Properties

Label 8001.2.a.x.1.8
Level 80018001
Weight 22
Character 8001.1
Self dual yes
Analytic conductor 63.88863.888
Analytic rank 11
Dimension 2222
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 8001=327127 8001 = 3^{2} \cdot 7 \cdot 127
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 63.888306657263.8883066572
Analytic rank: 11
Dimension: 2222
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.8
Character χ\chi == 8001.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q0.691771q21.52145q40.236679q5+1.00000q7+2.43604q8+0.163728q104.73037q111.51889q130.691771q14+1.35773q16+4.88453q17+2.13777q19+0.360096q20+3.27233q22+1.62008q234.94398q25+1.05072q261.52145q280.481543q299.10709q315.81131q323.37897q340.236679q35+10.9544q371.47885q380.576559q404.78089q41+1.26680q43+7.19704q441.12073q46+6.43162q47+1.00000q49+3.42010q50+2.31092q52+11.2045q53+1.11958q55+2.43604q56+0.333117q587.68081q59+5.26239q61+6.30002q62+1.30465q64+0.359489q6515.1697q677.43158q68+0.163728q70+2.66621q71+10.5894q737.57791q743.25252q764.73037q7713.1527q790.321345q80+3.30728q8211.1108q831.15606q850.876336q8611.5234q88+11.0913q891.51889q912.46488q924.44921q940.505966q959.66578q970.691771q98+O(q100)q-0.691771 q^{2} -1.52145 q^{4} -0.236679 q^{5} +1.00000 q^{7} +2.43604 q^{8} +0.163728 q^{10} -4.73037 q^{11} -1.51889 q^{13} -0.691771 q^{14} +1.35773 q^{16} +4.88453 q^{17} +2.13777 q^{19} +0.360096 q^{20} +3.27233 q^{22} +1.62008 q^{23} -4.94398 q^{25} +1.05072 q^{26} -1.52145 q^{28} -0.481543 q^{29} -9.10709 q^{31} -5.81131 q^{32} -3.37897 q^{34} -0.236679 q^{35} +10.9544 q^{37} -1.47885 q^{38} -0.576559 q^{40} -4.78089 q^{41} +1.26680 q^{43} +7.19704 q^{44} -1.12073 q^{46} +6.43162 q^{47} +1.00000 q^{49} +3.42010 q^{50} +2.31092 q^{52} +11.2045 q^{53} +1.11958 q^{55} +2.43604 q^{56} +0.333117 q^{58} -7.68081 q^{59} +5.26239 q^{61} +6.30002 q^{62} +1.30465 q^{64} +0.359489 q^{65} -15.1697 q^{67} -7.43158 q^{68} +0.163728 q^{70} +2.66621 q^{71} +10.5894 q^{73} -7.57791 q^{74} -3.25252 q^{76} -4.73037 q^{77} -13.1527 q^{79} -0.321345 q^{80} +3.30728 q^{82} -11.1108 q^{83} -1.15606 q^{85} -0.876336 q^{86} -11.5234 q^{88} +11.0913 q^{89} -1.51889 q^{91} -2.46488 q^{92} -4.44921 q^{94} -0.505966 q^{95} -9.66578 q^{97} -0.691771 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 22q+10q4+22q74q1010q136q1618q1934q2226q25+10q2842q3116q3436q3746q4054q4312q46+22q4922q52+56q97+O(q100) 22 q + 10 q^{4} + 22 q^{7} - 4 q^{10} - 10 q^{13} - 6 q^{16} - 18 q^{19} - 34 q^{22} - 26 q^{25} + 10 q^{28} - 42 q^{31} - 16 q^{34} - 36 q^{37} - 46 q^{40} - 54 q^{43} - 12 q^{46} + 22 q^{49} - 22 q^{52}+ \cdots - 56 q^{97}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.691771 −0.489156 −0.244578 0.969630i 0.578649π-0.578649\pi
−0.244578 + 0.969630i 0.578649π0.578649\pi
33 0 0
44 −1.52145 −0.760727
55 −0.236679 −0.105846 −0.0529230 0.998599i 0.516854π-0.516854\pi
−0.0529230 + 0.998599i 0.516854π0.516854\pi
66 0 0
77 1.00000 0.377964
88 2.43604 0.861270
99 0 0
1010 0.163728 0.0517752
1111 −4.73037 −1.42626 −0.713130 0.701032i 0.752723π-0.752723\pi
−0.713130 + 0.701032i 0.752723π0.752723\pi
1212 0 0
1313 −1.51889 −0.421264 −0.210632 0.977565i 0.567552π-0.567552\pi
−0.210632 + 0.977565i 0.567552π0.567552\pi
1414 −0.691771 −0.184884
1515 0 0
1616 1.35773 0.339431
1717 4.88453 1.18467 0.592336 0.805691i 0.298206π-0.298206\pi
0.592336 + 0.805691i 0.298206π0.298206\pi
1818 0 0
1919 2.13777 0.490439 0.245219 0.969468i 0.421140π-0.421140\pi
0.245219 + 0.969468i 0.421140π0.421140\pi
2020 0.360096 0.0805199
2121 0 0
2222 3.27233 0.697664
2323 1.62008 0.337811 0.168905 0.985632i 0.445977π-0.445977\pi
0.168905 + 0.985632i 0.445977π0.445977\pi
2424 0 0
2525 −4.94398 −0.988797
2626 1.05072 0.206064
2727 0 0
2828 −1.52145 −0.287528
2929 −0.481543 −0.0894203 −0.0447101 0.999000i 0.514236π-0.514236\pi
−0.0447101 + 0.999000i 0.514236π0.514236\pi
3030 0 0
3131 −9.10709 −1.63568 −0.817841 0.575445i 0.804829π-0.804829\pi
−0.817841 + 0.575445i 0.804829π0.804829\pi
3232 −5.81131 −1.02730
3333 0 0
3434 −3.37897 −0.579489
3535 −0.236679 −0.0400060
3636 0 0
3737 10.9544 1.80089 0.900443 0.434974i 0.143242π-0.143242\pi
0.900443 + 0.434974i 0.143242π0.143242\pi
3838 −1.47885 −0.239901
3939 0 0
4040 −0.576559 −0.0911620
4141 −4.78089 −0.746650 −0.373325 0.927701i 0.621782π-0.621782\pi
−0.373325 + 0.927701i 0.621782π0.621782\pi
4242 0 0
4343 1.26680 0.193185 0.0965927 0.995324i 0.469206π-0.469206\pi
0.0965927 + 0.995324i 0.469206π0.469206\pi
4444 7.19704 1.08499
4545 0 0
4646 −1.12073 −0.165242
4747 6.43162 0.938148 0.469074 0.883159i 0.344588π-0.344588\pi
0.469074 + 0.883159i 0.344588π0.344588\pi
4848 0 0
