(114\) 0 0
\(115\) −1.73235e11 −0.803151
\(116\) −1.86966e11 −0.826500
\(117\) 0 0
\(118\) −4.12815e11 −1.66113
\(119\) −2.94541e11 −1.13146
\(120\) 0 0
\(121\) 1.32869e11 0.465697
\(122\) −2.71451e11 −0.909311
\(123\) 0 0
\(124\) 9.03397e11 2.76732
\(125\) −2.93966e11 −0.861572
\(126\) 0 0
\(127\) −5.11579e10 −0.137402 −0.0687008 0.997637i \(-0.521885\pi\)
−0.0687008 + 0.997637i \(0.521885\pi\)
\(128\) −6.41969e11 −1.65143
\(129\) 0 0
\(130\) −5.21046e9 −0.0123080
\(131\) 5.90022e11 1.33621 0.668107 0.744066i \(-0.267105\pi\)
0.668107 + 0.744066i \(0.267105\pi\)
\(132\) 0 0
\(133\) 6.08862e11 1.26863
\(134\) −1.84357e11 −0.368623
\(135\) 0 0
\(136\) 5.22372e11 0.962755
\(137\) 6.58027e11 1.16488 0.582439 0.812874i \(-0.302099\pi\)
0.582439 + 0.812874i \(0.302099\pi\)
\(138\) 0 0
\(139\) 1.14950e12 1.87901 0.939506 0.342533i \(-0.111285\pi\)
0.939506 + 0.342533i \(0.111285\pi\)
\(140\) −6.21935e11 −0.977328
\(141\) 0 0
\(142\) −4.39273e11 −0.638482
\(143\) 1.34037e10 0.0187446
\(144\) 0 0
\(145\) −1.90539e11 −0.246865
\(146\) 1.13225e12 1.41254
\(147\) 0 0
\(148\) −8.78653e11 −1.01713
\(149\) 8.16344e11 0.910644 0.455322 0.890327i \(-0.349524\pi\)
0.455322 + 0.890327i \(0.349524\pi\)
\(150\) 0 0
\(151\) −6.61749e11 −0.685994 −0.342997 0.939337i \(-0.611442\pi\)
−0.342997 + 0.939337i \(0.611442\pi\)
\(152\) −1.07982e12 −1.07948
\(153\) 0 0
\(154\) 2.57636e12 2.39686
\(155\) 9.20662e11 0.826563
\(156\) 0 0
\(157\) −1.21819e11 −0.101922 −0.0509609 0.998701i \(-0.516228\pi\)
−0.0509609 + 0.998701i \(0.516228\pi\)
\(158\) −2.90045e12 −2.34343
\(159\) 0 0
\(160\) −6.24554e11 −0.470880
\(161\) 2.74553e12 2.00025
\(162\) 0 0
\(163\) −2.04979e12 −1.39533 −0.697666 0.716423i \(-0.745778\pi\)
−0.697666 + 0.716423i \(0.745778\pi\)
\(164\) 3.09090e12 2.03443
\(165\) 0 0
\(166\) 1.25780e10 0.00774490
\(167\) 5.04298e11 0.300432 0.150216 0.988653i \(-0.452003\pi\)
0.150216 + 0.988653i \(0.452003\pi\)
\(168\) 0 0
\(169\) −1.79173e12 −0.999760
\(170\) 1.36614e12 0.737951
\(171\) 0 0
\(172\) 6.25061e12 3.16603
\(173\) 3.20516e12 1.57252 0.786260 0.617896i \(-0.212015\pi\)
0.786260 + 0.617896i \(0.212015\pi\)
\(174\) 0 0
\(175\) 2.01256e12 0.926916
\(176\) −1.25118e11 −0.0558468
\(177\) 0 0
\(178\) 5.82062e12 2.44151
\(179\) 4.59980e11 0.187089 0.0935443 0.995615i \(-0.470180\pi\)
0.0935443 + 0.995615i \(0.470180\pi\)
\(180\) 0 0
\(181\) 3.40048e12 1.30109 0.650546 0.759467i \(-0.274540\pi\)
0.650546 + 0.759467i \(0.274540\pi\)
\(182\) 8.25786e10 0.0306531
\(183\) 0 0
\(184\) −4.86923e12 −1.70201
\(185\) −8.95445e11 −0.303805
\(186\) 0 0
\(187\) −3.51435e12 −1.12387
\(188\) −6.21672e12 −1.93061
\(189\) 0 0
\(190\) −2.82403e12 −0.827418
\(191\) −3.47851e12 −0.990171 −0.495086 0.868844i \(-0.664863\pi\)
−0.495086 + 0.868844i \(0.664863\pi\)
\(192\) 0 0
\(193\) 7.20013e12 1.93542 0.967710 0.252065i \(-0.0811098\pi\)
0.967710 + 0.252065i \(0.0811098\pi\)
\(194\) 2.60738e12 0.681230
\(195\) 0 0
\(196\) 3.22168e12 0.795561
\(197\) −5.27753e12 −1.26726 −0.633632 0.773635i \(-0.718436\pi\)
−0.633632 + 0.773635i \(0.718436\pi\)
\(198\) 0 0
\(199\) −6.85412e12 −1.55690 −0.778449 0.627708i \(-0.783993\pi\)
−0.778449 + 0.627708i \(0.783993\pi\)
\(200\) −3.56930e12 −0.788712
\(201\) 0 0
\(202\) 6.53642e12 1.36744
\(203\) 3.01977e12 0.614817
\(204\) 0 0
\(205\) 3.14997e12 0.607658
\(206\) −1.30708e12 −0.245490
\(207\) 0 0
\(208\) −4.01033e9 −0.000714219 0
\(209\) 7.26471e12 1.26013
\(210\) 0 0
\(211\) −6.03995e12 −0.994214 −0.497107 0.867689i \(-0.665604\pi\)
−0.497107 + 0.867689i \(0.665604\pi\)
\(212\) −8.49722e12 −1.36279
\(213\) 0 0
\(214\) 3.54323e12 0.539664
\(215\) 6.37006e12 0.945654
\(216\) 0 0
\(217\) −1.45912e13 −2.05856
\(218\) −1.90842e13 −2.62520
\(219\) 0 0
\(220\) −7.42068e12 −0.970776
\(221\) −1.12644e11 −0.0143730
\(222\) 0 0
\(223\) 1.22695e11 0.0148988 0.00744938 0.999972i \(-0.497629\pi\)
0.00744938 + 0.999972i \(0.497629\pi\)
\(224\) 9.89830e12 1.17273
