Properties

Label 81.12.a.c.1.9
Level $81$
Weight $12$
Character 81.1
Self dual yes
Analytic conductor $62.236$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,12,Mod(1,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 81.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.2357976253\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 3 x^{9} - 14790 x^{8} + 93060 x^{7} + 72223254 x^{6} - 592709562 x^{5} - 132941711592 x^{4} + \cdots - 18\!\cdots\!74 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{30} \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-64.1286\) of defining polynomial
Character \(\chi\) \(=\) 81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+61.1286 q^{2} +1688.71 q^{4} -3368.11 q^{5} +10796.9 q^{7} -21963.1 q^{8} -205888. q^{10} -23907.9 q^{11} +2.37145e6 q^{13} +659999. q^{14} -4.80105e6 q^{16} -8.22600e6 q^{17} +6.96671e6 q^{19} -5.68775e6 q^{20} -1.46146e6 q^{22} -3.92161e7 q^{23} -3.74840e7 q^{25} +1.44964e8 q^{26} +1.82328e7 q^{28} -1.43223e8 q^{29} -1.40238e8 q^{31} -2.48501e8 q^{32} -5.02844e8 q^{34} -3.63651e7 q^{35} -9.06766e7 q^{37} +4.25865e8 q^{38} +7.39741e7 q^{40} +1.06810e9 q^{41} -1.16886e9 q^{43} -4.03735e7 q^{44} -2.39723e9 q^{46} -6.65214e8 q^{47} -1.86075e9 q^{49} -2.29134e9 q^{50} +4.00469e9 q^{52} -2.63429e9 q^{53} +8.05245e7 q^{55} -2.37133e8 q^{56} -8.75505e9 q^{58} +2.57374e9 q^{59} -2.31915e9 q^{61} -8.57257e9 q^{62} -5.35796e9 q^{64} -7.98731e9 q^{65} +1.80212e10 q^{67} -1.38913e10 q^{68} -2.22295e9 q^{70} -8.01761e9 q^{71} +6.36413e9 q^{73} -5.54293e9 q^{74} +1.17647e10 q^{76} -2.58131e8 q^{77} +3.50524e9 q^{79} +1.61704e10 q^{80} +6.52913e10 q^{82} -2.23844e10 q^{83} +2.77061e10 q^{85} -7.14509e10 q^{86} +5.25093e8 q^{88} +2.24189e10 q^{89} +2.56043e10 q^{91} -6.62245e10 q^{92} -4.06636e10 q^{94} -2.34646e10 q^{95} +1.08894e11 q^{97} -1.13745e11 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 33 q^{2} + 9217 q^{4} - 7230 q^{5} - 8512 q^{7} + 14559 q^{8} + 2046 q^{10} - 112776 q^{11} - 279706 q^{13} - 3901584 q^{14} + 7342081 q^{16} - 13882896 q^{17} + 3514700 q^{19} - 34163508 q^{20}+ \cdots - 655061802039 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 61.1286 1.35076 0.675382 0.737468i \(-0.263979\pi\)
0.675382 + 0.737468i \(0.263979\pi\)
\(3\) 0 0
\(4\) 1688.71 0.824564
\(5\) −3368.11 −0.482004 −0.241002 0.970525i \(-0.577476\pi\)
−0.241002 + 0.970525i \(0.577476\pi\)
\(6\) 0 0
\(7\) 10796.9 0.242806 0.121403 0.992603i \(-0.461261\pi\)
0.121403 + 0.992603i \(0.461261\pi\)
\(8\) −21963.1 −0.236973
\(9\) 0 0
\(10\) −205888. −0.651074
\(11\) −23907.9 −0.0447592 −0.0223796 0.999750i \(-0.507124\pi\)
−0.0223796 + 0.999750i \(0.507124\pi\)
\(12\) 0 0
\(13\) 2.37145e6 1.77144 0.885719 0.464221i \(-0.153666\pi\)
0.885719 + 0.464221i \(0.153666\pi\)
\(14\) 659999. 0.327974
\(15\) 0 0
\(16\) −4.80105e6 −1.14466
\(17\) −8.22600e6 −1.40514 −0.702570 0.711615i \(-0.747964\pi\)
−0.702570 + 0.711615i \(0.747964\pi\)
\(18\) 0 0
\(19\) 6.96671e6 0.645480 0.322740 0.946488i \(-0.395396\pi\)
0.322740 + 0.946488i \(0.395396\pi\)
\(20\) −5.68775e6 −0.397443
\(21\) 0 0
\(22\) −1.46146e6 −0.0604591
\(23\) −3.92161e7 −1.27046 −0.635230 0.772323i \(-0.719095\pi\)
−0.635230 + 0.772323i \(0.719095\pi\)
\(24\) 0 0
\(25\) −3.74840e7 −0.767672
\(26\) 1.44964e8 2.39280
\(27\) 0 0
\(28\) 1.82328e7 0.200209
\(29\) −1.43223e8 −1.29666 −0.648329 0.761361i \(-0.724532\pi\)
−0.648329 + 0.761361i \(0.724532\pi\)
\(30\) 0 0
\(31\) −1.40238e8 −0.879786 −0.439893 0.898050i \(-0.644984\pi\)
−0.439893 + 0.898050i \(0.644984\pi\)
\(32\) −2.48501e8 −1.30919
\(33\) 0 0
\(34\) −5.02844e8 −1.89801
\(35\) −3.63651e7 −0.117034
\(36\) 0 0
\(37\) −9.06766e7 −0.214974 −0.107487 0.994206i \(-0.534280\pi\)
−0.107487 + 0.994206i \(0.534280\pi\)
\(38\) 4.25865e8 0.871892
\(39\) 0 0
\(40\) 7.39741e7 0.114222
\(41\) 1.06810e9 1.43979 0.719896 0.694082i \(-0.244190\pi\)
0.719896 + 0.694082i \(0.244190\pi\)
\(42\) 0 0
\(43\) −1.16886e9 −1.21251 −0.606257 0.795269i \(-0.707330\pi\)
−0.606257 + 0.795269i \(0.707330\pi\)
\(44\) −4.03735e7 −0.0369068
\(45\) 0 0
\(46\) −2.39723e9 −1.71609
\(47\) −6.65214e8 −0.423081 −0.211540 0.977369i \(-0.567848\pi\)
−0.211540 + 0.977369i \(0.567848\pi\)
\(48\) 0 0
\(49\) −1.86075e9 −0.941045
\(50\) −2.29134e9 −1.03694
\(51\) 0 0
\(52\) 4.00469e9 1.46066
\(53\) −2.63429e9 −0.865259 −0.432629 0.901572i \(-0.642414\pi\)
−0.432629 + 0.901572i \(0.642414\pi\)
\(54\) 0 0
\(55\) 8.05245e7 0.0215741
\(56\) −2.37133e8 −0.0575385
\(57\) 0 0
\(58\) −8.75505e9 −1.75148
\(59\) 2.57374e9 0.468682 0.234341 0.972154i \(-0.424707\pi\)
0.234341 + 0.972154i \(0.424707\pi\)
\(60\) 0 0
\(61\) −2.31915e9 −0.351573 −0.175786 0.984428i \(-0.556247\pi\)
−0.175786 + 0.984428i \(0.556247\pi\)
\(62\) −8.57257e9 −1.18838
\(63\) 0 0