4949 1.00000 0.142857
5050 3.42010 0.483676
5151 0 0
5252 2.31092 0.320467
5353 11.2045 1.53906 0.769531 0.638610i 0.220490π-0.220490\pi
0.769531 + 0.638610i 0.220490π0.220490\pi
5454 0 0
5555 1.11958 0.150964
5656 2.43604 0.325529
5757 0 0
5858 0.333117 0.0437405
5959 −7.68081 −0.999956 −0.499978 0.866038i 0.666659π-0.666659\pi
−0.499978 + 0.866038i 0.666659π0.666659\pi
6060 0 0
6161 5.26239 0.673780 0.336890 0.941544i 0.390625π-0.390625\pi
0.336890 + 0.941544i 0.390625π0.390625\pi
6262 6.30002 0.800103
6363 0 0
6464 1.30465 0.163081
6565 0.359489 0.0445891
6666 0 0
6767 −15.1697 −1.85327 −0.926635 0.375963i 0.877312π-0.877312\pi
−0.926635 + 0.375963i 0.877312π0.877312\pi
6868 −7.43158 −0.901211
6969 0 0
7070 0.163728 0.0195692
7171 2.66621 0.316421 0.158210 0.987405i 0.449428π-0.449428\pi
0.158210 + 0.987405i 0.449428π0.449428\pi
7272 0 0
7373 10.5894 1.23939 0.619695 0.784843i 0.287256π-0.287256\pi
0.619695 + 0.784843i 0.287256π0.287256\pi
7474 −7.57791 −0.880914
7575 0 0
7676 −3.25252 −0.373090
7777 −4.73037 −0.539076
7878 0 0
7979 −13.1527 −1.47979 −0.739895 0.672722i 0.765125π-0.765125\pi
−0.739895 + 0.672722i 0.765125π0.765125\pi
8080 −0.321345 −0.0359275
8181 0 0
8282 3.30728 0.365228
8383 −11.1108 −1.21957 −0.609783 0.792568i 0.708743π-0.708743\pi
−0.609783 + 0.792568i 0.708743π0.708743\pi
8484 0 0
8585 −1.15606 −0.125393
8686 −0.876336 −0.0944978
8787 0 0
8888 −11.5234 −1.22839
8989 11.0913 1.17568 0.587838 0.808979i 0.299979π-0.299979\pi
0.587838 + 0.808979i 0.299979π0.299979\pi
9090 0 0
9191 −1.51889 −0.159223
9292 −2.46488 −0.256982
9393 0 0
9494 −4.44921 −0.458901
9595 −0.505966 −0.0519110
9696 0 0
9797 −9.66578 −0.981411 −0.490706 0.871325i 0.663261π-0.663261\pi
−0.490706 + 0.871325i 0.663261π0.663261\pi
9898 −0.691771 −0.0698794
9999 0 0
100100 7.52204 0.752204
101101 13.6540 1.35863 0.679314 0.733848i 0.262277π-0.262277\pi
0.679314 + 0.733848i 0.262277π0.262277\pi
102102 0 0
103103 6.04299 0.595434 0.297717 0.954654i 0.403775π-0.403775\pi
0.297717 + 0.954654i 0.403775π0.403775\pi
104104 −3.70007 −0.362822
105105 0 0
106106 −7.75097 −0.752841
107107 −6.94638 −0.671532 −0.335766 0.941945i 0.608995π-0.608995\pi
−0.335766 + 0.941945i 0.608995π0.608995\pi
108108 0 0
109109 −7.77730 −0.744930 −0.372465 0.928046i 0.621487π-0.621487\pi
−0.372465 + 0.928046i 0.621487π0.621487\pi
110110 −0.774492 −0.0738449
111111 0 0
112112 1.35773 0.128293
113113 5.69588 0.535823 0.267911 0.963444i 0.413667π-0.413667\pi
0.267911 + 0.963444i 0.413667π0.413667\pi
114114 0 0
115115 −0.383440 −0.0357559
116116 0.732645 0.0680244
117117 0 0
118118 5.31336 0.489134
119119 4.88453 0.447764
120120 0 0
121121 11.3764 1.03422
122122 −3.64037 −0.329583
123123 0 0
124124 13.8560 1.24431
125125 2.35353 0.210506
126126 0 0
127127 1.00000 0.0887357
128128 10.7201 0.947533
129129 0 0
130130 −0.248684 −0.0218110
131131 −2.77660 −0.242593 −0.121296 0.992616i 0.538705π-0.538705\pi
−0.121296 + 0.992616i 0.538705π0.538705\pi
132132 0 0
133133 2.13777 0.185368
134134 10.4939 0.906538
135135 0 0
136136 11.8989 1.02032
137137 −5.85349 −0.500097 −0.250048 0.968233i 0.580447π-0.580447\pi
−0.250048 + 0.968233i 0.580447π0.580447\pi
138138 0 0
139139 12.8728 1.09186 0.545929 0.837832i 0.316177π-0.316177\pi
0.545929 + 0.837832i 0.316177π0.316177\pi
140140 0.360096 0.0304337
141141 0 0
142142 −1.84440 −0.154779
143143 7.18490 0.600832
144144 0 0
145145 0.113971 0.00946478
146146 −7.32541 −0.606255
147147 0 0
148148 −16.6665 −1.36998
149149 22.2004 1.81873 0.909364 0.416001i 0.136569π-0.136569\pi
0.909364 + 0.416001i 0.136569π0.136569\pi
150150 0 0
151151 13.5226 1.10045 0.550225 0.835016i 0.314542π-0.314542\pi
0.550225 + 0.835016i 0.314542π0.314542\pi
152152 5.20770 0.422400
153153 0 0
154154 3.27233 0.263692
155155 2.15546 0.173130
156156 0 0
157157 1.03369 0.0824973 0.0412487 0.999149i 0.486866π-0.486866\pi
0.0412487 + 0.999149i 0.486866π0.486866\pi
158158 9.09863 0.723848
159159 0 0
160160 1.37542 0.108736
161161 1.62008 0.127680
162162 0 0
163163 −21.0280 −1.64704 −0.823519 0.567289i 0.807992π-0.807992\pi
−0.823519 + 0.567289i 0.807992π0.807992\pi
164164 7.27391 0.567997
165165 0 0
166166 7.68611 0.596558
167167 −18.2548 −1.41260 −0.706300 0.707913i 0.749637π-0.749637\pi
−0.706300 + 0.707913i 0.749637π0.749637\pi
168168 0 0
169169 −10.6930 −0.822537
170170 0.799732 0.0613366
171171 0 0
172172 −1.92738 −0.146961
173173 −10.4129 −0.791679 −0.395840 0.918320i 0.629546π-0.629546\pi
−0.395840 + 0.918320i 0.629546π0.629546\pi
174174 0 0
175175 −4.94398 −0.373730
176176 −6.42254 −0.484117
177177 0 0
178178 −7.67264 −0.575089
179179 −5.46552 −0.408513 −0.204256 0.978917i 0.565478π-0.565478\pi