\(225\) 0 0
\(226\) −6.24994e12 −0.705147
\(227\) 1.17238e12 0.129100 0.0645498 0.997914i \(-0.479439\pi\)
0.0645498 + 0.997914i \(0.479439\pi\)
\(228\) 0 0
\(229\) 9.85291e12 1.03388 0.516939 0.856022i \(-0.327071\pi\)
0.516939 + 0.856022i \(0.327071\pi\)
\(230\) −1.27344e13 −1.30459
\(231\) 0 0
\(232\) −5.35560e12 −0.523148
\(233\) −6.28150e12 −0.599247 −0.299623 0.954058i \(-0.596861\pi\)
−0.299623 + 0.954058i \(0.596861\pi\)
\(234\) 0 0
\(235\) −6.33553e12 −0.576647
\(236\) −1.88445e13 −1.67559
\(237\) 0 0
\(238\) −2.16515e13 −1.83787
\(239\) 1.02518e13 0.850377 0.425188 0.905105i \(-0.360208\pi\)
0.425188 + 0.905105i \(0.360208\pi\)
\(240\) 0 0
\(241\) −1.72778e13 −1.36897 −0.684486 0.729026i \(-0.739973\pi\)
−0.684486 + 0.729026i \(0.739973\pi\)
\(242\) 9.76708e12 0.756450
\(243\) 0 0
\(244\) −1.23914e13 −0.917225
\(245\) 3.28325e12 0.237624
\(246\) 0 0
\(247\) 2.32852e11 0.0161156
\(248\) 2.58777e13 1.75162
\(249\) 0 0
\(250\) −2.16092e13 −1.39949
\(251\) −6.39888e12 −0.405414 −0.202707 0.979239i \(-0.564974\pi\)
−0.202707 + 0.979239i \(0.564974\pi\)
\(252\) 0 0
\(253\) 3.27586e13 1.98684
\(254\) −3.76057e12 −0.223187
\(255\) 0 0
\(256\) −1.88844e13 −1.07345
\(257\) 1.19172e13 0.663044 0.331522 0.943447i \(-0.392438\pi\)
0.331522 + 0.943447i \(0.392438\pi\)
\(258\) 0 0
\(259\) 1.41916e13 0.756626
\(260\) −2.37851e11 −0.0124151
\(261\) 0 0
\(262\) 4.33720e13 2.17046
\(263\) −8.44531e10 −0.00413865 −0.00206933 0.999998i \(-0.500659\pi\)
−0.00206933 + 0.999998i \(0.500659\pi\)
\(264\) 0 0
\(265\) −8.65961e12 −0.407048
\(266\) 4.47570e13 2.06069
\(267\) 0 0
\(268\) −8.41566e12 −0.371832
\(269\) 2.99327e12 0.129571 0.0647855 0.997899i \(-0.479364\pi\)
0.0647855 + 0.997899i \(0.479364\pi\)
\(270\) 0 0
\(271\) −2.88736e12 −0.119997 −0.0599985 0.998198i \(-0.519110\pi\)
−0.0599985 + 0.998198i \(0.519110\pi\)
\(272\) 1.05148e12 0.0428224
\(273\) 0 0
\(274\) 4.83710e13 1.89216
\(275\) 2.40131e13 0.920702
\(276\) 0 0
\(277\) −1.02283e13 −0.376846 −0.188423 0.982088i \(-0.560338\pi\)
−0.188423 + 0.982088i \(0.560338\pi\)
\(278\) 8.44992e13 3.05215
\(279\) 0 0
\(280\) −1.78152e13 −0.618617
\(281\) 1.03563e13 0.352631 0.176315 0.984334i \(-0.443582\pi\)
0.176315 + 0.984334i \(0.443582\pi\)
\(282\) 0 0
\(283\) −4.33086e13 −1.41824 −0.709118 0.705090i \(-0.750907\pi\)
−0.709118 + 0.705090i \(0.750907\pi\)
\(284\) −2.00523e13 −0.644039
\(285\) 0 0
\(286\) 9.85296e11 0.0304476
\(287\) −4.99226e13 −1.51337
\(288\) 0 0
\(289\) −4.73763e12 −0.138237
\(290\) −1.40063e13 −0.400992
\(291\) 0 0
\(292\) 5.16856e13 1.42483
\(293\) −5.22048e13 −1.41234 −0.706169 0.708044i \(-0.749578\pi\)
−0.706169 + 0.708044i \(0.749578\pi\)
\(294\) 0 0
\(295\) −1.92046e13 −0.500477
\(296\) −2.51689e13 −0.643813
\(297\) 0 0
\(298\) 6.00088e13 1.47919
\(299\) 1.04999e12 0.0254094
\(300\) 0 0
\(301\) −1.00957e14 −2.35515
\(302\) −4.86446e13 −1.11429
\(303\) 0 0
\(304\) −2.17357e12 −0.0480140
\(305\) −1.26282e13 −0.273963
\(306\) 0 0
\(307\) −5.07230e13 −1.06156 −0.530780 0.847510i \(-0.678101\pi\)
−0.530780 + 0.847510i \(0.678101\pi\)
\(308\) 1.17607e14 2.41772
\(309\) 0 0
\(310\) 6.76771e13 1.34262
\(311\) −8.94273e13 −1.74296 −0.871481 0.490429i \(-0.836840\pi\)
−0.871481 + 0.490429i \(0.836840\pi\)
\(312\) 0 0
\(313\) 9.59921e12 0.180610 0.0903050 0.995914i \(-0.471216\pi\)
0.0903050 + 0.995914i \(0.471216\pi\)
\(314\) −8.95482e12 −0.165555
\(315\) 0 0
\(316\) −1.32402e14 −2.36383
\(317\) 4.94097e13 0.866934 0.433467 0.901169i \(-0.357290\pi\)
0.433467 + 0.901169i \(0.357290\pi\)
\(318\) 0 0
\(319\) 3.60308e13 0.610696
\(320\) −4.72655e13 −0.787443
\(321\) 0 0
\(322\) 2.01822e14 3.24908
\(323\) −6.10519e13 −0.966241
\(324\) 0 0
\(325\) 7.69679e11 0.0117747
\(326\) −1.50678e14 −2.26649
\(327\) 0 0
\(328\) 8.85382e13 1.28773
\(329\) 1.00409e14 1.43614
\(330\) 0 0
\(331\) 4.26693e13 0.590285 0.295143 0.955453i \(-0.404633\pi\)
0.295143 + 0.955453i \(0.404633\pi\)