\(64\) −5.35796e9 −0.623749
\(65\) −7.98731e9 −0.853841
\(66\) 0 0
\(67\) 1.80212e10 1.63069 0.815345 0.578976i \(-0.196547\pi\)
0.815345 + 0.578976i \(0.196547\pi\)
\(68\) −1.38913e10 −1.15863
\(69\) 0 0
\(70\) −2.22295e9 −0.158085
\(71\) −8.01761e9 −0.527380 −0.263690 0.964607i \(-0.584940\pi\)
−0.263690 + 0.964607i \(0.584940\pi\)
\(72\) 0 0
\(73\) 6.36413e9 0.359305 0.179653 0.983730i \(-0.442503\pi\)
0.179653 + 0.983730i \(0.442503\pi\)
\(74\) −5.54293e9 −0.290379
\(75\) 0 0
\(76\) 1.17647e10 0.532240
\(77\) −2.58131e8 −0.0108678
\(78\) 0 0
\(79\) 3.50524e9 0.128165 0.0640824 0.997945i \(-0.479588\pi\)
0.0640824 + 0.997945i \(0.479588\pi\)
\(80\) 1.61704e10 0.551730
\(81\) 0 0
\(82\) 6.52913e10 1.94482
\(83\) −2.23844e10 −0.623757 −0.311879 0.950122i \(-0.600958\pi\)
−0.311879 + 0.950122i \(0.600958\pi\)
\(84\) 0 0
\(85\) 2.77061e10 0.677284
\(86\) −7.14509e10 −1.63782
\(87\) 0 0
\(88\) 5.25093e8 0.0106067
\(89\) 2.24189e10 0.425568 0.212784 0.977099i \(-0.431747\pi\)
0.212784 + 0.977099i \(0.431747\pi\)
\(90\) 0 0
\(91\) 2.56043e10 0.430116
\(92\) −6.62245e10 −1.04758
\(93\) 0 0
\(94\) −4.06636e10 −0.571482
\(95\) −2.34646e10 −0.311124
\(96\) 0 0
\(97\) 1.08894e11 1.28754 0.643769 0.765220i \(-0.277370\pi\)
0.643769 + 0.765220i \(0.277370\pi\)
\(98\) −1.13745e11 −1.27113
\(99\) 0 0
\(100\) −6.32994e10 −0.632994
\(101\) −2.79733e10 −0.264836 −0.132418 0.991194i \(-0.542274\pi\)
−0.132418 + 0.991194i \(0.542274\pi\)
\(102\) 0 0
\(103\) 4.60630e10 0.391514 0.195757 0.980652i \(-0.437284\pi\)
0.195757 + 0.980652i \(0.437284\pi\)
\(104\) −5.20845e10 −0.419783
\(105\) 0 0
\(106\) −1.61030e11 −1.16876
\(107\) −2.52397e11 −1.73970 −0.869849 0.493319i \(-0.835784\pi\)
−0.869849 + 0.493319i \(0.835784\pi\)
\(108\) 0 0
\(109\) −2.77857e11 −1.72972 −0.864859 0.502015i \(-0.832592\pi\)
−0.864859 + 0.502015i \(0.832592\pi\)
\(110\) 4.92235e9 0.0291416
\(111\) 0 0
\(112\) −5.18364e10 −0.277930
\(113\) 1.72897e11 0.882785 0.441392 0.897314i \(-0.354485\pi\)
0.441392 + 0.897314i \(0.354485\pi\)
\(114\) 0 0
\(115\) 1.32084e11 0.612368
\(116\) −2.41862e11 −1.06918
\(117\) 0 0
\(118\) 1.57329e11 0.633078
\(119\) −8.88152e10 −0.341176
\(120\) 0 0
\(121\) −2.84740e11 −0.997997
\(122\) −1.41767e11 −0.474892
\(123\) 0 0
\(124\) −2.36821e11 −0.725440
\(125\) 2.90708e11 0.852026
\(126\) 0 0
\(127\) −2.78560e11 −0.748167 −0.374084 0.927395i \(-0.622043\pi\)
−0.374084 + 0.927395i \(0.622043\pi\)
\(128\) 1.81405e11 0.466653
\(129\) 0 0
\(130\) −4.88253e11 −1.15334
\(131\) −1.80696e11 −0.409219 −0.204610 0.978844i \(-0.565592\pi\)
−0.204610 + 0.978844i \(0.565592\pi\)
\(132\) 0 0
\(133\) 7.52188e10 0.156727
\(134\) 1.10161e12 2.20268
\(135\) 0 0
\(136\) 1.80669e11 0.332980
\(137\) −2.28140e11 −0.403866 −0.201933 0.979399i \(-0.564722\pi\)
−0.201933 + 0.979399i \(0.564722\pi\)
\(138\) 0 0
\(139\) 9.06508e11 1.48180 0.740901 0.671614i \(-0.234399\pi\)
0.740901 + 0.671614i \(0.234399\pi\)
\(140\) −6.14100e10 −0.0965016
\(141\) 0 0
\(142\) −4.90105e11 −0.712366
\(143\) −5.66965e10 −0.0792882
\(144\) 0 0
\(145\) 4.82392e11 0.624994
\(146\) 3.89030e11 0.485336
\(147\) 0 0
\(148\) −1.53126e11 −0.177260
\(149\) 9.38804e11 1.04725 0.523625 0.851949i \(-0.324579\pi\)
0.523625 + 0.851949i \(0.324579\pi\)
\(150\) 0 0
\(151\) −9.60559e11 −0.995751 −0.497876 0.867248i \(-0.665886\pi\)
−0.497876 + 0.867248i \(0.665886\pi\)
\(152\) −1.53011e11 −0.152961
\(153\) 0 0
\(154\) −1.57792e10 −0.0146798
\(155\) 4.72338e11 0.424061
\(156\) 0 0
\(157\) 1.86770e12 1.56264 0.781318 0.624133i \(-0.214548\pi\)
0.781318 + 0.624133i \(0.214548\pi\)
\(158\) 2.14270e11 0.173120
\(159\) 0 0
\(160\) 8.36977e11 0.631036
\(161\) −4.23412e11 −0.308475
\(162\) 0 0
\(163\) 1.51923e12 1.03417 0.517085 0.855934i \(-0.327017\pi\)
0.517085 + 0.855934i \(0.327017\pi\)
\(164\) 1.80370e12 1.18720
\(165\) 0 0
\(166\) −1.36833e12 −0.842549
\(167\) 8.50407e11 0.506624 0.253312 0.967385i \(-0.418480\pi\)
0.253312 + 0.967385i \(0.418480\pi\)
\(168\) 0 0
\(169\) 3.83163e12 2.13799
\(170\) 1.69363e12 0.914850
\(171\) 0 0
\(172\) −1.97386e12 −0.999795
\(173\) −2.11572e12 −1.03802 −0.519010 0.854768i \(-0.673699\pi\)
−0.519010 + 0.854768i \(0.673699\pi\)
\(174\) 0 0
\(175\) −4.04710e11 −0.186395
\(176\) 1.14783e11 0.0512340
\(177\) 0 0
\(178\) 1.37043e12 0.574842
\(179\) 8.66770e11 0.352543 0.176271 0.984342i \(-0.443596\pi\)
0.176271 + 0.984342i \(0.443596\pi\)
\(180\) 0 0
\(181\) 1.19641e12 0.457772 0.228886 0.973453i \(-0.426492\pi\)
0.228886 + 0.973453i \(0.426492\pi\)
\(182\) 1.56516e12 0.580985
\(183\) 0 0
\(184\) 8.61308e11 0.301065
\(185\) 3.05409e11 0.103618
\(186\) 0 0
\(187\) 1.96667e11 0.0628929
\(188\) −1.12335e12 −0.348857
\(189\) 0 0
\(190\) −1.43436e12 −0.420256
\(191\) 4.23566e12 1.20570 0.602848 0.797856i \(-0.294033\pi\)