−0.204256 + 0.978917i 0.565478π0.565478\pi
180180 0 0
181181 2.91504 0.216673 0.108337 0.994114i 0.465448π-0.465448\pi
0.108337 + 0.994114i 0.465448π0.465448\pi
182182 1.05072 0.0778848
183183 0 0
184184 3.94659 0.290946
185185 −2.59267 −0.190617
186186 0 0
187187 −23.1056 −1.68965
188188 −9.78540 −0.713674
189189 0 0
190190 0.350012 0.0253926
191191 4.76963 0.345118 0.172559 0.984999i 0.444796π-0.444796\pi
0.172559 + 0.984999i 0.444796π0.444796\pi
192192 0 0
193193 0.130634 0.00940327 0.00470163 0.999989i 0.498503π-0.498503\pi
0.00470163 + 0.999989i 0.498503π0.498503\pi
194194 6.68651 0.480063
195195 0 0
196196 −1.52145 −0.108675
197197 19.2367 1.37056 0.685280 0.728279i 0.259680π-0.259680\pi
0.685280 + 0.728279i 0.259680π0.259680\pi
198198 0 0
199199 −11.8797 −0.842128 −0.421064 0.907031i 0.638343π-0.638343\pi
−0.421064 + 0.907031i 0.638343π0.638343\pi
200200 −12.0437 −0.851621
201201 0 0
202202 −9.44547 −0.664581
203203 −0.481543 −0.0337977
204204 0 0
205205 1.13154 0.0790300
206206 −4.18037 −0.291260
207207 0 0
208208 −2.06223 −0.142990
209209 −10.1125 −0.699493
210210 0 0
211211 14.3794 0.989915 0.494958 0.868917i 0.335184π-0.335184\pi
0.494958 + 0.868917i 0.335184π0.335184\pi
212212 −17.0472 −1.17080
213213 0 0
214214 4.80531 0.328484
215215 −0.299825 −0.0204479
216216 0 0
217217 −9.10709 −0.618229
218218 5.38011 0.364387
219219 0 0
220220 −1.70339 −0.114842
221221 −7.41905 −0.499059
222222 0 0
223223 −8.11238 −0.543245 −0.271623 0.962404i 0.587560π-0.587560\pi
−0.271623 + 0.962404i 0.587560π0.587560\pi
224224 −5.81131 −0.388285
225225 0 0
226226 −3.94024 −0.262101
227227 24.9231 1.65420 0.827101 0.562054i 0.189989π-0.189989\pi
0.827101 + 0.562054i 0.189989π0.189989\pi
228228 0 0
229229 −9.85102 −0.650974 −0.325487 0.945547i 0.605528π-0.605528\pi
−0.325487 + 0.945547i 0.605528π0.605528\pi
230230 0.265252 0.0174902
231231 0 0
232232 −1.17306 −0.0770150
233233 −27.7502 −1.81797 −0.908987 0.416823i 0.863143π-0.863143\pi
−0.908987 + 0.416823i 0.863143π0.863143\pi
234234 0 0
235235 −1.52223 −0.0992992
236236 11.6860 0.760693
237237 0 0
238238 −3.37897 −0.219026
239239 0.812448 0.0525529 0.0262765 0.999655i 0.491635π-0.491635\pi
0.0262765 + 0.999655i 0.491635π0.491635\pi
240240 0 0
241241 −5.39668 −0.347631 −0.173815 0.984778i 0.555610π-0.555610\pi
−0.173815 + 0.984778i 0.555610π0.555610\pi
242242 −7.86986 −0.505894
243243 0 0
244244 −8.00648 −0.512562
245245 −0.236679 −0.0151209
246246 0 0
247247 −3.24704 −0.206604
248248 −22.1852 −1.40876
249249 0 0
250250 −1.62810 −0.102970
251251 −13.4081 −0.846314 −0.423157 0.906056i 0.639078π-0.639078\pi
−0.423157 + 0.906056i 0.639078π0.639078\pi
252252 0 0
253253 −7.66359 −0.481806
254254 −0.691771 −0.0434056
255255 0 0
256256 −10.0252 −0.626572
257257 −23.1837 −1.44616 −0.723079 0.690765i 0.757274π-0.757274\pi
−0.723079 + 0.690765i 0.757274π0.757274\pi
258258 0 0
259259 10.9544 0.680671
260260 −0.546946 −0.0339201
261261 0 0
262262 1.92077 0.118666
263263 29.6493 1.82825 0.914126 0.405430i 0.132878π-0.132878\pi
0.914126 + 0.405430i 0.132878π0.132878\pi
264264 0 0
265265 −2.65188 −0.162904
266266 −1.47885 −0.0906741
267267 0 0
268268 23.0799 1.40983
269269 12.4588 0.759624 0.379812 0.925064i 0.375989π-0.375989\pi
0.379812 + 0.925064i 0.375989π0.375989\pi
270270 0 0
271271 −7.16036 −0.434961 −0.217481 0.976065i 0.569784π-0.569784\pi
−0.217481 + 0.976065i 0.569784π0.569784\pi
272272 6.63185 0.402115
273273 0 0
274274 4.04927 0.244625
275275 23.3869 1.41028
276276 0 0
277277 −29.1691 −1.75260 −0.876299 0.481767i 0.839995π-0.839995\pi
−0.876299 + 0.481767i 0.839995π0.839995\pi
278278 −8.90504 −0.534089
279279 0 0
280280 −0.576559 −0.0344560
281281 2.42921 0.144914 0.0724572 0.997372i 0.476916π-0.476916\pi
0.0724572 + 0.997372i 0.476916π0.476916\pi
282282 0 0
283283 −13.0816 −0.777621 −0.388810 0.921318i 0.627114π-0.627114\pi
−0.388810 + 0.921318i 0.627114π0.627114\pi
284284 −4.05651 −0.240710
285285 0 0
286286 −4.97031 −0.293900
287287 −4.78089 −0.282207
288288 0 0
289289 6.85859 0.403447
290290 −0.0788419 −0.00462975
291291 0 0
292292 −16.1112 −0.942837
293293 −11.9508 −0.698174 −0.349087 0.937090i 0.613508π-0.613508\pi
−0.349087 + 0.937090i 0.613508π0.613508\pi
294294 0 0
295295 1.81788 0.105841
296296 26.6852 1.55105
297297 0 0
298298 −15.3576 −0.889642
299299 −2.46073 −0.142307
300300 0 0
301301 1.26680 0.0730172
302302 −9.35451 −0.538292
303303 0 0
304304 2.90251 0.166470
305305 −1.24550 −0.0713169
306306 0 0
307307 −33.3233 −1.90186 −0.950931 0.309402i 0.899871π-0.899871\pi
−0.950931 + 0.309402i 0.899871π0.899871\pi
308308 7.19704 0.410089
309309 0 0
310310 −1.49108 −0.0846877
