Defining parameters
Level: | \( N \) | \(=\) | \( 8001 = 3^{2} \cdot 7 \cdot 127 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8001.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 27 \) | ||
Sturm bound: | \(2048\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8001))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1032 | 314 | 718 |
Cusp forms | 1017 | 314 | 703 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(127\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(124\) | \(32\) | \(92\) | \(123\) | \(32\) | \(91\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(132\) | \(30\) | \(102\) | \(130\) | \(30\) | \(100\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(134\) | \(40\) | \(94\) | \(132\) | \(40\) | \(92\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(126\) | \(22\) | \(104\) | \(124\) | \(22\) | \(102\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(134\) | \(47\) | \(87\) | \(132\) | \(47\) | \(85\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(126\) | \(48\) | \(78\) | \(124\) | \(48\) | \(76\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(124\) | \(43\) | \(81\) | \(122\) | \(43\) | \(79\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(132\) | \(52\) | \(80\) | \(130\) | \(52\) | \(78\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(500\) | \(145\) | \(355\) | \(493\) | \(145\) | \(348\) | \(7\) | \(0\) | \(7\) | |||||
Minus space | \(-\) | \(532\) | \(169\) | \(363\) | \(524\) | \(169\) | \(355\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8001))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8001))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(8001)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(127))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(381))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(889))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1143))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2667))\)\(^{\oplus 2}\)