0.602848 + 0.797856i \(0.294033\pi\)
\(192\) 0 0
\(193\) −7.72433e11 −0.207633 −0.103816 0.994596i \(-0.533105\pi\)
−0.103816 + 0.994596i \(0.533105\pi\)
\(194\) 6.65654e12 1.73916
\(195\) 0 0
\(196\) −3.14227e12 −0.775952
\(197\) −2.24808e12 −0.539819 −0.269909 0.962886i \(-0.586994\pi\)
−0.269909 + 0.962886i \(0.586994\pi\)
\(198\) 0 0
\(199\) 4.46460e12 1.01412 0.507062 0.861910i \(-0.330732\pi\)
0.507062 + 0.861910i \(0.330732\pi\)
\(200\) 8.23265e11 0.181918
\(201\) 0 0
\(202\) −1.70997e12 −0.357730
\(203\) −1.54637e12 −0.314836
\(204\) 0 0
\(205\) −3.59747e12 −0.693986
\(206\) 2.81577e12 0.528843
\(207\) 0 0
\(208\) −1.13855e13 −2.02769
\(209\) −1.66560e11 −0.0288912
\(210\) 0 0
\(211\) 2.70478e12 0.445224 0.222612 0.974907i \(-0.428542\pi\)
0.222612 + 0.974907i \(0.428542\pi\)
\(212\) −4.44854e12 −0.713461
\(213\) 0 0
\(214\) −1.54287e13 −2.34992
\(215\) 3.93685e12 0.584437
\(216\) 0 0
\(217\) −1.51414e12 −0.213617
\(218\) −1.69850e13 −2.33644
\(219\) 0 0
\(220\) 1.35982e11 0.0177892
\(221\) −1.95076e13 −2.48912
\(222\) 0 0
\(223\) 7.20279e12 0.874629 0.437315 0.899309i \(-0.355930\pi\)
0.437315 + 0.899309i \(0.355930\pi\)
\(224\) −2.68304e12 −0.317879
\(225\) 0 0
\(226\) 1.05689e13 1.19243
\(227\) −3.22339e12 −0.354953 −0.177476 0.984125i \(-0.556793\pi\)
−0.177476 + 0.984125i \(0.556793\pi\)
\(228\) 0 0
\(229\) −1.46406e13 −1.53625 −0.768126 0.640299i \(-0.778810\pi\)
−0.768126 + 0.640299i \(0.778810\pi\)
\(230\) 8.07411e12 0.827164
\(231\) 0 0
\(232\) 3.14563e12 0.307273
\(233\) 2.97867e12 0.284162 0.142081 0.989855i \(-0.454621\pi\)
0.142081 + 0.989855i \(0.454621\pi\)
\(234\) 0 0
\(235\) 2.24051e12 0.203927
\(236\) 4.34629e12 0.386458
\(237\) 0 0
\(238\) −5.42915e12 −0.460849
\(239\) −9.31747e12 −0.772876 −0.386438 0.922315i \(-0.626295\pi\)
−0.386438 + 0.922315i \(0.626295\pi\)
\(240\) 0 0
\(241\) −4.54727e11 −0.0360294 −0.0180147 0.999838i \(-0.505735\pi\)
−0.0180147 + 0.999838i \(0.505735\pi\)
\(242\) −1.74058e13 −1.34806
\(243\) 0 0
\(244\) −3.91637e12 −0.289894
\(245\) 6.26722e12 0.453588
\(246\) 0 0
\(247\) 1.65212e13 1.14343
\(248\) 3.08007e12 0.208486
\(249\) 0 0
\(250\) 1.77706e13 1.15089
\(251\) −1.22730e13 −0.777582 −0.388791 0.921326i \(-0.627107\pi\)
−0.388791 + 0.921326i \(0.627107\pi\)
\(252\) 0 0
\(253\) 9.37576e11 0.0568648
\(254\) −1.70280e13 −1.01060
\(255\) 0 0
\(256\) 2.20621e13 1.25409
\(257\) 1.04580e13 0.581859 0.290930 0.956744i \(-0.406035\pi\)
0.290930 + 0.956744i \(0.406035\pi\)
\(258\) 0 0
\(259\) −9.79025e11 −0.0521970
\(260\) −1.34882e13 −0.704046
\(261\) 0 0
\(262\) −1.10457e13 −0.552759
\(263\) −1.07970e13 −0.529111 −0.264555 0.964370i \(-0.585225\pi\)
−0.264555 + 0.964370i \(0.585225\pi\)
\(264\) 0 0
\(265\) 8.87257e12 0.417058
\(266\) 4.59802e12 0.211701
\(267\) 0 0
\(268\) 3.04324e13 1.34461
\(269\) −3.26649e13 −1.41398 −0.706992 0.707222i \(-0.749948\pi\)
−0.706992 + 0.707222i \(0.749948\pi\)
\(270\) 0 0
\(271\) 7.15587e12 0.297393 0.148697 0.988883i \(-0.452492\pi\)
0.148697 + 0.988883i \(0.452492\pi\)
\(272\) 3.94934e13 1.60841
\(273\) 0 0
\(274\) −1.39459e13 −0.545528
\(275\) 8.96164e11 0.0343604
\(276\) 0 0
\(277\) −7.86922e12 −0.289930 −0.144965 0.989437i \(-0.546307\pi\)
−0.144965 + 0.989437i \(0.546307\pi\)
\(278\) 5.54136e13 2.00156
\(279\) 0 0
\(280\) 7.98691e11 0.0277338
\(281\) −1.85782e13 −0.632585 −0.316293 0.948662i \(-0.602438\pi\)
−0.316293 + 0.948662i \(0.602438\pi\)
\(282\) 0 0
\(283\) −2.05083e13 −0.671589 −0.335795 0.941935i \(-0.609005\pi\)
−0.335795 + 0.941935i \(0.609005\pi\)
\(284\) −1.35394e13 −0.434859
\(285\) 0 0
\(286\) −3.46578e12 −0.107100
\(287\) 1.15321e13 0.349590
\(288\) 0 0
\(289\) 3.33952e13 0.974419
\(290\) 2.94880e13 0.844220
\(291\) 0 0
\(292\) 1.07471e13 0.296270
\(293\) −6.56039e12 −0.177483 −0.0887417 0.996055i \(-0.528285\pi\)
−0.0887417 + 0.996055i \(0.528285\pi\)
\(294\) 0 0
\(295\) −8.66862e12 −0.225907
\(296\) 1.99154e12 0.0509430
\(297\) 0 0
\(298\) 5.73878e13 1.41459
\(299\) −9.29991e13 −2.25054
\(300\) 0 0
\(301\) −1.26201e13 −0.294406
\(302\) −5.87176e13 −1.34502
\(303\) 0 0
\(304\) −3.34475e13 −0.738855
\(305\) 7.81116e12 0.169460
\(306\) 0 0
\(307\) −8.74222e13 −1.82962 −0.914810 0.403885i \(-0.867660\pi\)
−0.914810 + 0.403885i \(0.867660\pi\)
\(308\) −4.35908e11 −0.00896120
\(309\) 0 0
\(310\) 2.88733e13 0.572806
\(311\) 6.50721e13 1.26827 0.634136 0.773221i \(-0.281356\pi\)
0.634136 + 0.773221i \(0.281356\pi\)
\(312\) 0 0
\(313\) −3.90600e13 −0.734916 −0.367458 0.930040i \(-0.619772\pi\)
−0.367458 + 0.930040i \(0.619772\pi\)
\(314\) 1.14170e14 2.11075
\(315\) 0 0
\(316\) 5.91932e12 0.105680
\(317\) 1.02156e14 1.79241 0.896205 0.443641i \(-0.146313\pi\)
0.896205 + 0.443641i \(0.146313\pi\)
\(318\) 0 0
\(319\) 3.42418e12 0.0580373
\(320\) 1.80462e13 0.300650
\(321\) 0 0