311311 17.5249 0.993747 0.496874 0.867823i 0.334481π-0.334481\pi
0.496874 + 0.867823i 0.334481π0.334481\pi
312312 0 0
313313 −10.4399 −0.590099 −0.295050 0.955482i 0.595336π-0.595336\pi
−0.295050 + 0.955482i 0.595336π0.595336\pi
314314 −0.715076 −0.0403540
315315 0 0
316316 20.0112 1.12572
317317 17.5619 0.986377 0.493188 0.869923i 0.335831π-0.335831\pi
0.493188 + 0.869923i 0.335831π0.335831\pi
318318 0 0
319319 2.27788 0.127537
320320 −0.308782 −0.0172614
321321 0 0
322322 −1.12073 −0.0624556
323323 10.4420 0.581009
324324 0 0
325325 7.50936 0.416544
326326 14.5465 0.805658
327327 0 0
328328 −11.6464 −0.643067
329329 6.43162 0.354587
330330 0 0
331331 −23.3554 −1.28373 −0.641865 0.766818i 0.721839π-0.721839\pi
−0.641865 + 0.766818i 0.721839π0.721839\pi
332332 16.9045 0.927756
333333 0 0
334334 12.6281 0.690981
335335 3.59034 0.196161
336336 0 0
337337 −4.90547 −0.267218 −0.133609 0.991034i 0.542657π-0.542657\pi
−0.133609 + 0.991034i 0.542657π0.542657\pi
338338 7.39709 0.402349
339339 0 0
340340 1.75890 0.0953896
341341 43.0799 2.33291
342342 0 0
343343 1.00000 0.0539949
344344 3.08598 0.166385
345345 0 0
346346 7.20335 0.387255
347347 10.4466 0.560805 0.280403 0.959882i 0.409532π-0.409532\pi
0.280403 + 0.959882i 0.409532π0.409532\pi
348348 0 0
349349 −19.3334 −1.03489 −0.517446 0.855716i 0.673117π-0.673117\pi
−0.517446 + 0.855716i 0.673117π0.673117\pi
350350 3.42010 0.182812
351351 0 0
352352 27.4897 1.46520
353353 −4.03886 −0.214967 −0.107483 0.994207i 0.534279π-0.534279\pi
−0.107483 + 0.994207i 0.534279π0.534279\pi
354354 0 0
355355 −0.631035 −0.0334919
356356 −16.8749 −0.894368
357357 0 0
358358 3.78089 0.199826
359359 −0.855429 −0.0451478 −0.0225739 0.999745i 0.507186π-0.507186\pi
−0.0225739 + 0.999745i 0.507186π0.507186\pi
360360 0 0
361361 −14.4299 −0.759470
362362 −2.01654 −0.105987
363363 0 0
364364 2.31092 0.121125
365365 −2.50628 −0.131185
366366 0 0
367367 24.7046 1.28957 0.644784 0.764365i 0.276947π-0.276947\pi
0.644784 + 0.764365i 0.276947π0.276947\pi
368368 2.19963 0.114664
369369 0 0
370370 1.79353 0.0932412
371371 11.2045 0.581711
372372 0 0
373373 0.282770 0.0146413 0.00732065 0.999973i 0.497670π-0.497670\pi
0.00732065 + 0.999973i 0.497670π0.497670\pi
374374 15.9838 0.826502
375375 0 0
376376 15.6677 0.807998
377377 0.731410 0.0376695
378378 0 0
379379 −12.3555 −0.634657 −0.317329 0.948316i 0.602786π-0.602786\pi
−0.317329 + 0.948316i 0.602786π0.602786\pi
380380 0.769803 0.0394901
381381 0 0
382382 −3.29949 −0.168817
383383 −22.1873 −1.13372 −0.566859 0.823815i 0.691841π-0.691841\pi
−0.566859 + 0.823815i 0.691841π0.691841\pi
384384 0 0
385385 1.11958 0.0570590
386386 −0.0903691 −0.00459966
387387 0 0
388388 14.7060 0.746586
389389 27.5859 1.39866 0.699331 0.714798i 0.253481π-0.253481\pi
0.699331 + 0.714798i 0.253481π0.253481\pi
390390 0 0
391391 7.91334 0.400195
392392 2.43604 0.123039
393393 0 0
394394 −13.3074 −0.670418
395395 3.11296 0.156630
396396 0 0
397397 −34.4752 −1.73026 −0.865130 0.501547i 0.832764π-0.832764\pi
−0.865130 + 0.501547i 0.832764π0.832764\pi
398398 8.21801 0.411932
399399 0 0
400400 −6.71257 −0.335629
401401 18.3464 0.916174 0.458087 0.888907i 0.348535π-0.348535\pi
0.458087 + 0.888907i 0.348535π0.348535\pi
402402 0 0
403403 13.8327 0.689053
404404 −20.7740 −1.03354
405405 0 0
406406 0.333117 0.0165323
407407 −51.8182 −2.56853
408408 0 0
409409 −11.2920 −0.558355 −0.279178 0.960239i 0.590062π-0.590062\pi
−0.279178 + 0.960239i 0.590062π0.590062\pi
410410 −0.782764 −0.0386580
411411 0 0
412412 −9.19413 −0.452962
413413 −7.68081 −0.377948
414414 0 0
415415 2.62969 0.129086
416416 8.82674 0.432766
417417 0 0
418418 6.99550 0.342161
419419 −4.64156 −0.226755 −0.113377 0.993552i 0.536167π-0.536167\pi
−0.113377 + 0.993552i 0.536167π0.536167\pi
420420 0 0
421421 −18.1742 −0.885756 −0.442878 0.896582i 0.646042π-0.646042\pi
−0.442878 + 0.896582i 0.646042π0.646042\pi
422422 −9.94722 −0.484223
423423 0 0
424424 27.2947 1.32555
425425 −24.1490 −1.17140
426426 0 0
427427 5.26239 0.254665
428428 10.5686 0.510852
429429 0 0
430430 0.207410 0.0100022
431431 −13.9712 −0.672969 −0.336485 0.941689i 0.609238π-0.609238\pi
−0.336485 + 0.941689i 0.609238π0.609238\pi
432432 0 0
433433 −1.48040 −0.0711437 −0.0355719 0.999367i 0.511325π-0.511325\pi
−0.0355719 + 0.999367i 0.511325π0.511325\pi
434434 6.30002 0.302411
435435 0 0
436436 11.8328 0.566688
437437 3.46337 0.165675
438438 0 0
439439 −40.9084 −1.95245 −0.976225 0.216758i 0.930452π-0.930452\pi
−0.976225 + 0.216758i 0.930452π0.930452\pi
440440 2.72734 0.130021
441441 0 0
442442 5.13228 0.244118
443443 −2.15526 −0.102400 −0.0511998 0.998688i 0.516305π-0.516305\pi
−0.0511998 + 0.998688i 0.516305π0.516305\pi