\(332\) 5.74168e11 0.00781231
\(333\) 0 0
\(334\) 3.70705e13 0.488004
\(335\) −8.57649e12 −0.111061
\(336\) 0 0
\(337\) −4.66498e13 −0.584635 −0.292318 0.956321i \(-0.594426\pi\)
−0.292318 + 0.956321i \(0.594426\pi\)
\(338\) −1.31709e14 −1.62395
\(339\) 0 0
\(340\) 6.23627e13 0.744374
\(341\) −1.74097e14 −2.04475
\(342\) 0 0
\(343\) 5.51322e13 0.627028
\(344\) 1.79048e14 2.00400
\(345\) 0 0
\(346\) 2.35609e14 2.55430
\(347\) −6.91678e13 −0.738060 −0.369030 0.929417i \(-0.620310\pi\)
−0.369030 + 0.929417i \(0.620310\pi\)
\(348\) 0 0
\(349\) −4.21104e13 −0.435361 −0.217680 0.976020i \(-0.569849\pi\)
−0.217680 + 0.976020i \(0.569849\pi\)
\(350\) 1.47942e14 1.50563
\(351\) 0 0
\(352\) 1.18103e14 1.16486
\(353\) −1.72856e14 −1.67851 −0.839256 0.543737i \(-0.817009\pi\)
−0.839256 + 0.543737i \(0.817009\pi\)
\(354\) 0 0
\(355\) −2.04355e13 −0.192366
\(356\) 2.65704e14 2.46277
\(357\) 0 0
\(358\) 3.38127e13 0.303895
\(359\) −1.10755e14 −0.980269 −0.490134 0.871647i \(-0.663052\pi\)
−0.490134 + 0.871647i \(0.663052\pi\)
\(360\) 0 0
\(361\) 9.71363e12 0.0833858
\(362\) 2.49967e14 2.11342
\(363\) 0 0
\(364\) 3.76961e12 0.0309199
\(365\) 5.26734e13 0.425579
\(366\) 0 0
\(367\) −1.34942e14 −1.05800 −0.528999 0.848623i \(-0.677432\pi\)
−0.528999 + 0.848623i \(0.677432\pi\)
\(368\) −9.80122e12 −0.0757037
\(369\) 0 0
\(370\) −6.58234e13 −0.493482
\(371\) 1.37243e14 1.01375
\(372\) 0 0
\(373\) −1.29446e14 −0.928301 −0.464151 0.885756i \(-0.653640\pi\)
−0.464151 + 0.885756i \(0.653640\pi\)
\(374\) −2.58337e14 −1.82555
\(375\) 0 0
\(376\) −1.78077e14 −1.22201
\(377\) 1.15487e12 0.00781011
\(378\) 0 0
\(379\) 1.28256e14 0.842486 0.421243 0.906948i \(-0.361594\pi\)
0.421243 + 0.906948i \(0.361594\pi\)
\(380\) −1.28913e14 −0.834620
\(381\) 0 0
\(382\) −2.55703e14 −1.60837
\(383\) 6.22249e13 0.385808 0.192904 0.981218i \(-0.438209\pi\)
0.192904 + 0.981218i \(0.438209\pi\)
\(384\) 0 0
\(385\) 1.19855e14 0.722142
\(386\) 5.29276e14 3.14378
\(387\) 0 0
\(388\) 1.19023e14 0.687160
\(389\) 2.17341e14 1.23714 0.618569 0.785730i \(-0.287713\pi\)
0.618569 + 0.785730i \(0.287713\pi\)
\(390\) 0 0
\(391\) −2.75300e14 −1.52347
\(392\) 9.22844e13 0.503564
\(393\) 0 0
\(394\) −3.87947e14 −2.05846
\(395\) −1.34932e14 −0.706045
\(396\) 0 0
\(397\) −7.19033e13 −0.365933 −0.182966 0.983119i \(-0.558570\pi\)
−0.182966 + 0.983119i \(0.558570\pi\)
\(398\) −5.03841e14 −2.52893
\(399\) 0 0
\(400\) −7.18461e12 −0.0350811
\(401\) 4.83974e13 0.233092 0.116546 0.993185i \(-0.462818\pi\)
0.116546 + 0.993185i \(0.462818\pi\)
\(402\) 0 0
\(403\) −5.58022e12 −0.0261501
\(404\) 2.98379e14 1.37934
\(405\) 0 0
\(406\) 2.21981e14 0.998672
\(407\) 1.69328e14 0.751553
\(408\) 0 0
\(409\) −7.85346e13 −0.339299 −0.169650 0.985504i \(-0.554264\pi\)
−0.169650 + 0.985504i \(0.554264\pi\)
\(410\) 2.31551e14 0.987043
\(411\) 0 0
\(412\) −5.96666e13 −0.247626
\(413\) 3.04366e14 1.24644
\(414\) 0 0
\(415\) 5.85140e11 0.00233343
\(416\) 3.78548e12 0.0148973
\(417\) 0 0
\(418\) 5.34023e14 2.04687
\(419\) −2.73347e13 −0.103404 −0.0517020 0.998663i \(-0.516465\pi\)
−0.0517020 + 0.998663i \(0.516465\pi\)
\(420\) 0 0
\(421\) −3.99915e14 −1.47372 −0.736862 0.676044i \(-0.763693\pi\)
−0.736862 + 0.676044i \(0.763693\pi\)
\(422\) −4.43992e14 −1.61494
\(423\) 0 0
\(424\) −2.43402e14 −0.862603
\(425\) −2.01804e14 −0.705977
\(426\) 0 0
\(427\) 2.00139e14 0.682306
\(428\) 1.61744e14 0.544361
\(429\) 0 0
\(430\) 4.68258e14 1.53606
\(431\) −3.70048e14 −1.19849 −0.599243 0.800567i \(-0.704532\pi\)
−0.599243 + 0.800567i \(0.704532\pi\)
\(432\) 0 0
\(433\) −5.79057e14 −1.82826 −0.914130 0.405422i \(-0.867125\pi\)
−0.914130 + 0.405422i \(0.867125\pi\)
\(434\) −1.07259e15 −3.34379
\(435\) 0 0
\(436\) −8.71167e14 −2.64805
\(437\) 5.69089e14 1.70817
\(438\) 0 0
\(439\) 8.02363e13 0.234864 0.117432 0.993081i \(-0.462534\pi\)
0.117432 + 0.993081i \(0.462534\pi\)
\(440\) −2.12564e14 −0.614470
\(441\) 0 0
\(442\) −8.28033e12 −0.0233467