\(322\) −2.58826e13 −0.416678
\(323\) −5.73082e13 −0.906990
\(324\) 0 0
\(325\) −8.88915e13 −1.35988
\(326\) 9.28685e13 1.39692
\(327\) 0 0
\(328\) −2.34587e13 −0.341192
\(329\) −7.18224e12 −0.102727
\(330\) 0 0
\(331\) −5.18135e13 −0.716786 −0.358393 0.933571i \(-0.616675\pi\)
−0.358393 + 0.933571i \(0.616675\pi\)
\(332\) −3.78007e13 −0.514328
\(333\) 0 0
\(334\) 5.19842e13 0.684330
\(335\) −6.06972e13 −0.785999
\(336\) 0 0
\(337\) −1.73666e13 −0.217646 −0.108823 0.994061i \(-0.534708\pi\)
−0.108823 + 0.994061i \(0.534708\pi\)
\(338\) 2.34222e14 2.88793
\(339\) 0 0
\(340\) 4.67874e13 0.558464
\(341\) 3.35281e12 0.0393785
\(342\) 0 0
\(343\) −4.14393e13 −0.471297
\(344\) 2.56719e13 0.287333
\(345\) 0 0
\(346\) −1.29331e14 −1.40212
\(347\) −1.08458e14 −1.15731 −0.578654 0.815573i \(-0.696422\pi\)
−0.578654 + 0.815573i \(0.696422\pi\)
\(348\) 0 0
\(349\) 6.00573e13 0.620906 0.310453 0.950589i \(-0.399519\pi\)
0.310453 + 0.950589i \(0.399519\pi\)
\(350\) −2.47394e13 −0.251776
\(351\) 0 0
\(352\) 5.94114e12 0.0585983
\(353\) 5.15538e13 0.500610 0.250305 0.968167i \(-0.419469\pi\)
0.250305 + 0.968167i \(0.419469\pi\)
\(354\) 0 0
\(355\) 2.70042e13 0.254200
\(356\) 3.78589e13 0.350908
\(357\) 0 0
\(358\) 5.29844e13 0.476202
\(359\) 1.25903e14 1.11434 0.557169 0.830399i \(-0.311887\pi\)
0.557169 + 0.830399i \(0.311887\pi\)
\(360\) 0 0
\(361\) −6.79552e13 −0.583355
\(362\) 7.31351e13 0.618342
\(363\) 0 0
\(364\) 4.32382e13 0.354658
\(365\) −2.14351e13 −0.173187
\(366\) 0 0
\(367\) 1.65007e14 1.29372 0.646859 0.762609i \(-0.276082\pi\)
0.646859 + 0.762609i \(0.276082\pi\)
\(368\) 1.88278e14 1.45424
\(369\) 0 0
\(370\) 1.86692e13 0.139964
\(371\) −2.84421e13 −0.210090
\(372\) 0 0
\(373\) −1.50728e14 −1.08093 −0.540463 0.841368i \(-0.681751\pi\)
−0.540463 + 0.841368i \(0.681751\pi\)
\(374\) 1.20220e13 0.0849535
\(375\) 0 0
\(376\) 1.46102e13 0.100259
\(377\) −3.39648e14 −2.29695
\(378\) 0 0
\(379\) 1.00251e14 0.658524 0.329262 0.944239i \(-0.393200\pi\)
0.329262 + 0.944239i \(0.393200\pi\)
\(380\) −3.96249e13 −0.256542
\(381\) 0 0
\(382\) 2.58920e14 1.62861
\(383\) −7.83312e13 −0.485670 −0.242835 0.970068i \(-0.578077\pi\)
−0.242835 + 0.970068i \(0.578077\pi\)
\(384\) 0 0
\(385\) 8.69414e11 0.00523833
\(386\) −4.72177e13 −0.280463
\(387\) 0 0
\(388\) 1.83890e14 1.06166
\(389\) −3.44673e14 −1.96193 −0.980966 0.194179i \(-0.937796\pi\)
−0.980966 + 0.194179i \(0.937796\pi\)
\(390\) 0 0
\(391\) 3.22592e14 1.78518
\(392\) 4.08680e13 0.223002
\(393\) 0 0
\(394\) −1.37422e14 −0.729167
\(395\) −1.18060e13 −0.0617760
\(396\) 0 0
\(397\) 1.28797e14 0.655477 0.327739 0.944768i \(-0.393713\pi\)
0.327739 + 0.944768i \(0.393713\pi\)
\(398\) 2.72915e14 1.36984
\(399\) 0 0
\(400\) 1.79962e14 0.878722
\(401\) −2.14946e14 −1.03523 −0.517613 0.855615i \(-0.673179\pi\)
−0.517613 + 0.855615i \(0.673179\pi\)
\(402\) 0 0
\(403\) −3.32568e14 −1.55849
\(404\) −4.72387e13 −0.218374
\(405\) 0 0
\(406\) −9.45273e13 −0.425269
\(407\) 2.16789e12 0.00962206
\(408\) 0 0
\(409\) −3.11149e14 −1.34428 −0.672140 0.740424i \(-0.734625\pi\)
−0.672140 + 0.740424i \(0.734625\pi\)
\(410\) −2.19908e14 −0.937411
\(411\) 0 0
\(412\) 7.77868e13 0.322828
\(413\) 2.77883e13 0.113799
\(414\) 0 0
\(415\) 7.53930e13 0.300654
\(416\) −5.89308e14 −2.31915
\(417\) 0 0
\(418\) −1.01816e13 −0.0390252
\(419\) 2.34977e14 0.888889 0.444445 0.895806i \(-0.353401\pi\)
0.444445 + 0.895806i \(0.353401\pi\)
\(420\) 0 0
\(421\) 2.30362e14 0.848907 0.424454 0.905450i \(-0.360466\pi\)
0.424454 + 0.905450i \(0.360466\pi\)
\(422\) 1.65340e14 0.601393
\(423\) 0 0
\(424\) 5.78572e13 0.205043
\(425\) 3.08343e14 1.07869
\(426\) 0 0
\(427\) −2.50396e13 −0.0853640
\(428\) −4.26225e14 −1.43449
\(429\) 0 0
\(430\) 2.40654e14 0.789437
\(431\) 4.11119e13 0.133151 0.0665753 0.997781i \(-0.478793\pi\)
0.0665753 + 0.997781i \(0.478793\pi\)
\(432\) 0 0
\(433\) 2.71750e14 0.857999 0.428999 0.903305i \(-0.358866\pi\)
0.428999 + 0.903305i \(0.358866\pi\)
\(434\) −9.25571e13 −0.288547
\(435\) 0 0
\(436\) −4.69219e14 −1.42626
\(437\) −2.73207e14 −0.820058
\(438\) 0 0
\(439\) −4.37073e14 −1.27938 −0.639689 0.768634i \(-0.720937\pi\)
−0.639689 + 0.768634i \(0.720937\pi\)
\(440\) −1.76857e12 −0.00511249
\(441\) 0 0
\(442\) −1.19247e15 −3.36221
\(443\) −3.50717e14 −0.976644 −0.488322 0.872664i \(-0.662391\pi\)
−0.488322 + 0.872664i \(0.662391\pi\)
\(444\) 0 0
\(445\) −7.55092e13 −0.205125
\(446\) 4.40297e14 1.18142
\(447\) 0 0
\(448\) −5.78493e13 −0.151450
\(449\) 6.70356e13 0.173361 0.0866804 0.996236i \(-0.472374\pi\)
0.0866804 + 0.996236i \(0.472374\pi\)
\(450\) 0 0
\(451\) −2.55360e13 −0.0644439
\(452\) 2.91971e14 0.727912
\(453\) 0 0
\(454\) −1.97041e14 −0.479457
\(455\) −8.62381e13 −0.207318
\(456\) 0 0
\(457\) 1.28524e14 0.301609 0.150804 0.988564i \(-0.451814\pi\)