444444 0 0
445445 −2.62508 −0.124441
446446 5.61191 0.265732
447447 0 0
448448 1.30465 0.0616387
449449 −1.25094 −0.0590356 −0.0295178 0.999564i 0.509397π-0.509397\pi
−0.0295178 + 0.999564i 0.509397π0.509397\pi
450450 0 0
451451 22.6154 1.06492
452452 −8.66601 −0.407615
453453 0 0
454454 −17.2410 −0.809162
455455 0.359489 0.0168531
456456 0 0
457457 −9.33789 −0.436808 −0.218404 0.975858i 0.570085π-0.570085\pi
−0.218404 + 0.975858i 0.570085π0.570085\pi
458458 6.81465 0.318428
459459 0 0
460460 0.583385 0.0272005
461461 9.40350 0.437965 0.218982 0.975729i 0.429726π-0.429726\pi
0.218982 + 0.975729i 0.429726π0.429726\pi
462462 0 0
463463 35.8889 1.66790 0.833950 0.551840i 0.186074π-0.186074\pi
0.833950 + 0.551840i 0.186074π0.186074\pi
464464 −0.653803 −0.0303520
465465 0 0
466466 19.1968 0.889273
467467 9.27065 0.428994 0.214497 0.976725i 0.431189π-0.431189\pi
0.214497 + 0.976725i 0.431189π0.431189\pi
468468 0 0
469469 −15.1697 −0.700470
470470 1.05303 0.0485728
471471 0 0
472472 −18.7107 −0.861232
473473 −5.99244 −0.275533
474474 0 0
475475 −10.5691 −0.484944
476476 −7.43158 −0.340626
477477 0 0
478478 −0.562028 −0.0257066
479479 −23.0284 −1.05220 −0.526098 0.850424i 0.676345π-0.676345\pi
−0.526098 + 0.850424i 0.676345π0.676345\pi
480480 0 0
481481 −16.6385 −0.758648
482482 3.73327 0.170046
483483 0 0
484484 −17.3087 −0.786757
485485 2.28769 0.103879
486486 0 0
487487 −11.9762 −0.542694 −0.271347 0.962482i 0.587469π-0.587469\pi
−0.271347 + 0.962482i 0.587469π0.587469\pi
488488 12.8194 0.580306
489489 0 0
490490 0.163728 0.00739646
491491 −42.2730 −1.90775 −0.953877 0.300199i 0.902947π-0.902947\pi
−0.953877 + 0.300199i 0.902947π0.902947\pi
492492 0 0
493493 −2.35211 −0.105934
494494 2.24621 0.101062
495495 0 0
496496 −12.3649 −0.555201
497497 2.66621 0.119596
498498 0 0
499499 3.88448 0.173893 0.0869465 0.996213i 0.472289π-0.472289\pi
0.0869465 + 0.996213i 0.472289π0.472289\pi
500500 −3.58079 −0.160138
501501 0 0
502502 9.27536 0.413980
503503 7.79134 0.347399 0.173699 0.984799i 0.444428π-0.444428\pi
0.173699 + 0.984799i 0.444428π0.444428\pi
504504 0 0
505505 −3.23162 −0.143805
506506 5.30145 0.235678
507507 0 0
508508 −1.52145 −0.0675036
509509 25.8939 1.14773 0.573864 0.818951i 0.305444π-0.305444\pi
0.573864 + 0.818951i 0.305444π0.305444\pi
510510 0 0
511511 10.5894 0.468445
512512 −14.5051 −0.641041
513513 0 0
514514 16.0378 0.707397
515515 −1.43025 −0.0630243
516516 0 0
517517 −30.4239 −1.33804
518518 −7.57791 −0.332954
519519 0 0
520520 0.875729 0.0384033
521521 −7.34696 −0.321876 −0.160938 0.986964i 0.551452π-0.551452\pi
−0.160938 + 0.986964i 0.551452π0.551452\pi
522522 0 0
523523 2.81126 0.122928 0.0614639 0.998109i 0.480423π-0.480423\pi
0.0614639 + 0.998109i 0.480423π0.480423\pi
524524 4.22447 0.184547
525525 0 0
526526 −20.5105 −0.894300
527527 −44.4838 −1.93774
528528 0 0
529529 −20.3753 −0.885884
530530 1.83449 0.0796852
531531 0 0
532532 −3.25252 −0.141015
533533 7.26165 0.314537
534534 0 0
535535 1.64406 0.0710790
536536 −36.9539 −1.59616
537537 0 0
538538 −8.61860 −0.371574
539539 −4.73037 −0.203751
540540 0 0
541541 4.76871 0.205023 0.102511 0.994732i 0.467312π-0.467312\pi
0.102511 + 0.994732i 0.467312π0.467312\pi
542542 4.95333 0.212764
543543 0 0
544544 −28.3855 −1.21702
545545 1.84072 0.0788479
546546 0 0
547547 4.47547 0.191357 0.0956786 0.995412i 0.469498π-0.469498\pi
0.0956786 + 0.995412i 0.469498π0.469498\pi
548548 8.90580 0.380437
549549 0 0
550550 −16.1784 −0.689847
551551 −1.02943 −0.0438552
552552 0 0
553553 −13.1527 −0.559308
554554 20.1783 0.857294
555555 0 0
556556 −19.5854 −0.830605
557557 −30.3570 −1.28627 −0.643135 0.765753i 0.722366π-0.722366\pi
−0.643135 + 0.765753i 0.722366π0.722366\pi
558558 0 0
559559 −1.92413 −0.0813820
560560 −0.321345 −0.0135793
561561 0 0
562562 −1.68046 −0.0708858
563563 −40.3405 −1.70015 −0.850076 0.526661i 0.823444π-0.823444\pi
−0.850076 + 0.526661i 0.823444π0.823444\pi
564564 0 0
565565 −1.34809 −0.0567147
566566 9.04947 0.380378
567567 0 0
568568 6.49499 0.272524
569569 1.96447 0.0823550 0.0411775 0.999152i 0.486889π-0.486889\pi
0.0411775 + 0.999152i 0.486889π0.486889\pi
570570 0 0
571571 17.7620 0.743315 0.371658 0.928370i 0.378790π-0.378790\pi
0.371658 + 0.928370i 0.378790π0.378790\pi
572572 −10.9315 −0.457069
573573 0 0
574574 3.30728 0.138043
575575 −8.00966 −0.334026
576576 0 0
577577 8.06360 0.335692 0.167846 0.985813i 0.446319π-0.446319\pi
0.167846 + 0.985813i 0.446319π0.446319\pi
578578 −4.74457 −0.197348
579579 0 0
580580 −0.173402 −0.00720011
581581 −11.1108 −0.460953
582582 0 0
583583 −53.0016 −2.19510
584584 25.7961 1.06745
585585 0 0
586586 8.26723 0.341516
