Properties

Label 8001.2.a
Level $8001$
Weight $2$
Character orbit 8001.a
Rep. character $\chi_{8001}(1,\cdot)$
Character field $\Q$
Dimension $314$
Newform subspaces $27$
Sturm bound $2048$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8001.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 27 \)
Sturm bound: \(2048\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8001))\).

Total New Old
Modular forms 1032 314 718
Cusp forms 1017 314 703
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)\(127\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(124\)\(32\)\(92\)\(123\)\(32\)\(91\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(132\)\(30\)\(102\)\(130\)\(30\)\(100\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(134\)\(40\)\(94\)\(132\)\(40\)\(92\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(126\)\(22\)\(104\)\(124\)\(22\)\(102\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(134\)\(47\)\(87\)\(132\)\(47\)\(85\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(126\)\(48\)\(78\)\(124\)\(48\)\(76\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(124\)\(43\)\(81\)\(122\)\(43\)\(79\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(132\)\(52\)\(80\)\(130\)\(52\)\(78\)\(2\)\(0\)\(2\)
Plus space\(+\)\(500\)\(145\)\(355\)\(493\)\(145\)\(348\)\(7\)\(0\)\(7\)
Minus space\(-\)\(532\)\(169\)\(363\)\(524\)\(169\)\(355\)\(8\)\(0\)\(8\)