0.150804 + 0.988564i \(0.451814\pi\)
\(458\) −8.94956e14 −2.07511
\(459\) 0 0
\(460\) 2.23051e14 0.504936
\(461\) 2.49143e14 0.557306 0.278653 0.960392i \(-0.410112\pi\)
0.278653 + 0.960392i \(0.410112\pi\)
\(462\) 0 0
\(463\) 2.82966e14 0.618071 0.309036 0.951050i \(-0.399994\pi\)
0.309036 + 0.951050i \(0.399994\pi\)
\(464\) 6.87622e14 1.48423
\(465\) 0 0
\(466\) 1.82082e14 0.383835
\(467\) −6.12139e14 −1.27529 −0.637643 0.770332i \(-0.720090\pi\)
−0.637643 + 0.770332i \(0.720090\pi\)
\(468\) 0 0
\(469\) 1.94572e14 0.395941
\(470\) 1.36959e14 0.275457
\(471\) 0 0
\(472\) −5.65273e13 −0.111065
\(473\) 2.79451e13 0.0542712
\(474\) 0 0
\(475\) −2.61140e14 −0.495517
\(476\) −1.49983e14 −0.281322
\(477\) 0 0
\(478\) −5.69564e14 −1.04397
\(479\) −3.14429e14 −0.569741 −0.284870 0.958566i \(-0.591951\pi\)
−0.284870 + 0.958566i \(0.591951\pi\)
\(480\) 0 0
\(481\) −2.15035e14 −0.380813
\(482\) −2.77968e13 −0.0486672
\(483\) 0 0
\(484\) −4.80842e14 −0.822912
\(485\) −3.66767e14 −0.620599
\(486\) 0 0
\(487\) −3.34356e14 −0.553095 −0.276548 0.961000i \(-0.589190\pi\)
−0.276548 + 0.961000i \(0.589190\pi\)
\(488\) 5.09358e13 0.0833133
\(489\) 0 0
\(490\) 3.83106e14 0.612690
\(491\) −1.06996e15 −1.69207 −0.846033 0.533130i \(-0.821015\pi\)
−0.846033 + 0.533130i \(0.821015\pi\)
\(492\) 0 0
\(493\) 1.17816e15 1.82198
\(494\) 1.00992e15 1.54450
\(495\) 0 0
\(496\) 6.73290e14 1.00705
\(497\) −8.65652e13 −0.128051
\(498\) 0 0
\(499\) 5.42607e14 0.785114 0.392557 0.919728i \(-0.371591\pi\)
0.392557 + 0.919728i \(0.371591\pi\)
\(500\) 4.90921e14 0.702549
\(501\) 0 0
\(502\) −7.50233e14 −1.05033
\(503\) 1.33845e15 1.85344 0.926720 0.375753i \(-0.122616\pi\)
0.926720 + 0.375753i \(0.122616\pi\)
\(504\) 0 0
\(505\) 9.42171e13 0.127652
\(506\) 5.73127e13 0.0768109
\(507\) 0 0
\(508\) −4.70407e14 −0.616912
\(509\) −9.30841e13 −0.120761 −0.0603806 0.998175i \(-0.519231\pi\)
−0.0603806 + 0.998175i \(0.519231\pi\)
\(510\) 0 0
\(511\) 6.87128e13 0.0872414
\(512\) 9.77110e14 1.22732
\(513\) 0 0
\(514\) 6.39285e14 0.785955
\(515\) −1.55145e14 −0.188711
\(516\) 0 0
\(517\) 1.59039e13 0.0189368
\(518\) −5.98465e13 −0.0705058
\(519\) 0 0
\(520\) 1.75426e14 0.202337
\(521\) 2.45282e14 0.279935 0.139968 0.990156i \(-0.455300\pi\)
0.139968 + 0.990156i \(0.455300\pi\)
\(522\) 0 0
\(523\) 9.73813e14 1.08822 0.544109 0.839014i \(-0.316868\pi\)
0.544109 + 0.839014i \(0.316868\pi\)
\(524\) −3.05142e14 −0.337427
\(525\) 0 0
\(526\) −6.60006e14 −0.714704
\(527\) 1.15360e15 1.23622
\(528\) 0 0
\(529\) 5.85092e14 0.614070
\(530\) 5.42368e14 0.563348
\(531\) 0 0
\(532\) 1.27023e14 0.129231
\(533\) 2.53294e15 2.55050
\(534\) 0 0
\(535\) 8.50101e14 0.838542
\(536\) −3.95801e14 −0.386429
\(537\) 0 0
\(538\) −1.99676e15 −1.90996
\(539\) 4.44868e13 0.0421204
\(540\) 0 0
\(541\) 9.56240e14 0.887119 0.443560 0.896245i \(-0.353715\pi\)
0.443560 + 0.896245i \(0.353715\pi\)
\(542\) 4.37428e14 0.401708
\(543\) 0 0
\(544\) 2.04417e15 1.83960
\(545\) 9.35852e14 0.833732
\(546\) 0 0
\(547\) 1.03639e15 0.904881 0.452440 0.891795i \(-0.350554\pi\)
0.452440 + 0.891795i \(0.350554\pi\)
\(548\) −3.85261e14 −0.333013
\(549\) 0 0
\(550\) 5.47813e13 0.0464128
\(551\) −9.97797e14 −0.836967
\(552\) 0 0
\(553\) 3.78457e13 0.0311192
\(554\) −4.81034e14 −0.391627
\(555\) 0 0
\(556\) 1.53083e15 1.22184
\(557\) −8.16738e14 −0.645475 −0.322737 0.946489i \(-0.604603\pi\)
−0.322737 + 0.946489i \(0.604603\pi\)
\(558\) 0 0
\(559\) −2.77190e15 −2.14789
\(560\) 1.74590e14 0.133963
\(561\) 0 0
\(562\) −1.13566e15 −0.854474
\(563\) 2.06254e15 1.53676 0.768382 0.639992i \(-0.221062\pi\)
0.768382 + 0.639992i \(0.221062\pi\)
\(564\) 0 0
\(565\) −5.82334e14 −0.425506
\(566\) −1.25364e15 −0.907159
\(567\) 0 0
\(568\) 1.76092e14 0.124975
\(569\) −4.97519e14 −0.349697 −0.174849 0.984595i \(-0.555944\pi\)
−0.174849 + 0.984595i \(0.555944\pi\)
\(570\) 0 0
\(571\) 5.65558e14 0.389923 0.194961 0.980811i \(-0.437542\pi\)
0.194961 + 0.980811i \(0.437542\pi\)
\(572\) −9.57438e13 −0.0653781
\(573\) 0 0
\(574\) 7.04943e14 0.472214
\(575\) 1.46997e15 0.975297
\(576\) 0 0
\(577\) −2.22207e14 −0.144641 −0.0723205 0.997381i \(-0.523040\pi\)
−0.0723205 + 0.997381i \(0.523040\pi\)
\(578\) 2.04140e15 1.31621
\(579\) 0 0
\(580\) 8.14619e14 0.515348
\(581\) −2.41682e14 −0.151452
\(582\) 0 0
\(583\) 6.29804e13 0.0387283
\(584\) −1.39776e14 −0.0851456
\(585\) 0 0
\(586\) −4.01027e14 −0.239738
\(587\) −2.31383e15 −1.37032 −0.685159 0.728393i \(-0.740267\pi\)
−0.685159 + 0.728393i \(0.740267\pi\)
\(588\) 0 0
\(589\) −9.77000e14 −0.567885
\(590\) −5.29901e14 −0.305147
\(591\) 0 0
\(592\) 4.35342e14 0.246072
\(593\) −1.19808e15 −0.670940 −0.335470 0.942051i \(-0.608895\pi\)
−0.335470 + 0.942051i \(0.608895\pi\)
\(594\) 0 0
\(595\) 2.99139e14 0.164449
\(596\) 1.58536e15 0.863524