587587 2.82469 0.116588 0.0582938 0.998299i 0.481434π-0.481434\pi
0.0582938 + 0.998299i 0.481434π0.481434\pi
588588 0 0
589589 −19.4689 −0.802202
590590 −1.25756 −0.0517729
591591 0 0
592592 14.8730 0.611277
593593 25.7116 1.05585 0.527925 0.849291i 0.322970π-0.322970\pi
0.527925 + 0.849291i 0.322970π0.322970\pi
594594 0 0
595595 −1.15606 −0.0473940
596596 −33.7769 −1.38355
597597 0 0
598598 1.70226 0.0696105
599599 34.6917 1.41746 0.708732 0.705478i 0.249268π-0.249268\pi
0.708732 + 0.705478i 0.249268π0.249268\pi
600600 0 0
601601 12.8762 0.525230 0.262615 0.964901i 0.415415π-0.415415\pi
0.262615 + 0.964901i 0.415415π0.415415\pi
602602 −0.876336 −0.0357168
603603 0 0
604604 −20.5739 −0.837142
605605 −2.69255 −0.109468
606606 0 0
607607 25.8987 1.05120 0.525599 0.850733i 0.323841π-0.323841\pi
0.525599 + 0.850733i 0.323841π0.323841\pi
608608 −12.4233 −0.503830
609609 0 0
610610 0.861598 0.0348851
611611 −9.76891 −0.395208
612612 0 0
613613 −36.6547 −1.48047 −0.740234 0.672349i 0.765285π-0.765285\pi
−0.740234 + 0.672349i 0.765285π0.765285\pi
614614 23.0521 0.930307
615615 0 0
616616 −11.5234 −0.464290
617617 −49.5324 −1.99410 −0.997050 0.0767545i 0.975544π-0.975544\pi
−0.997050 + 0.0767545i 0.975544π0.975544\pi
618618 0 0
619619 −43.3703 −1.74320 −0.871599 0.490219i 0.836917π-0.836917\pi
−0.871599 + 0.490219i 0.836917π0.836917\pi
620620 −3.27942 −0.131705
621621 0 0
622622 −12.1232 −0.486097
623623 11.0913 0.444364
624624 0 0
625625 24.1629 0.966515
626626 7.22203 0.288651
627627 0 0
628628 −1.57271 −0.0627579
629629 53.5069 2.13346
630630 0 0
631631 −31.7213 −1.26280 −0.631402 0.775455i 0.717520π-0.717520\pi
−0.631402 + 0.775455i 0.717520π0.717520\pi
632632 −32.0404 −1.27450
633633 0 0
634634 −12.1488 −0.482492
635635 −0.236679 −0.00939232
636636 0 0
637637 −1.51889 −0.0601806
638638 −1.57577 −0.0623853
639639 0 0
640640 −2.53722 −0.100293
641641 6.12263 0.241829 0.120915 0.992663i 0.461417π-0.461417\pi
0.120915 + 0.992663i 0.461417π0.461417\pi
642642 0 0
643643 −1.36807 −0.0539513 −0.0269757 0.999636i 0.508588π-0.508588\pi
−0.0269757 + 0.999636i 0.508588π0.508588\pi
644644 −2.46488 −0.0971299
645645 0 0
646646 −7.22348 −0.284204
647647 −23.2875 −0.915525 −0.457762 0.889075i 0.651349π-0.651349\pi
−0.457762 + 0.889075i 0.651349π0.651349\pi
648648 0 0
649649 36.3330 1.42620
650650 −5.19476 −0.203755
651651 0 0
652652 31.9931 1.25295
653653 −26.1315 −1.02260 −0.511302 0.859401i 0.670836π-0.670836\pi
−0.511302 + 0.859401i 0.670836π0.670836\pi
654654 0 0
655655 0.657163 0.0256775
656656 −6.49114 −0.253436
657657 0 0
658658 −4.44921 −0.173448
659659 −10.1531 −0.395510 −0.197755 0.980252i 0.563365π-0.563365\pi
−0.197755 + 0.980252i 0.563365π0.563365\pi
660660 0 0
661661 2.42067 0.0941533 0.0470766 0.998891i 0.485009π-0.485009\pi
0.0470766 + 0.998891i 0.485009π0.485009\pi
662662 16.1566 0.627944
663663 0 0
664664 −27.0663 −1.05038
665665 −0.505966 −0.0196205
666666 0 0
667667 −0.780140 −0.0302071
668668 27.7738 1.07460
669669 0 0
670670 −2.48369 −0.0959534
671671 −24.8930 −0.960985
672672 0 0
673673 −26.0790 −1.00527 −0.502636 0.864498i 0.667636π-0.667636\pi
−0.502636 + 0.864498i 0.667636π0.667636\pi
674674 3.39346 0.130711
675675 0 0
676676 16.2689 0.625725
677677 −45.3731 −1.74383 −0.871915 0.489657i 0.837122π-0.837122\pi
−0.871915 + 0.489657i 0.837122π0.837122\pi
678678 0 0
679679 −9.66578 −0.370939
680680 −2.81622 −0.107997
681681 0 0
682682 −29.8014 −1.14116
683683 11.9507 0.457282 0.228641 0.973511i 0.426572π-0.426572\pi
0.228641 + 0.973511i 0.426572π0.426572\pi
684684 0 0
685685 1.38540 0.0529333
686686 −0.691771 −0.0264119
687687 0 0
688688 1.71997 0.0655732
689689 −17.0184 −0.648351
690690 0 0
691691 −11.9466 −0.454469 −0.227235 0.973840i 0.572968π-0.572968\pi
−0.227235 + 0.973840i 0.572968π0.572968\pi
692692 15.8428 0.602251
693693 0 0
694694 −7.22669 −0.274321
695695 −3.04672 −0.115569
696696 0 0
697697 −23.3524 −0.884535
698698 13.3743 0.506223
699699 0 0
700700 7.52204 0.284306
701701 −11.7682 −0.444478 −0.222239 0.974992i 0.571337π-0.571337\pi
−0.222239 + 0.974992i 0.571337π0.571337\pi
702702 0 0
703703 23.4179 0.883224
704704 −6.17146 −0.232596
705705 0 0
706706 2.79396 0.105152
707707 13.6540 0.513513
708708 0 0
709709 −21.7838 −0.818108 −0.409054 0.912510i 0.634141π-0.634141\pi
−0.409054 + 0.912510i 0.634141π0.634141\pi
710710 0.436532 0.0163827
711711 0 0
712712 27.0189 1.01257
713713 −14.7542 −0.552551
714714 0 0
715715 −1.70052 −0.0635957
716716 8.31554 0.310766
717717 0 0
718718 0.591761 0.0220843
719719 −49.2724 −1.83755 −0.918774 0.394783i 0.870820π-0.870820\pi
−0.918774 + 0.394783i 0.870820π0.870820\pi
720720 0 0
721721 6.04299 0.225053