\(443\) 1.55825e14 0.433927 0.216963 0.976180i \(-0.430385\pi\)
0.216963 + 0.976180i \(0.430385\pi\)
\(444\) 0 0
\(445\) 2.70782e14 0.735596
\(446\) 9.01921e12 0.0242006
\(447\) 0 0
\(448\) 7.49092e14 1.96113
\(449\) −5.37095e14 −1.38898 −0.694490 0.719502i \(-0.744370\pi\)
−0.694490 + 0.719502i \(0.744370\pi\)
\(450\) 0 0
\(451\) −5.95657e14 −1.50323
\(452\) −2.85302e14 −0.711284
\(453\) 0 0
\(454\) 8.61805e13 0.209702
\(455\) 3.84165e12 0.00923538
\(456\) 0 0
\(457\) −2.81854e14 −0.661431 −0.330716 0.943730i \(-0.607290\pi\)
−0.330716 + 0.943730i \(0.607290\pi\)
\(458\) 7.24280e14 1.67937
\(459\) 0 0
\(460\) −5.81307e14 −1.31594
\(461\) 2.92217e14 0.653657 0.326828 0.945084i \(-0.394020\pi\)
0.326828 + 0.945084i \(0.394020\pi\)
\(462\) 0 0
\(463\) 5.48103e14 1.19720 0.598600 0.801048i \(-0.295724\pi\)
0.598600 + 0.801048i \(0.295724\pi\)
\(464\) −1.07802e13 −0.0232691
\(465\) 0 0
\(466\) −4.61748e14 −0.973380
\(467\) 7.06397e14 1.47165 0.735827 0.677170i \(-0.236794\pi\)
0.735827 + 0.677170i \(0.236794\pi\)
\(468\) 0 0
\(469\) 1.35925e14 0.276599
\(470\) −4.65720e14 −0.936670
\(471\) 0 0
\(472\) −5.39797e14 −1.06059
\(473\) −1.20457e15 −2.33936
\(474\) 0 0
\(475\) 4.17160e14 0.791568
\(476\) −9.88362e14 −1.85386
\(477\) 0 0
\(478\) 7.53601e14 1.38130
\(479\) 1.43103e14 0.259301 0.129650 0.991560i \(-0.458615\pi\)
0.129650 + 0.991560i \(0.458615\pi\)
\(480\) 0 0
\(481\) 5.42738e12 0.00961153
\(482\) −1.27008e15 −2.22367
\(483\) 0 0
\(484\) 4.45855e14 0.763034
\(485\) 1.21298e14 0.205246
\(486\) 0 0
\(487\) −6.88418e14 −1.13879 −0.569394 0.822065i \(-0.692822\pi\)
−0.569394 + 0.822065i \(0.692822\pi\)
\(488\) −3.54949e14 −0.580574
\(489\) 0 0
\(490\) 2.41349e14 0.385982
\(491\) 7.63703e14 1.20775 0.603874 0.797080i \(-0.293623\pi\)
0.603874 + 0.797080i \(0.293623\pi\)
\(492\) 0 0
\(493\) −3.02799e14 −0.468270
\(494\) 1.71167e13 0.0261772
\(495\) 0 0
\(496\) 5.20889e13 0.0779104
\(497\) 3.23874e14 0.479088
\(498\) 0 0
\(499\) −5.22407e14 −0.755886 −0.377943 0.925829i \(-0.623368\pi\)
−0.377943 + 0.925829i \(0.623368\pi\)
\(500\) −9.86432e14 −1.41167
\(501\) 0 0
\(502\) −4.70377e14 −0.658530
\(503\) 8.62796e14 1.19477 0.597385 0.801955i \(-0.296207\pi\)
0.597385 + 0.801955i \(0.296207\pi\)
\(504\) 0 0
\(505\) 3.04081e14 0.411990
\(506\) 2.40806e15 3.22730
\(507\) 0 0
\(508\) −1.71665e14 −0.225129
\(509\) 9.29019e14 1.20525 0.602624 0.798025i \(-0.294122\pi\)
0.602624 + 0.798025i \(0.294122\pi\)
\(510\) 0 0
\(511\) −8.34799e14 −1.05991
\(512\) −7.34233e13 −0.0922251
\(513\) 0 0
\(514\) 8.76025e14 1.07701
\(515\) −6.08069e13 −0.0739627
\(516\) 0 0
\(517\) 1.19805e15 1.42651
\(518\) 1.04321e15 1.22902
\(519\) 0 0
\(520\) −6.81321e12 −0.00785838
\(521\) −4.49865e14 −0.513423 −0.256711 0.966488i \(-0.582639\pi\)
−0.256711 + 0.966488i \(0.582639\pi\)
\(522\) 0 0
\(523\) 1.36029e15 1.52010 0.760050 0.649864i \(-0.225174\pi\)
0.760050 + 0.649864i \(0.225174\pi\)
\(524\) 1.97988e15 2.18935
\(525\) 0 0
\(526\) −6.20808e12 −0.00672258
\(527\) 1.46309e15 1.56788
\(528\) 0 0
\(529\) 1.61337e15 1.69328
\(530\) −6.36561e14 −0.661185
\(531\) 0 0
\(532\) 2.04310e15 2.07862
\(533\) −1.90923e13 −0.0192246
\(534\) 0 0
\(535\) 1.64835e14 0.162594
\(536\) −2.41065e14 −0.235358
\(537\) 0 0
\(538\) 2.20033e14 0.210467
\(539\) −6.20860e14 −0.587835
\(540\) 0 0
\(541\) 2.72396e14 0.252706 0.126353 0.991985i \(-0.459673\pi\)
0.126353 + 0.991985i \(0.459673\pi\)
\(542\) −2.12248e14 −0.194916
\(543\) 0 0
\(544\) −9.92524e14 −0.893197
\(545\) −8.87816e14 −0.790938
\(546\) 0 0
\(547\) −2.17632e15 −1.90017 −0.950086 0.311987i \(-0.899006\pi\)
−0.950086 + 0.311987i \(0.899006\pi\)
\(548\) 2.20807e15 1.90863
\(549\) 0 0
\(550\) 1.76519e15 1.49553
\(551\) 6.25933e14 0.525042
\(552\) 0 0
\(553\) 2.13849e15 1.75841
\(554\) −7.51872e14 −0.612125
\(555\) 0 0
\(556\) 3.85728e15 3.07872
\(557\) −7.42272e14 −0.586624 −0.293312 0.956017i \(-0.594757\pi\)