\(597\) 0 0
\(598\) −5.68491e15 −3.03995
\(599\) 2.04717e13 0.0108469 0.00542345 0.999985i \(-0.498274\pi\)
0.00542345 + 0.999985i \(0.498274\pi\)
\(600\) 0 0
\(601\) −9.23345e14 −0.480346 −0.240173 0.970730i \(-0.577204\pi\)
−0.240173 + 0.970730i \(0.577204\pi\)
\(602\) −7.71448e14 −0.397673
\(603\) 0 0
\(604\) −1.62210e15 −0.821060
\(605\) 9.59035e14 0.481039
\(606\) 0 0
\(607\) −1.53032e15 −0.753780 −0.376890 0.926258i \(-0.623007\pi\)
−0.376890 + 0.926258i \(0.623007\pi\)
\(608\) −1.73123e15 −0.845057
\(609\) 0 0
\(610\) 4.77485e14 0.228900
\(611\) −1.57752e15 −0.749461
\(612\) 0 0
\(613\) −1.36125e15 −0.635194 −0.317597 0.948226i \(-0.602876\pi\)
−0.317597 + 0.948226i \(0.602876\pi\)
\(614\) −5.34400e15 −2.47138
\(615\) 0 0
\(616\) 5.66937e12 0.00257538
\(617\) −6.20749e14 −0.279478 −0.139739 0.990188i \(-0.544626\pi\)
−0.139739 + 0.990188i \(0.544626\pi\)
\(618\) 0 0
\(619\) −3.74605e15 −1.65682 −0.828408 0.560125i \(-0.810753\pi\)
−0.828408 + 0.560125i \(0.810753\pi\)
\(620\) 7.97640e14 0.349665
\(621\) 0 0
\(622\) 3.97777e15 1.71314
\(623\) 2.42054e14 0.103330
\(624\) 0 0
\(625\) 8.51135e14 0.356992
\(626\) −2.38768e15 −0.992699
\(627\) 0 0
\(628\) 3.15399e15 1.28849
\(629\) 7.45906e14 0.302068
\(630\) 0 0
\(631\) −2.91198e15 −1.15885 −0.579424 0.815026i \(-0.696723\pi\)
−0.579424 + 0.815026i \(0.696723\pi\)
\(632\) −7.69860e13 −0.0303716
\(633\) 0 0
\(634\) 6.24464e15 2.42112
\(635\) 9.38221e14 0.360620
\(636\) 0 0
\(637\) −4.41269e15 −1.66700
\(638\) 2.09315e14 0.0783948
\(639\) 0 0
\(640\) −6.10991e14 −0.224929
\(641\) 1.82042e15 0.664435 0.332218 0.943203i \(-0.392203\pi\)
0.332218 + 0.943203i \(0.392203\pi\)
\(642\) 0 0
\(643\) −8.04673e14 −0.288708 −0.144354 0.989526i \(-0.546110\pi\)
−0.144354 + 0.989526i \(0.546110\pi\)
\(644\) −7.15018e14 −0.254358
\(645\) 0 0
\(646\) −3.50317e15 −1.22513
\(647\) 4.39292e15 1.52328 0.761641 0.648000i \(-0.224394\pi\)
0.761641 + 0.648000i \(0.224394\pi\)
\(648\) 0 0
\(649\) −6.15327e13 −0.0209778
\(650\) −5.43381e15 −1.83688
\(651\) 0 0
\(652\) 2.56554e15 0.852739
\(653\) 2.14802e15 0.707972 0.353986 0.935251i \(-0.384826\pi\)
0.353986 + 0.935251i \(0.384826\pi\)
\(654\) 0 0
\(655\) 6.08603e14 0.197245
\(656\) −5.12798e15 −1.64807
\(657\) 0 0
\(658\) −4.39041e14 −0.138759
\(659\) 3.77504e15 1.18318 0.591591 0.806238i \(-0.298500\pi\)
0.591591 + 0.806238i \(0.298500\pi\)
\(660\) 0 0
\(661\) 3.46636e14 0.106848 0.0534240 0.998572i \(-0.482987\pi\)
0.0534240 + 0.998572i \(0.482987\pi\)
\(662\) −3.16729e15 −0.968208
\(663\) 0 0
\(664\) 4.91631e14 0.147814
\(665\) −2.53345e14 −0.0755429
\(666\) 0 0
\(667\) 5.61666e15 1.64735
\(668\) 1.43609e15 0.417744
\(669\) 0 0
\(670\) −3.71034e15 −1.06170
\(671\) 5.54462e13 0.0157361
\(672\) 0 0
\(673\) 6.21195e15 1.73438 0.867191 0.497975i \(-0.165923\pi\)
0.867191 + 0.497975i \(0.165923\pi\)
\(674\) −1.06160e15 −0.293988
\(675\) 0 0
\(676\) 6.47050e15 1.76291
\(677\) −2.69108e15 −0.727257 −0.363629 0.931544i \(-0.618462\pi\)
−0.363629 + 0.931544i \(0.618462\pi\)
\(678\) 0 0
\(679\) 1.17572e15 0.312622
\(680\) −6.08511e14 −0.160498
\(681\) 0 0
\(682\) 2.04952e14 0.0531911
\(683\) −1.01372e15 −0.260978 −0.130489 0.991450i \(-0.541655\pi\)
−0.130489 + 0.991450i \(0.541655\pi\)
\(684\) 0 0
\(685\) 7.68399e14 0.194665
\(686\) −2.53313e15 −0.636612
\(687\) 0 0
\(688\) 5.61176e15 1.38791
\(689\) −6.24709e15 −1.53275
\(690\) 0 0
\(691\) 4.21887e15 1.01875 0.509374 0.860545i \(-0.329877\pi\)
0.509374 + 0.860545i \(0.329877\pi\)
\(692\) −3.57284e15 −0.855913
\(693\) 0 0
\(694\) −6.62988e15 −1.56325
\(695\) −3.05322e15 −0.714235
\(696\) 0 0
\(697\) −8.78617e15 −2.02311
\(698\) 3.67122e15 0.838697
\(699\) 0 0
\(700\) −6.83437e14 −0.153695
\(701\) 5.50609e15 1.22855 0.614277 0.789090i \(-0.289448\pi\)
0.614277 + 0.789090i \(0.289448\pi\)
\(702\) 0 0
\(703\) −6.31718e14 −0.138761
\(704\) 1.28098e14 0.0279185
\(705\) 0 0
\(706\) 3.15141e15 0.676207
\(707\) −3.02025e14 −0.0643037
\(708\) 0 0
\(709\) 9.90050e14 0.207540 0.103770 0.994601i \(-0.466909\pi\)
0.103770 + 0.994601i \(0.466909\pi\)
\(710\) 1.65073e15 0.343364
\(711\) 0 0
\(712\) −4.92388e14 −0.100848
\(713\) 5.49960e15 1.11773
\(714\) 0 0
\(715\) 1.90960e14 0.0382172
\(716\) 1.46372e15 0.290694
\(717\) 0 0
\(718\) 7.69629e15 1.50521
\(719\) −5.12704e15 −0.995079 −0.497539 0.867441i \(-0.665763\pi\)
−0.497539 + 0.867441i \(0.665763\pi\)
\(720\) 0 0
\(721\) 4.97337e14 0.0950619
\(722\) −4.15400e15 −0.787975
\(723\) 0 0
\(724\) 2.02039e15 0.377462
\(725\) 5.36858e15 0.995407
\(726\) 0 0
\(727\) −5.38362e15 −0.983184 −0.491592 0.870826i \(-0.663585\pi\)
−0.491592 + 0.870826i \(0.663585\pi\)
\(728\) −5.62351e14 −0.101926
\(729\) 0 0
\(730\) −1.31030e15 −0.233934
\(731\) 9.61506e15 1.70375
\(732\) 0 0
\(733\) −5.27269e14 −0.0920366 −0.0460183 0.998941i \(-0.514653\pi\)
