Properties

Label 2-8001-1.1-c1-0-183
Degree 22
Conductor 80018001
Sign 1-1
Analytic cond. 63.888363.8883
Root an. cond. 7.993017.99301
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.691·2-s − 1.52·4-s − 0.236·5-s + 7-s + 2.43·8-s + 0.163·10-s − 4.73·11-s − 1.51·13-s − 0.691·14-s + 1.35·16-s + 4.88·17-s + 2.13·19-s + 0.360·20-s + 3.27·22-s + 1.62·23-s − 4.94·25-s + 1.05·26-s − 1.52·28-s − 0.481·29-s − 9.10·31-s − 5.81·32-s − 3.37·34-s − 0.236·35-s + 10.9·37-s − 1.47·38-s − 0.576·40-s − 4.78·41-s + ⋯
L(s)  = 1  − 0.489·2-s − 0.760·4-s − 0.105·5-s + 0.377·7-s + 0.861·8-s + 0.0517·10-s − 1.42·11-s − 0.421·13-s − 0.184·14-s + 0.339·16-s + 1.18·17-s + 0.490·19-s + 0.0805·20-s + 0.697·22-s + 0.337·23-s − 0.988·25-s + 0.206·26-s − 0.287·28-s − 0.0894·29-s − 1.63·31-s − 1.02·32-s − 0.579·34-s − 0.0400·35-s + 1.80·37-s − 0.239·38-s − 0.0911·40-s − 0.746·41-s + ⋯

Functional equation

Λ(s)=(8001s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(8001s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 8001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 80018001    =    3271273^{2} \cdot 7 \cdot 127
Sign: 1-1
Analytic conductor: 63.888363.8883
Root analytic conductor: 7.993017.99301
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 8001, ( :1/2), 1)(2,\ 8001,\ (\ :1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1T 1 - T
127 1T 1 - T
good2 1+0.691T+2T2 1 + 0.691T + 2T^{2}
5 1+0.236T+5T2 1 + 0.236T + 5T^{2}
11 1+4.73T+11T2 1 + 4.73T + 11T^{2}
13 1+1.51T+13T2 1 + 1.51T + 13T^{2}
17 14.88T+17T2 1 - 4.88T + 17T^{2}
19 12.13T+19T2 1 - 2.13T + 19T^{2}
23 11.62T+23T2 1 - 1.62T + 23T^{2}
29 1+0.481T+29T2 1 + 0.481T + 29T^{2}
31 1+9.10T+31T2 1 + 9.10T + 31T^{2}
37 110.9T+37T2 1 - 10.9T + 37T^{2}
41 1+4.78T+41T2 1 + 4.78T + 41T^{2}
43 11.26T+43T2 1 - 1.26T + 43T^{2}
47 16.43T+47T2 1 - 6.43T + 47T^{2}
53 111.2T+53T2 1 - 11.2T + 53T^{2}
59 1+7.68T+59T2 1 + 7.68T + 59T^{2}
61 15.26T+61T2 1 - 5.26T + 61T^{2}
67 1+15.1T+67T2 1 + 15.1T + 67T^{2}
71 12.66T+71T2 1 - 2.66T + 71T^{2}
73 110.5T+73T2 1 - 10.5T + 73T^{2}
79 1+13.1T+79T2 1 + 13.1T + 79T^{2}
83 1+11.1T+83T2 1 + 11.1T + 83T^{2}
89 111.0T+89T2 1 - 11.0T + 89T^{2}
97 1+9.66T+97T2 1 + 9.66T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.56329215535314457841628051932, −7.29581335746637612987421282161, −5.76150841196712808944009957956, −5.47718613775717386504204046568, −4.73213467374506407780500889808, −3.95956078633368946842248590821, −3.09909966367938572002132810958, −2.13217468065781512912438098371, −1.04873500308700696088563453412, 0, 1.04873500308700696088563453412, 2.13217468065781512912438098371, 3.09909966367938572002132810958, 3.95956078633368946842248590821, 4.73213467374506407780500889808, 5.47718613775717386504204046568, 5.76150841196712808944009957956, 7.29581335746637612987421282161, 7.56329215535314457841628051932

Graph of the ZZ-function along the critical line