−0.293312 + 0.956017i \(0.594757\pi\)
\(558\) 0 0
\(559\) −3.86096e13 −0.0299178
\(560\) −3.58601e13 −0.0275155
\(561\) 0 0
\(562\) 7.61284e14 0.572792
\(563\) −9.90305e14 −0.737858 −0.368929 0.929458i \(-0.620275\pi\)
−0.368929 + 0.929458i \(0.620275\pi\)
\(564\) 0 0
\(565\) −2.90754e14 −0.212451
\(566\) −3.18358e15 −2.30370
\(567\) 0 0
\(568\) −5.74394e14 −0.407656
\(569\) −3.08229e14 −0.216649 −0.108324 0.994116i \(-0.534549\pi\)
−0.108324 + 0.994116i \(0.534549\pi\)
\(570\) 0 0
\(571\) −1.47514e14 −0.101703 −0.0508515 0.998706i \(-0.516194\pi\)
−0.0508515 + 0.998706i \(0.516194\pi\)
\(572\) 4.49775e13 0.0307126
\(573\) 0 0
\(574\) −3.66977e15 −2.45823
\(575\) 1.88109e15 1.24807
\(576\) 0 0
\(577\) −1.25479e15 −0.816777 −0.408389 0.912808i \(-0.633909\pi\)
−0.408389 + 0.912808i \(0.633909\pi\)
\(578\) −3.48259e14 −0.224543
\(579\) 0 0
\(580\) −6.39372e14 −0.404482
\(581\) −9.27366e12 −0.00581142
\(582\) 0 0
\(583\) 1.63753e15 1.00696
\(584\) 1.48053e15 0.901873
\(585\) 0 0
\(586\) −3.83753e15 −2.29411
\(587\) −1.32072e15 −0.782170 −0.391085 0.920355i \(-0.627900\pi\)
−0.391085 + 0.920355i \(0.627900\pi\)
\(588\) 0 0
\(589\) −3.02444e15 −1.75797
\(590\) −1.41172e15 −0.812945
\(591\) 0 0
\(592\) −5.06622e13 −0.0286361
\(593\) 3.14526e15 1.76139 0.880695 0.473685i \(-0.157076\pi\)
0.880695 + 0.473685i \(0.157076\pi\)
\(594\) 0 0
\(595\) −1.00725e15 −0.553725
\(596\) 2.73932e15 1.49207
\(597\) 0 0
\(598\) 7.71842e13 0.0412736
\(599\) −3.44899e15 −1.82744 −0.913722 0.406339i \(-0.866805\pi\)
−0.913722 + 0.406339i \(0.866805\pi\)
\(600\) 0 0
\(601\) 2.72953e15 1.41997 0.709983 0.704218i \(-0.248702\pi\)
0.709983 + 0.704218i \(0.248702\pi\)
\(602\) −7.42124e15 −3.82556
\(603\) 0 0
\(604\) −2.22057e15 −1.12398
\(605\) 4.54375e14 0.227908
\(606\) 0 0
\(607\) −1.25192e15 −0.616652 −0.308326 0.951281i \(-0.599769\pi\)
−0.308326 + 0.951281i \(0.599769\pi\)
\(608\) 2.05170e15 1.00149
\(609\) 0 0
\(610\) −9.28289e14 −0.445009
\(611\) 3.84003e13 0.0182435
\(612\) 0 0
\(613\) 9.07978e14 0.423684 0.211842 0.977304i \(-0.432054\pi\)
0.211842 + 0.977304i \(0.432054\pi\)
\(614\) −3.72861e15 −1.72433
\(615\) 0 0
\(616\) 3.36885e15 1.53034
\(617\) −3.58549e13 −0.0161428 −0.00807142 0.999967i \(-0.502569\pi\)
−0.00807142 + 0.999967i \(0.502569\pi\)
\(618\) 0 0
\(619\) 1.09634e15 0.484892 0.242446 0.970165i \(-0.422050\pi\)
0.242446 + 0.970165i \(0.422050\pi\)
\(620\) 3.08937e15 1.35430
\(621\) 0 0
\(622\) −6.57373e15 −2.83116
\(623\) −4.29151e15 −1.83200
\(624\) 0 0
\(625\) 8.07880e14 0.338849
\(626\) 7.05630e14 0.293372
\(627\) 0 0
\(628\) −4.08776e14 −0.166996
\(629\) −1.42302e15 −0.576278
\(630\) 0 0
\(631\) 1.97162e15 0.784623 0.392312 0.919832i \(-0.371675\pi\)
0.392312 + 0.919832i \(0.371675\pi\)
\(632\) −3.79263e15 −1.49623
\(633\) 0 0
\(634\) 3.63207e15 1.40819
\(635\) −1.74946e14 −0.0672433
\(636\) 0 0
\(637\) −1.99001e13 −0.00751775
\(638\) 2.64859e15 0.991976
\(639\) 0 0
\(640\) −2.19536e15 −0.808195
\(641\) −7.96369e14 −0.290667 −0.145333 0.989383i \(-0.546425\pi\)
−0.145333 + 0.989383i \(0.546425\pi\)
\(642\) 0 0
\(643\) 1.07156e15 0.384466 0.192233 0.981349i \(-0.438427\pi\)
0.192233 + 0.981349i \(0.438427\pi\)
\(644\) 9.21291e15 3.27736
\(645\) 0 0
\(646\) −4.48788e15 −1.56950
\(647\) −1.57918e15 −0.547592 −0.273796 0.961788i \(-0.588279\pi\)
−0.273796 + 0.961788i \(0.588279\pi\)
\(648\) 0 0
\(649\) 3.63158e15 1.23808
\(650\) 5.65785e13 0.0191262
\(651\) 0 0
\(652\) −6.87827e15 −2.28622
\(653\) −1.56213e15 −0.514867 −0.257434 0.966296i \(-0.582877\pi\)
−0.257434 + 0.966296i \(0.582877\pi\)
\(654\) 0 0
\(655\) 2.01771e15 0.653932
\(656\) 1.78218e14 0.0572769
\(657\) 0 0
\(658\) 7.38101e15 2.33278
\(659\) −4.33161e15 −1.35762 −0.678812 0.734312i \(-0.737505\pi\)
−0.678812 + 0.734312i \(0.737505\pi\)
\(660\) 0 0
\(661\) −4.69271e15 −1.44649 −0.723246 0.690591i \(-0.757351\pi\)
−0.723246 + 0.690591i \(0.757351\pi\)
\(662\) 3.13659e15 0.958823
\(663\) 0 0