722722 9.98220 0.371499
723723 0 0
724724 −4.43510 −0.164829
725725 2.38074 0.0884185
726726 0 0
727727 12.7353 0.472327 0.236164 0.971713i 0.424110π-0.424110\pi
0.236164 + 0.971713i 0.424110π0.424110\pi
728728 −3.70007 −0.137134
729729 0 0
730730 1.73377 0.0641697
731731 6.18772 0.228861
732732 0 0
733733 22.6644 0.837130 0.418565 0.908187i 0.362533π-0.362533\pi
0.418565 + 0.908187i 0.362533π0.362533\pi
734734 −17.0899 −0.630799
735735 0 0
736736 −9.41481 −0.347035
737737 71.7581 2.64324
738738 0 0
739739 −7.56804 −0.278395 −0.139197 0.990265i 0.544452π-0.544452\pi
−0.139197 + 0.990265i 0.544452π0.544452\pi
740740 3.94462 0.145007
741741 0 0
742742 −7.75097 −0.284547
743743 2.44813 0.0898132 0.0449066 0.998991i 0.485701π-0.485701\pi
0.0449066 + 0.998991i 0.485701π0.485701\pi
744744 0 0
745745 −5.25437 −0.192505
746746 −0.195612 −0.00716188
747747 0 0
748748 35.1541 1.28536
749749 −6.94638 −0.253815
750750 0 0
751751 36.3013 1.32465 0.662327 0.749215i 0.269569π-0.269569\pi
0.662327 + 0.749215i 0.269569π0.269569\pi
752752 8.73237 0.318437
753753 0 0
754754 −0.505968 −0.0184263
755755 −3.20050 −0.116478
756756 0 0
757757 19.0015 0.690620 0.345310 0.938489i 0.387774π-0.387774\pi
0.345310 + 0.938489i 0.387774π0.387774\pi
758758 8.54714 0.310446
759759 0 0
760760 −1.23255 −0.0447094
761761 −11.8346 −0.429005 −0.214503 0.976723i 0.568813π-0.568813\pi
−0.214503 + 0.976723i 0.568813π0.568813\pi
762762 0 0
763763 −7.77730 −0.281557
764764 −7.25677 −0.262541
765765 0 0
766766 15.3485 0.554564
767767 11.6663 0.421245
768768 0 0
769769 12.9124 0.465634 0.232817 0.972521i 0.425206π-0.425206\pi
0.232817 + 0.972521i 0.425206π0.425206\pi
770770 −0.774492 −0.0279108
771771 0 0
772772 −0.198754 −0.00715332
773773 −44.8628 −1.61360 −0.806801 0.590823i 0.798803π-0.798803\pi
−0.806801 + 0.590823i 0.798803π0.798803\pi
774774 0 0
775775 45.0253 1.61736
776776 −23.5462 −0.845260
777777 0 0
778778 −19.0832 −0.684164
779779 −10.2205 −0.366186
780780 0 0
781781 −12.6121 −0.451298
782782 −5.47422 −0.195758
783783 0 0
784784 1.35773 0.0484902
785785 −0.244652 −0.00873201
786786 0 0
787787 25.5191 0.909658 0.454829 0.890579i 0.349700π-0.349700\pi
0.454829 + 0.890579i 0.349700π0.349700\pi
788788 −29.2678 −1.04262
789789 0 0
790790 −2.15345 −0.0766165
791791 5.69588 0.202522
792792 0 0
793793 −7.99298 −0.283839
794794 23.8489 0.846367
795795 0 0
796796 18.0744 0.640629
797797 35.4729 1.25651 0.628257 0.778006i 0.283769π-0.283769\pi
0.628257 + 0.778006i 0.283769π0.283769\pi
798798 0 0
799799 31.4154 1.11140
800800 28.7310 1.01580
801801 0 0
802802 −12.6915 −0.448152
803803 −50.0916 −1.76769
804804 0 0
805805 −0.383440 −0.0135145
806806 −9.56903 −0.337055
807807 0 0
808808 33.2618 1.17015
809809 −39.9982 −1.40626 −0.703131 0.711061i 0.748215π-0.748215\pi
−0.703131 + 0.711061i 0.748215π0.748215\pi
810810 0 0
811811 −21.3383 −0.749287 −0.374644 0.927169i 0.622235π-0.622235\pi
−0.374644 + 0.927169i 0.622235π0.622235\pi
812812 0.732645 0.0257108
813813 0 0
814814 35.8463 1.25641
815815 4.97688 0.174332
816816 0 0
817817 2.70813 0.0947456
818818 7.81150 0.273123
819819 0 0
820820 −1.72158 −0.0601202
821821 −0.612120 −0.0213631 −0.0106816 0.999943i 0.503400π-0.503400\pi
−0.0106816 + 0.999943i 0.503400π0.503400\pi
822822 0 0
823823 −37.7565 −1.31611 −0.658055 0.752970i 0.728621π-0.728621\pi
−0.658055 + 0.752970i 0.728621π0.728621\pi
824824 14.7210 0.512829
825825 0 0
826826 5.31336 0.184875
827827 −38.2190 −1.32900 −0.664502 0.747287i 0.731356π-0.731356\pi
−0.664502 + 0.747287i 0.731356π0.731356\pi
828828 0 0
829829 −23.0302 −0.799871 −0.399935 0.916543i 0.630967π-0.630967\pi
−0.399935 + 0.916543i 0.630967π0.630967\pi
830830 −1.81914 −0.0631433
831831 0 0
832832 −1.98161 −0.0687000
833833 4.88453 0.169239
834834 0 0
835835 4.32053 0.149518
836836 15.3856 0.532123
837837 0 0
838838 3.21089 0.110919
839839 34.5464 1.19268 0.596338 0.802734i 0.296622π-0.296622\pi
0.596338 + 0.802734i 0.296622π0.296622\pi
840840 0 0
841841 −28.7681 −0.992004
842842 12.5724 0.433273
843843 0 0
844844 −21.8775 −0.753055
845845 2.53080 0.0870623
846846 0 0
847847 11.3764 0.390898
848848 15.2127 0.522406
849849 0 0
850850 16.7056 0.572997
851851 17.7470 0.608359
852852 0 0
853853 34.0512 1.16589 0.582946 0.812511i 0.301900π-0.301900\pi
0.582946 + 0.812511i 0.301900π0.301900\pi
854854 −3.64037 −0.124571
855855 0 0
856856 −16.9217 −0.578370
857857 −33.3224 −1.13827 −0.569136 0.822243i 0.692722π-0.692722\pi
−0.569136 + 0.822243i 0.692722π0.692722\pi
858858 0 0
859859 34.3511 1.17204 0.586022 0.810295i 0.300693π-0.300693\pi
0.586022 + 0.810295i 0.300693π0.300693\pi
860860 0.456170 0.0155553
861861 0 0