Trace form

\( 314 q + 320 q^{4} - 4 q^{5} + 4 q^{10} + 16 q^{11} - 8 q^{13} + 332 q^{16} - 4 q^{17} + 4 q^{19} + 4 q^{20} - 28 q^{22} - 4 q^{23} + 290 q^{25} - 40 q^{26} + 12 q^{31} - 30 q^{32} - 26 q^{34} + 8 q^{35}+ \cdots - 108 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8001))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7 127
8001.2.a.a 8001.a 1.a $1$ $63.888$ \(\Q\) None 2667.2.a.e \(-2\) \(0\) \(-3\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+2q^{4}-3q^{5}-q^{7}+6q^{10}+\cdots\)
8001.2.a.b 8001.a 1.a $1$ $63.888$ \(\Q\) None 8001.2.a.b \(-2\) \(0\) \(-1\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+2q^{4}-q^{5}-q^{7}+2q^{10}+\cdots\)
8001.2.a.c 8001.a 1.a $1$ $63.888$ \(\Q\) None 2667.2.a.d \(0\) \(0\) \(-3\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{4}-3q^{5}+q^{7}-6q^{11}-q^{13}+\cdots\)
8001.2.a.d 8001.a 1.a $1$ $63.888$ \(\Q\) None 2667.2.a.b \(1\) \(0\) \(-4\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}-4q^{5}-q^{7}-3q^{8}-4q^{10}+\cdots\)
8001.2.a.e 8001.a 1.a $1$ $63.888$ \(\Q\) None 2667.2.a.c \(1\) \(0\) \(0\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+q^{7}-3q^{8}+2q^{13}+q^{14}+\cdots\)
8001.2.a.f 8001.a 1.a $1$ $63.888$ \(\Q\) None 2667.2.a.a \(2\) \(0\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{4}-q^{7}+2q^{13}-2q^{14}+\cdots\)
8001.2.a.g 8001.a 1.a $1$ $63.888$ \(\Q\) None 8001.2.a.b \(2\) \(0\) \(1\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{4}+q^{5}-q^{7}+2q^{10}+\cdots\)
8001.2.a.h 8001.a 1.a $2$ $63.888$ \(\Q(\sqrt{17}) \) None 2667.2.a.i \(-1\) \(0\) \(-3\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(2+\beta )q^{4}+(-1-\beta )q^{5}-q^{7}+\cdots\)
8001.2.a.i 8001.a 1.a $2$ $63.888$ \(\Q(\sqrt{17}) \) None 2667.2.a.f \(0\) \(0\) \(3\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{4}+(1+\beta )q^{5}-q^{7}+(2-2\beta )q^{11}+\cdots\)
8001.2.a.j 8001.a 1.a $2$ $63.888$ \(\Q(\sqrt{2}) \) None 2667.2.a.g \(0\) \(0\) \(0\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-\beta q^{5}+q^{7}-2\beta q^{8}-2q^{10}+\cdots\)
8001.2.a.k 8001.a 1.a $2$ $63.888$ \(\Q(\sqrt{6}) \) None 2667.2.a.h \(0\) \(0\) \(0\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+4q^{4}+\beta q^{5}+q^{7}+2\beta q^{8}+\cdots\)
8001.2.a.l 8001.a 1.a $7$ $63.888$ 7.7.118870813.1 None 2667.2.a.j \(2\) \(0\) \(8\) \(7\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{4}q^{2}+(\beta _{1}+\beta _{2}+\beta _{3}-\beta _{4}-\beta _{5}+\cdots)q^{4}+\cdots\)
8001.2.a.m 8001.a 1.a $11$ $63.888$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 2667.2.a.k \(2\) \(0\) \(-1\) \(-11\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{7}q^{5}-q^{7}+\cdots\)
8001.2.a.n 8001.a 1.a $12$ $63.888$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 889.2.a.a \(7\) \(0\) \(7\) \(12\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-\beta _{1}+\beta _{6}+\beta _{7})q^{4}+\cdots\)
8001.2.a.o 8001.a 1.a $13$ $63.888$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 2667.2.a.l \(-4\) \(0\) \(-12\) \(13\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1+\beta _{10}+\cdots)q^{5}+\cdots\)
8001.2.a.p 8001.a 1.a $14$ $63.888$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 2667.2.a.m \(5\) \(0\) \(4\) \(-14\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{3}q^{5}-q^{7}+\cdots\)
8001.2.a.q 8001.a 1.a $15$ $63.888$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 889.2.a.b \(0\) \(0\) \(-7\) \(-15\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}-\beta _{8}q^{5}-q^{7}+\cdots\)
8001.2.a.r 8001.a 1.a $16$ $63.888$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 2667.2.a.o \(-5\) \(0\) \(1\) \(-16\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}-\beta _{13}q^{5}-q^{7}+\cdots\)
8001.2.a.s 8001.a 1.a $16$ $63.888$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 2667.2.a.n \(-4\) \(0\) \(-5\) \(-16\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}-\beta _{7}q^{5}-q^{7}+\cdots\)
8001.2.a.t 8001.a 1.a $16$ $63.888$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 889.2.a.c \(2\) \(0\) \(9\) \(-16\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1-\beta _{11})q^{5}+\cdots\)
8001.2.a.u 8001.a 1.a $18$ $63.888$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 2667.2.a.p \(6\) \(0\) \(10\) \(18\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(1-\beta _{12})q^{5}+\cdots\)
8001.2.a.v 8001.a 1.a $19$ $63.888$ \(\mathbb{Q}[x]/(x^{19} - \cdots)\) None 2667.2.a.q \(-4\) \(0\) \(-5\) \(19\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{10}q^{5}+q^{7}+\cdots\)
8001.2.a.w 8001.a 1.a $20$ $63.888$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 889.2.a.d \(-8\) \(0\) \(-3\) \(20\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{16}q^{5}+q^{7}+\cdots\)
8001.2.a.x 8001.a 1.a $22$ $63.888$ None 8001.2.a.x \(0\) \(0\) \(0\) \(22\) $+$ $-$ $-$ $\mathrm{SU}(2)$
8001.2.a.y 8001.a 1.a $28$ $63.888$ None 8001.2.a.y \(0\) \(0\) \(0\) \(-28\) $+$ $+$ $-$ $\mathrm{SU}(2)$
8001.2.a.z 8001.a 1.a $32$ $63.888$ None 8001.2.a.z \(0\) \(0\) \(0\) \(-32\) $+$ $+$ $+$ $\mathrm{SU}(2)$
8001.2.a.ba 8001.a 1.a $40$ $63.888$ None 8001.2.a.ba \(0\) \(0\) \(0\) \(40\) $+$ $-$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8001))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(8001)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(127))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(381))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(889))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1143))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2667))\)\(^{\oplus 2}\)