−0.0460183 + 0.998941i \(0.514653\pi\)
\(734\) 1.00867e16 1.74751
\(735\) 0 0
\(736\) 9.74523e15 1.66327
\(737\) −4.30849e14 −0.0729884
\(738\) 0 0
\(739\) −4.81946e15 −0.804366 −0.402183 0.915559i \(-0.631749\pi\)
−0.402183 + 0.915559i \(0.631749\pi\)
\(740\) 5.15745e14 0.0854399
\(741\) 0 0
\(742\) −1.73863e15 −0.283782
\(743\) −1.16330e16 −1.88474 −0.942370 0.334572i \(-0.891408\pi\)
−0.942370 + 0.334572i \(0.891408\pi\)
\(744\) 0 0
\(745\) −3.16199e15 −0.504779
\(746\) −9.21381e15 −1.46008
\(747\) 0 0
\(748\) 3.32112e14 0.0518592
\(749\) −2.72510e15 −0.422409
\(750\) 0 0
\(751\) −3.03780e14 −0.0464023 −0.0232012 0.999731i \(-0.507386\pi\)
−0.0232012 + 0.999731i \(0.507386\pi\)
\(752\) 3.19372e15 0.484283
\(753\) 0 0
\(754\) −2.07622e16 −3.10264
\(755\) 3.23527e15 0.479956
\(756\) 0 0
\(757\) 9.51119e14 0.139062 0.0695308 0.997580i \(-0.477850\pi\)
0.0695308 + 0.997580i \(0.477850\pi\)
\(758\) 6.12819e15 0.889511
\(759\) 0 0
\(760\) 5.15357e14 0.0737281
\(761\) 7.46397e15 1.06012 0.530059 0.847961i \(-0.322170\pi\)
0.530059 + 0.847961i \(0.322170\pi\)
\(762\) 0 0
\(763\) −2.99999e15 −0.419986
\(764\) 7.15278e15 0.994172
\(765\) 0 0
\(766\) −4.78828e15 −0.656026
\(767\) 6.10349e15 0.830241
\(768\) 0 0
\(769\) 1.26726e16 1.69930 0.849650 0.527348i \(-0.176813\pi\)
0.849650 + 0.527348i \(0.176813\pi\)
\(770\) 5.31461e13 0.00707575
\(771\) 0 0
\(772\) −1.30441e15 −0.171206
\(773\) 8.00391e15 1.04307 0.521537 0.853229i \(-0.325359\pi\)
0.521537 + 0.853229i \(0.325359\pi\)
\(774\) 0 0
\(775\) 5.25669e15 0.675387
\(776\) −2.39165e15 −0.305112
\(777\) 0 0
\(778\) −2.10694e16 −2.65011
\(779\) 7.44113e15 0.929357
\(780\) 0 0
\(781\) 1.91684e14 0.0236051
\(782\) 1.97196e16 2.41135
\(783\) 0 0
\(784\) 8.93356e15 1.07718
\(785\) −6.29060e15 −0.753198
\(786\) 0 0
\(787\) −8.83933e15 −1.04366 −0.521829 0.853050i \(-0.674750\pi\)
−0.521829 + 0.853050i \(0.674750\pi\)
\(788\) −3.79635e15 −0.445115
\(789\) 0 0
\(790\) −7.21686e14 −0.0834448
\(791\) 1.86674e15 0.214345
\(792\) 0 0
\(793\) −5.49976e15 −0.622790
\(794\) 7.87318e15 0.885395
\(795\) 0 0
\(796\) 7.53940e15 0.836209
\(797\) 2.43818e15 0.268563 0.134281 0.990943i \(-0.457127\pi\)
0.134281 + 0.990943i \(0.457127\pi\)
\(798\) 0 0
\(799\) 5.47205e15 0.594488
\(800\) 9.31480e15 1.00503
\(801\) 0 0
\(802\) −1.31393e16 −1.39835
\(803\) −1.52153e14 −0.0160822
\(804\) 0 0
\(805\) 1.42610e15 0.148687
\(806\) −2.03294e16 −2.10515
\(807\) 0 0
\(808\) 6.14381e14 0.0627589
\(809\) 1.43706e16 1.45800 0.729001 0.684513i \(-0.239985\pi\)
0.729001 + 0.684513i \(0.239985\pi\)
\(810\) 0 0
\(811\) 1.77414e16 1.77572 0.887858 0.460117i \(-0.152193\pi\)
0.887858 + 0.460117i \(0.152193\pi\)
\(812\) −2.61136e15 −0.259602
\(813\) 0 0
\(814\) 1.32520e14 0.0129971
\(815\) −5.11693e15 −0.498475
\(816\) 0 0
\(817\) −8.14313e15 −0.782654
\(818\) −1.90201e16 −1.81581
\(819\) 0 0
\(820\) −6.07507e15 −0.572235
\(821\) −3.97601e15 −0.372015 −0.186007 0.982548i \(-0.559555\pi\)
−0.186007 + 0.982548i \(0.559555\pi\)
\(822\) 0 0
\(823\) 2.27431e15 0.209967 0.104983 0.994474i \(-0.466521\pi\)
0.104983 + 0.994474i \(0.466521\pi\)
\(824\) −1.01169e15 −0.0927783
\(825\) 0 0
\(826\) 1.69866e15 0.153715
\(827\) −2.06363e16 −1.85503 −0.927516 0.373783i \(-0.878061\pi\)
−0.927516 + 0.373783i \(0.878061\pi\)
\(828\) 0 0
\(829\) −1.41555e16 −1.25567 −0.627834 0.778348i \(-0.716058\pi\)
−0.627834 + 0.778348i \(0.716058\pi\)
\(830\) 4.60867e15 0.406112
\(831\) 0 0
\(832\) −1.27062e16 −1.10493
\(833\) 1.53066e16 1.32230
\(834\) 0 0
\(835\) −2.86426e15 −0.244195
\(836\) −2.81270e14 −0.0238226
\(837\) 0 0
\(838\) 1.43638e16 1.20068
\(839\) −1.59310e16 −1.32298 −0.661490 0.749954i \(-0.730076\pi\)
−0.661490 + 0.749954i \(0.730076\pi\)
\(840\) 0 0
\(841\) 8.31245e15 0.681320
\(842\) 1.40817e16 1.14667
\(843\) 0 0
\(844\) 4.56758e15 0.367116
\(845\) −1.29053e16 −1.03052
\(846\) 0 0
\(847\) −3.07431e15 −0.242320
\(848\) 1.26473e16 0.990426
\(849\) 0 0
\(850\) 1.88486e16 1.45705
\(851\) 3.55598e15 0.273116
\(852\) 0 0
\(853\) 3.14749e14 0.0238641 0.0119320 0.999929i \(-0.496202\pi\)
0.0119320 + 0.999929i \(0.496202\pi\)
\(854\) −1.53064e15 −0.115307
\(855\) 0 0
\(856\) 5.54343e15 0.412261
\(857\) 1.30216e15 0.0962210 0.0481105 0.998842i \(-0.484680\pi\)
0.0481105 + 0.998842i \(0.484680\pi\)
\(858\) 0 0
\(859\) 5.97763e15 0.436081 0.218040 0.975940i \(-0.430034\pi\)
0.218040 + 0.975940i \(0.430034\pi\)
\(860\) 6.64819e15 0.481906
\(861\) 0 0
\(862\) 2.51312e15 0.179855
\(863\) −2.42290e16 −1.72296 −0.861480 0.507791i \(-0.830462\pi\)
−0.861480 + 0.507791i \(0.830462\pi\)
\(864\) 0 0
\(865\) 7.12598e15 0.500330
\(866\) 1.66117e16 1.15895
\(867\) 0 0
\(868\) −2.55693e15 −0.176141
\(869\) −8.38030e13 −0.00573655
\(870\) 0 0
\(871\) 4.27363e16 2.88867