862862 9.66487 0.329187
863863 −0.252328 −0.00858935 −0.00429467 0.999991i 0.501367π-0.501367\pi
−0.00429467 + 0.999991i 0.501367π0.501367\pi
864864 0 0
865865 2.46452 0.0837961
866866 1.02410 0.0348004
867867 0 0
868868 13.8560 0.470303
869869 62.2170 2.11057
870870 0 0
871871 23.0410 0.780715
872872 −18.9458 −0.641586
873873 0 0
874874 −2.39586 −0.0810411
875875 2.35353 0.0795639
876876 0 0
877877 38.6171 1.30401 0.652004 0.758216i 0.273929π-0.273929\pi
0.652004 + 0.758216i 0.273929π0.273929\pi
878878 28.2992 0.955053
879879 0 0
880880 1.52008 0.0512419
881881 0.798968 0.0269179 0.0134590 0.999909i 0.495716π-0.495716\pi
0.0134590 + 0.999909i 0.495716π0.495716\pi
882882 0 0
883883 −8.06536 −0.271421 −0.135711 0.990749i 0.543332π-0.543332\pi
−0.135711 + 0.990749i 0.543332π0.543332\pi
884884 11.2877 0.379648
885885 0 0
886886 1.49095 0.0500894
887887 −16.3375 −0.548559 −0.274280 0.961650i 0.588439π-0.588439\pi
−0.274280 + 0.961650i 0.588439π0.588439\pi
888888 0 0
889889 1.00000 0.0335389
890890 1.81595 0.0608709
891891 0 0
892892 12.3426 0.413261
893893 13.7493 0.460104
894894 0 0
895895 1.29357 0.0432394
896896 10.7201 0.358134
897897 0 0
898898 0.865365 0.0288776
899899 4.38545 0.146263
900900 0 0
901901 54.7289 1.82328
902902 −15.6447 −0.520911
903903 0 0
904904 13.8754 0.461488
905905 −0.689928 −0.0229340
906906 0 0
907907 −9.06870 −0.301121 −0.150561 0.988601i 0.548108π-0.548108\pi
−0.150561 + 0.988601i 0.548108π0.548108\pi
908908 −37.9193 −1.25839
909909 0 0
910910 −0.248684 −0.00824379
911911 −10.9544 −0.362936 −0.181468 0.983397i 0.558085π-0.558085\pi
−0.181468 + 0.983397i 0.558085π0.558085\pi
912912 0 0
913913 52.5581 1.73942
914914 6.45968 0.213667
915915 0 0
916916 14.9879 0.495213
917917 −2.77660 −0.0916914
918918 0 0
919919 −3.67443 −0.121208 −0.0606041 0.998162i 0.519303π-0.519303\pi
−0.0606041 + 0.998162i 0.519303π0.519303\pi
920920 −0.934074 −0.0307955
921921 0 0
922922 −6.50507 −0.214233
923923 −4.04967 −0.133297
924924 0 0
925925 −54.1582 −1.78071
926926 −24.8269 −0.815863
927927 0 0
928928 2.79840 0.0918619
929929 −44.8141 −1.47030 −0.735151 0.677903i 0.762889π-0.762889\pi
−0.735151 + 0.677903i 0.762889π0.762889\pi
930930 0 0
931931 2.13777 0.0700627
932932 42.2206 1.38298
933933 0 0
934934 −6.41316 −0.209845
935935 5.46861 0.178843
936936 0 0
937937 7.40715 0.241981 0.120990 0.992654i 0.461393π-0.461393\pi
0.120990 + 0.992654i 0.461393π0.461393\pi
938938 10.4939 0.342639
939939 0 0
940940 2.31600 0.0755396
941941 −50.7499 −1.65440 −0.827199 0.561909i 0.810067π-0.810067\pi
−0.827199 + 0.561909i 0.810067π0.810067\pi
942942 0 0
943943 −7.74545 −0.252226
944944 −10.4284 −0.339416
945945 0 0
946946 4.14539 0.134778
947947 −40.3285 −1.31050 −0.655250 0.755412i 0.727437π-0.727437\pi
−0.655250 + 0.755412i 0.727437π0.727437\pi
948948 0 0
949949 −16.0840 −0.522110
950950 7.31141 0.237213
951951 0 0
952952 11.8989 0.385645
953953 3.51760 0.113946 0.0569731 0.998376i 0.481855π-0.481855\pi
0.0569731 + 0.998376i 0.481855π0.481855\pi
954954 0 0
955955 −1.12887 −0.0365294
956956 −1.23610 −0.0399784
957957 0 0
958958 15.9304 0.514688
959959 −5.85349 −0.189019
960960 0 0
961961 51.9390 1.67545
962962 11.5100 0.371097
963963 0 0
964964 8.21080 0.264452
965965 −0.0309184 −0.000995299 0
966966 0 0
967967 −45.1545 −1.45207 −0.726035 0.687658i 0.758639π-0.758639\pi
−0.726035 + 0.687658i 0.758639π0.758639\pi
968968 27.7133 0.890741
969969 0 0
970970 −1.58256 −0.0508128
971971 38.2249 1.22669 0.613347 0.789813i 0.289823π-0.289823\pi
0.613347 + 0.789813i 0.289823π0.289823\pi
972972 0 0
973973 12.8728 0.412683
974974 8.28480 0.265462
975975 0 0
976976 7.14488 0.228702
977977 32.0622 1.02576 0.512880 0.858460i 0.328579π-0.328579\pi
0.512880 + 0.858460i 0.328579π0.328579\pi
978978 0 0
979979 −52.4660 −1.67682
980980 0.360096 0.0115028
981981 0 0
982982 29.2432 0.933189
983983 −31.8590 −1.01614 −0.508072 0.861315i 0.669642π-0.669642\pi
−0.508072 + 0.861315i 0.669642π0.669642\pi
984984 0 0
985985 −4.55293 −0.145068
986986 1.62712 0.0518181
987987 0 0
988988 4.94022 0.157169
989989 2.05232 0.0652601
990990 0 0
991991 24.9795 0.793500 0.396750 0.917927i 0.370138π-0.370138\pi
0.396750 + 0.917927i 0.370138π0.370138\pi
992992 52.9241 1.68034
993993 0 0
994994 −1.84440 −0.0585010
995995 2.81167 0.0891359
996996 0 0
997997 34.0534 1.07848 0.539241 0.842151i 0.318711π-0.318711\pi
0.539241 + 0.842151i 0.318711π0.318711\pi
998998 −2.68717 −0.0850608
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8001.2.a.x.1.8 22
3.2 odd 2 inner 8001.2.a.x.1.15 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8001.2.a.x.1.8 22 1.1 even 1 trivial
8001.2.a.x.1.15 yes 22 3.2 odd 2 inner