\(664\) 1.64469e13 0.00494494
\(665\) 2.08214e15 0.620857
\(666\) 0 0
\(667\) 2.82251e15 0.827834
\(668\) 1.69222e15 0.492251
\(669\) 0 0
\(670\) −6.30451e14 −0.180401
\(671\) 2.38799e15 0.677732
\(672\) 0 0
\(673\) 3.37880e15 0.943365 0.471683 0.881768i \(-0.343647\pi\)
0.471683 + 0.881768i \(0.343647\pi\)
\(674\) −3.42919e15 −0.949646
\(675\) 0 0
\(676\) −6.01233e15 −1.63808
\(677\) 1.31683e15 0.355871 0.177936 0.984042i \(-0.443058\pi\)
0.177936 + 0.984042i \(0.443058\pi\)
\(678\) 0 0
\(679\) −1.92240e15 −0.511165
\(680\) 1.78637e15 0.471164
\(681\) 0 0
\(682\) −1.27977e16 −3.32137
\(683\) 6.27377e14 0.161516 0.0807579 0.996734i \(-0.474266\pi\)
0.0807579 + 0.996734i \(0.474266\pi\)
\(684\) 0 0
\(685\) 2.25027e15 0.570082
\(686\) 4.05272e15 1.01851
\(687\) 0 0
\(688\) 3.60403e14 0.0891357
\(689\) 5.24868e13 0.0128779
\(690\) 0 0
\(691\) −3.92619e15 −0.948073 −0.474036 0.880505i \(-0.657203\pi\)
−0.474036 + 0.880505i \(0.657203\pi\)
\(692\) 1.07552e16 2.57654
\(693\) 0 0
\(694\) −5.08447e15 −1.19886
\(695\) 3.93100e15 0.919573
\(696\) 0 0
\(697\) 5.00584e15 1.15265
\(698\) −3.09550e15 −0.707174
\(699\) 0 0
\(700\) 6.75336e15 1.51873
\(701\) 7.61339e14 0.169875 0.0849375 0.996386i \(-0.472931\pi\)
0.0849375 + 0.996386i \(0.472931\pi\)
\(702\) 0 0
\(703\) 2.94160e15 0.646144
\(704\) 8.93788e15 1.94798
\(705\) 0 0
\(706\) −1.27065e16 −2.72647
\(707\) −4.81926e15 −1.02606
\(708\) 0 0
\(709\) −5.48123e15 −1.14901 −0.574505 0.818501i \(-0.694805\pi\)
−0.574505 + 0.818501i \(0.694805\pi\)
\(710\) −1.50220e15 −0.312468
\(711\) 0 0
\(712\) 7.61105e15 1.55885
\(713\) −1.36380e16 −2.77179
\(714\) 0 0
\(715\) 4.58371e13 0.00917347
\(716\) 1.54351e15 0.306540
\(717\) 0 0
\(718\) −8.14153e15 −1.59229
\(719\) 4.97029e15 0.964656 0.482328 0.875991i \(-0.339791\pi\)
0.482328 + 0.875991i \(0.339791\pi\)
\(720\) 0 0
\(721\) 9.63704e14 0.184204
\(722\) 7.14041e14 0.135447
\(723\) 0 0
\(724\) 1.14107e16 2.13181
\(725\) 2.06899e15 0.383618
\(726\) 0 0
\(727\) 2.72096e15 0.496915 0.248458 0.968643i \(-0.420076\pi\)
0.248458 + 0.968643i \(0.420076\pi\)
\(728\) 1.07980e14 0.0195713
\(729\) 0 0
\(730\) 3.87198e15 0.691285
\(731\) 1.01231e16 1.79378
\(732\) 0 0
\(733\) −5.10336e15 −0.890808 −0.445404 0.895330i \(-0.646940\pi\)
−0.445404 + 0.895330i \(0.646940\pi\)
\(734\) −9.91949e15 −1.71855
\(735\) 0 0
\(736\) 9.25170e15 1.57904
\(737\) 1.62181e15 0.274744
\(738\) 0 0
\(739\) −4.27429e14 −0.0713378 −0.0356689 0.999364i \(-0.511356\pi\)
−0.0356689 + 0.999364i \(0.511356\pi\)
\(740\) −3.00476e15 −0.497777
\(741\) 0 0
\(742\) 1.00886e16 1.64668
\(743\) −2.17073e15 −0.351695 −0.175848 0.984417i \(-0.556267\pi\)
−0.175848 + 0.984417i \(0.556267\pi\)
\(744\) 0 0
\(745\) 2.79168e15 0.445662
\(746\) −9.51544e15 −1.50788
\(747\) 0 0
\(748\) −1.17928e16 −1.84144
\(749\) −2.61240e15 −0.404940
\(750\) 0 0
\(751\) 4.42784e15 0.676351 0.338175 0.941083i \(-0.390190\pi\)
0.338175 + 0.941083i \(0.390190\pi\)
\(752\) −3.58449e14 −0.0543538
\(753\) 0 0
\(754\) 8.48939e13 0.0126863
\(755\) −2.26300e15 −0.335720
\(756\) 0 0
\(757\) 1.23673e15 0.180821 0.0904104 0.995905i \(-0.471182\pi\)
0.0904104 + 0.995905i \(0.471182\pi\)
\(758\) 9.42801e15 1.36848
\(759\) 0 0
\(760\) −3.69271e15 −0.528287
\(761\) 3.99580e15 0.567528 0.283764 0.958894i \(-0.408417\pi\)
0.283764 + 0.958894i \(0.408417\pi\)
\(762\) 0 0
\(763\) 1.40706e16 1.96983
\(764\) −1.16725e16 −1.62237
\(765\) 0 0
\(766\) 4.57410e15 0.626683
\(767\) 1.16401e14 0.0158337
\(768\) 0 0
\(769\) 5.59039e15 0.749630 0.374815 0.927100i \(-0.377706\pi\)
0.374815 + 0.927100i \(0.377706\pi\)
\(770\) 8.81045e15 1.17300
\(771\) 0 0
\(772\) 2.41608e16 3.17114
\(773\) −8.68388e15 −1.13169 −0.565844 0.824512i \(-0.691450\pi\)
−0.565844 + 0.824512i \(0.691450\pi\)
\(774\) 0 0
\(775\) −9.99713e15 −1.28445
\(776\) 3.40941e15 0.434950
\(777\) 0 0
\(778\) 1.59765e16 2.00953
\(779\) −1.03479e16 −1.29239
\(780\) 0 0
\(781\) 3.86434e15 0.475877