\(872\) 6.10260e15 0.409897
\(873\) 0 0
\(874\) −1.67008e16 −1.10770
\(875\) 3.13875e15 0.206877
\(876\) 0 0
\(877\) 1.42759e16 0.929193 0.464596 0.885523i \(-0.346199\pi\)
0.464596 + 0.885523i \(0.346199\pi\)
\(878\) −2.67177e16 −1.72814
\(879\) 0 0
\(880\) −3.86602e14 −0.0246950
\(881\) 6.74661e15 0.428271 0.214135 0.976804i \(-0.431307\pi\)
0.214135 + 0.976804i \(0.431307\pi\)
\(882\) 0 0
\(883\) −5.83016e15 −0.365508 −0.182754 0.983159i \(-0.558501\pi\)
−0.182754 + 0.983159i \(0.558501\pi\)
\(884\) −3.29426e16 −2.05244
\(885\) 0 0
\(886\) −2.14388e16 −1.31922
\(887\) −1.08682e16 −0.664625 −0.332312 0.943169i \(-0.607829\pi\)
−0.332312 + 0.943169i \(0.607829\pi\)
\(888\) 0 0
\(889\) −3.00758e15 −0.181660
\(890\) −4.61577e15 −0.277076
\(891\) 0 0
\(892\) 1.21634e16 0.721188
\(893\) −4.63436e15 −0.273090
\(894\) 0 0
\(895\) −2.91937e15 −0.169927
\(896\) 1.95861e15 0.113306
\(897\) 0 0
\(898\) 4.09779e15 0.234170
\(899\) 2.00854e16 1.14078
\(900\) 0 0
\(901\) 2.16696e16 1.21581
\(902\) −1.56098e15 −0.0870485
\(903\) 0 0
\(904\) −3.79735e15 −0.209196
\(905\) −4.02965e15 −0.220648
\(906\) 0 0
\(907\) 2.17653e16 1.17740 0.588701 0.808351i \(-0.299640\pi\)
0.588701 + 0.808351i \(0.299640\pi\)
\(908\) −5.44336e15 −0.292681
\(909\) 0 0
\(910\) −5.27161e15 −0.280037
\(911\) 2.21539e14 0.0116977 0.00584883 0.999983i \(-0.498138\pi\)
0.00584883 + 0.999983i \(0.498138\pi\)
\(912\) 0 0
\(913\) 5.35164e14 0.0279189
\(914\) 7.85647e15 0.407402
\(915\) 0 0
\(916\) −2.47236e16 −1.26674
\(917\) −1.95095e15 −0.0993609
\(918\) 0 0
\(919\) −2.25201e15 −0.113327 −0.0566637 0.998393i \(-0.518046\pi\)
−0.0566637 + 0.998393i \(0.518046\pi\)
\(920\) −2.90098e15 −0.145115
\(921\) 0 0
\(922\) 1.52298e16 0.752788
\(923\) −1.90134e16 −0.934222
\(924\) 0 0
\(925\) 3.39892e15 0.165029
\(926\) 1.72973e16 0.834869
\(927\) 0 0
\(928\) 3.55911e16 1.69757
\(929\) −2.48808e16 −1.17972 −0.589860 0.807506i \(-0.700817\pi\)
−0.589860 + 0.807506i \(0.700817\pi\)
\(930\) 0 0
\(931\) −1.29633e16 −0.607426
\(932\) 5.03011e15 0.234309
\(933\) 0 0
\(934\) −3.74192e16 −1.72261
\(935\) −6.62395e14 −0.0303147
\(936\) 0 0
\(937\) −3.66946e16 −1.65972 −0.829859 0.557974i \(-0.811579\pi\)
−0.829859 + 0.557974i \(0.811579\pi\)
\(938\) 1.18939e16 0.534823
\(939\) 0 0
\(940\) 3.78357e15 0.168151
\(941\) −1.86688e16 −0.824846 −0.412423 0.910992i \(-0.635317\pi\)
−0.412423 + 0.910992i \(0.635317\pi\)
\(942\) 0 0
\(943\) −4.18866e16 −1.82920
\(944\) −1.23566e16 −0.536480
\(945\) 0 0
\(946\) 1.70824e15 0.0733075
\(947\) 7.29010e15 0.311034 0.155517 0.987833i \(-0.450296\pi\)
0.155517 + 0.987833i \(0.450296\pi\)
\(948\) 0 0
\(949\) 1.50922e16 0.636487
\(950\) −1.59631e16 −0.669327
\(951\) 0 0
\(952\) 1.95066e15 0.0808496
\(953\) −2.29869e16 −0.947261 −0.473630 0.880724i \(-0.657057\pi\)
−0.473630 + 0.880724i \(0.657057\pi\)
\(954\) 0 0
\(955\) −1.42662e16 −0.581150
\(956\) −1.57345e16 −0.637285
\(957\) 0 0
\(958\) −1.92206e16 −0.769585
\(959\) −2.46320e15 −0.0980612
\(960\) 0 0
\(961\) −5.74171e15 −0.225976
\(962\) −1.31448e16 −0.514389
\(963\) 0 0
\(964\) −7.67900e14 −0.0297085
\(965\) 2.60164e15 0.100080
\(966\) 0 0
\(967\) −1.95063e16 −0.741872 −0.370936 0.928658i \(-0.620963\pi\)
−0.370936 + 0.928658i \(0.620963\pi\)
\(968\) 6.25378e15 0.236498
\(969\) 0 0
\(970\) −2.24200e16 −0.838282
\(971\) −2.10598e16 −0.782976 −0.391488 0.920183i \(-0.628040\pi\)
−0.391488 + 0.920183i \(0.628040\pi\)
\(972\) 0 0
\(973\) 9.78746e15 0.359790
\(974\) −2.04387e16 −0.747101
\(975\) 0 0
\(976\) 1.11344e16 0.402431
\(977\) −1.89495e16 −0.681049 −0.340524 0.940236i \(-0.610605\pi\)
−0.340524 + 0.940236i \(0.610605\pi\)
\(978\) 0 0
\(979\) −5.35989e14 −0.0190481
\(980\) 1.05835e16 0.374012
\(981\) 0 0
\(982\) −6.54049e16 −2.28558
\(983\) −1.35763e15 −0.0471779 −0.0235889 0.999722i \(-0.507509\pi\)
−0.0235889 + 0.999722i \(0.507509\pi\)
\(984\) 0 0
\(985\) 7.57178e15 0.260195
\(986\) 7.20190e16 2.46107
\(987\) 0 0
\(988\) 2.78995e16 0.942830
\(989\) 4.58382e16 1.54045
\(990\) 0 0
\(991\) 1.54216e16 0.512537 0.256268 0.966606i \(-0.417507\pi\)
0.256268 + 0.966606i \(0.417507\pi\)
\(992\) 3.48493e16 1.15181
\(993\) 0 0
\(994\) −5.29161e15 −0.172967
\(995\) −1.50373e16 −0.488812
\(996\) 0 0
\(997\) −3.69625e16 −1.18833 −0.594166 0.804342i \(-0.702518\pi\)
−0.594166 + 0.804342i \(0.702518\pi\)
\(998\) 3.31688e16 1.06050
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.12.a.c.1.9 10
3.2 odd 2 81.12.a.e.1.2 10
9.2 odd 6 9.12.c.a.4.9 20
9.4 even 3 27.12.c.a.19.2 20
9.5 odd 6 9.12.c.a.7.9 yes 20
9.7 even 3 27.12.c.a.10.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.12.c.a.4.9 20 9.2 odd 6
9.12.c.a.7.9 yes 20 9.5 odd 6
27.12.c.a.10.2 20 9.7 even 3
27.12.c.a.19.2 20 9.4 even 3
81.12.a.c.1.9 10 1.1 even 1 trivial
81.12.a.e.1.2 10 3.2 odd 2