\(782\) −2.02371e16 −2.47464
\(783\) 0 0
\(784\) 1.85758e14 0.0223980
\(785\) −4.16588e14 −0.0498797
\(786\) 0 0
\(787\) −6.71593e14 −0.0792949 −0.0396475 0.999214i \(-0.512623\pi\)
−0.0396475 + 0.999214i \(0.512623\pi\)
\(788\) −1.77093e16 −2.07638
\(789\) 0 0
\(790\) −9.91877e15 −1.14686
\(791\) 4.60805e15 0.529110
\(792\) 0 0
\(793\) 7.65408e13 0.00866743
\(794\) −5.28556e15 −0.594399
\(795\) 0 0
\(796\) −2.29997e16 −2.55094
\(797\) 1.61907e15 0.178339 0.0891693 0.996016i \(-0.471579\pi\)
0.0891693 + 0.996016i \(0.471579\pi\)
\(798\) 0 0
\(799\) −1.00683e16 −1.09382
\(800\) 6.78180e15 0.731728
\(801\) 0 0
\(802\) 3.55765e15 0.378621
\(803\) −9.96050e15 −1.05280
\(804\) 0 0
\(805\) 9.38897e15 0.978906
\(806\) −4.10198e14 −0.0424767
\(807\) 0 0
\(808\) 8.54702e15 0.873076
\(809\) 8.86198e15 0.899112 0.449556 0.893252i \(-0.351582\pi\)
0.449556 + 0.893252i \(0.351582\pi\)
\(810\) 0 0
\(811\) −3.62466e15 −0.362787 −0.181394 0.983411i \(-0.558061\pi\)
−0.181394 + 0.983411i \(0.558061\pi\)
\(812\) 1.01332e16 1.00736
\(813\) 0 0
\(814\) 1.24472e16 1.22078
\(815\) −7.00973e15 −0.682864
\(816\) 0 0
\(817\) −2.09261e16 −2.01125
\(818\) −5.77301e15 −0.551137
\(819\) 0 0
\(820\) 1.05700e16 0.995634
\(821\) 6.76268e15 0.632749 0.316375 0.948634i \(-0.397534\pi\)
0.316375 + 0.948634i \(0.397534\pi\)
\(822\) 0 0
\(823\) 9.56478e15 0.883031 0.441516 0.897254i \(-0.354441\pi\)
0.441516 + 0.897254i \(0.354441\pi\)
\(824\) −1.70914e15 −0.156739
\(825\) 0 0
\(826\) 2.23737e16 2.02464
\(827\) 1.21184e16 1.08934 0.544671 0.838650i \(-0.316655\pi\)
0.544671 + 0.838650i \(0.316655\pi\)
\(828\) 0 0
\(829\) −9.24590e15 −0.820162 −0.410081 0.912049i \(-0.634499\pi\)
−0.410081 + 0.912049i \(0.634499\pi\)
\(830\) 4.30132e13 0.00379029
\(831\) 0 0
\(832\) 2.86481e14 0.0249125
\(833\) 5.21765e15 0.450741
\(834\) 0 0
\(835\) 1.72456e15 0.147029
\(836\) 2.43775e16 2.06469
\(837\) 0 0
\(838\) −2.00935e15 −0.167963
\(839\) 2.00044e16 1.66125 0.830623 0.556836i \(-0.187985\pi\)
0.830623 + 0.556836i \(0.187985\pi\)
\(840\) 0 0
\(841\) −9.09607e15 −0.745548
\(842\) −2.93974e16 −2.39383
\(843\) 0 0
\(844\) −2.02677e16 −1.62900
\(845\) −6.12723e15 −0.489274
\(846\) 0 0
\(847\) −7.20122e15 −0.567606
\(848\) −4.89940e14 −0.0383677
\(849\) 0 0
\(850\) −1.48345e16 −1.14675
\(851\) 1.32645e16 1.01878
\(852\) 0 0
\(853\) −2.97052e14 −0.0225223 −0.0112612 0.999937i \(-0.503585\pi\)
−0.0112612 + 0.999937i \(0.503585\pi\)
\(854\) 1.47121e16 1.10830
\(855\) 0 0
\(856\) 4.63313e15 0.344563
\(857\) 9.93107e15 0.733840 0.366920 0.930252i \(-0.380412\pi\)
0.366920 + 0.930252i \(0.380412\pi\)
\(858\) 0 0
\(859\) −9.05689e15 −0.660719 −0.330359 0.943855i \(-0.607170\pi\)
−0.330359 + 0.943855i \(0.607170\pi\)
\(860\) 2.13754e16 1.54943
\(861\) 0 0
\(862\) −2.72019e16 −1.94675
\(863\) −9.05054e15 −0.643599 −0.321799 0.946808i \(-0.604288\pi\)
−0.321799 + 0.946808i \(0.604288\pi\)
\(864\) 0 0
\(865\) 1.09608e16 0.769578
\(866\) −4.25660e16 −2.96971
\(867\) 0 0
\(868\) −4.89622e16 −3.37290
\(869\) 2.55156e16 1.74662
\(870\) 0 0
\(871\) 5.19829e13 0.00351367
\(872\) −2.49545e16 −1.67613
\(873\) 0 0
\(874\) 4.18333e16 2.77465
\(875\) 1.59323e16 1.05011
\(876\) 0 0
\(877\) 2.38703e16 1.55367 0.776836 0.629703i \(-0.216823\pi\)
0.776836 + 0.629703i \(0.216823\pi\)
\(878\) 5.89810e15 0.381498
\(879\) 0 0
\(880\) −4.27868e14 −0.0273310
\(881\) 2.23350e16 1.41781 0.708907 0.705302i \(-0.249189\pi\)
0.708907 + 0.705302i \(0.249189\pi\)
\(882\) 0 0
\(883\) −1.13889e15 −0.0714003 −0.0357001 0.999363i \(-0.511366\pi\)
−0.0357001 + 0.999363i \(0.511366\pi\)
\(884\) −3.77987e14 −0.0235499
\(885\) 0 0
\(886\) 1.14546e16 0.704844
\(887\) 1.68491e16 1.03038 0.515191 0.857076i \(-0.327721\pi\)
0.515191 + 0.857076i \(0.327721\pi\)
\(888\) 0 0
\(889\) 2.77265e15 0.167469
\(890\) 1.99050e16 1.19486
\(891\) 0 0
\(892\) 4.11716e14 0.0244113
\(893\) 2.08127e16 1.22644
\(894\) 0 0
\(895\) 1.57301e15 0.0915596
\(896\) 3.47934e16 2.01281
\(897\) 0 0
\(898\) −3.94814e16 −2.25618
\(899\) −1.50003e16 −0.851965
\(900\) 0 0
\(901\) −1.37616e16 −0.772118
\(902\) −4.37862e16 −2.44175
\(903\) 0 0
\(904\) −8.17242e15 −0.450220
\(905\) 1.16287e16 0.636744
\(906\) 0 0
\(907\) −9.39202e15 −0.508065 −0.254032 0.967196i \(-0.581757\pi\)
−0.254032 + 0.967196i \(0.581757\pi\)
\(908\) 3.93403e15 0.211527
\(909\) 0 0
\(910\) 2.82396e14 0.0150014
\(911\) −2.93244e16 −1.54838 −0.774192 0.632951i \(-0.781843\pi\)
−0.774192 + 0.632951i \(0.781843\pi\)
\(912\) 0 0
\(913\) −1.10650e14 −0.00577246
\(914\) −2.07188e16 −1.07439
\(915\) 0 0
\(916\) 3.30624e16 1.69399
\(917\) −3.19780e16 −1.62862
\(918\) 0 0
\(919\) −1.40482e16 −0.706942 −0.353471 0.935445i \(-0.614999\pi\)
−0.353471 + 0.935445i \(0.614999\pi\)
\(920\) −1.66514e16 −0.832950
\(921\) 0 0
\(922\) 2.14806e16 1.06176
\(923\) 1.23861e14 0.00608593
\(924\) 0 0
\(925\) 9.72331e15 0.472101
\(926\) 4.02906e16 1.94466
\(927\) 0 0
\(928\) 1.01758e16 0.485351
\(929\) −1.97725e16 −0.937508 −0.468754 0.883329i \(-0.655297\pi\)
−0.468754 + 0.883329i \(0.655297\pi\)
\(930\) 0 0
\(931\) −1.07857e16 −0.505388
\(932\) −2.10782e16 −0.981852
\(933\) 0 0
\(934\) 5.19266e16 2.39046
\(935\) −1.20181e16 −0.550013
\(936\) 0 0
\(937\) 3.06345e16 1.38561 0.692807 0.721123i \(-0.256374\pi\)
0.692807 + 0.721123i \(0.256374\pi\)
\(938\) 9.99176e15 0.449290
\(939\) 0 0
\(940\) −2.12595e16 −0.944822
\(941\) −6.83559e15 −0.302018 −0.151009 0.988532i \(-0.548252\pi\)
−0.151009 + 0.988532i \(0.548252\pi\)
\(942\) 0 0
\(943\) −4.66614e16 −2.03771
\(944\) −1.08655e15 −0.0471742
\(945\) 0 0
\(946\) −8.85473e16 −3.79992
\(947\) −2.14054e16 −0.913269 −0.456634 0.889654i \(-0.650945\pi\)
−0.456634 + 0.889654i \(0.650945\pi\)
\(948\) 0 0
\(949\) −3.19258e14 −0.0134641
\(950\) 3.06651e16 1.28577
\(951\) 0 0
\(952\) −2.83115e16 −1.17344
\(953\) 6.24777e15 0.257463 0.128731 0.991680i \(-0.458910\pi\)
0.128731 + 0.991680i \(0.458910\pi\)
\(954\) 0 0
\(955\) −1.18956e16 −0.484582
\(956\) 3.44009e16 1.39332
\(957\) 0 0
\(958\) 1.05194e16 0.421192
\(959\) −3.56637e16 −1.41979
\(960\) 0 0
\(961\) 4.70713e16 1.85258
\(962\) 3.98962e14 0.0156124
\(963\) 0 0
\(964\) −5.79774e16 −2.24303
\(965\) 2.46225e16 0.947179
\(966\) 0 0
\(967\) −5.67065e14 −0.0215669 −0.0107834 0.999942i \(-0.503433\pi\)
−0.0107834 + 0.999942i \(0.503433\pi\)
\(968\) 1.27714e16 0.482976
\(969\) 0 0
\(970\) 8.91652e15 0.333389
\(971\) 3.46020e16 1.28646 0.643228 0.765675i \(-0.277595\pi\)
0.643228 + 0.765675i \(0.277595\pi\)
\(972\) 0 0
\(973\) −6.23008e16 −2.29020
\(974\) −5.06050e16 −1.84978
\(975\) 0 0
\(976\) −7.14474e14 −0.0258233
\(977\) −4.24356e16 −1.52514 −0.762570 0.646905i \(-0.776063\pi\)
−0.762570 + 0.646905i \(0.776063\pi\)
\(978\) 0 0
\(979\) −5.12047e16 −1.81972
\(980\) 1.10173e16 0.389341
\(981\) 0 0
\(982\) 5.61392e16 1.96179
\(983\) 4.46161e16 1.55041 0.775207 0.631708i \(-0.217646\pi\)
0.775207 + 0.631708i \(0.217646\pi\)
\(984\) 0 0
\(985\) −1.80477e16 −0.620188
\(986\) −2.22585e16 −0.760630
\(987\) 0 0
\(988\) 7.81357e14 0.0264050
\(989\) −9.43616e16 −3.17114
\(990\) 0 0
\(991\) 1.04382e15 0.0346911 0.0173456 0.999850i \(-0.494478\pi\)
0.0173456 + 0.999850i \(0.494478\pi\)
\(992\) −4.91684e16 −1.62507
\(993\) 0 0
\(994\) 2.38077e16 0.778202
\(995\) −2.34393e16 −0.761933
\(996\) 0 0
\(997\) 1.78108e15 0.0572612 0.0286306 0.999590i \(-0.490885\pi\)
0.0286306 + 0.999590i \(0.490885\pi\)
\(998\) −3.84017e16 −1.22782
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.12.a.d.1.10 yes 10
3.2 odd 2 inner 81.12.a.d.1.1 10
9.2 odd 6 81.12.c.m.28.10 20
9.4 even 3 81.12.c.m.55.1 20
9.5 odd 6 81.12.c.m.55.10 20
9.7 even 3 81.12.c.m.28.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.12.a.d.1.1 10 3.2 odd 2 inner
81.12.a.d.1.10 yes 10 1.1 even 1 trivial
81.12.c.m.28.1 20 9.7 even 3
81.12.c.m.28.10 20 9.2 odd 6
81.12.c.m.55.1 20 9.4 even 3
81.12.c.m.55.10 20 9.5 odd 6