L(s) = 1 | − 0.691·2-s − 1.52·4-s − 0.236·5-s + 7-s + 2.43·8-s + 0.163·10-s − 4.73·11-s − 1.51·13-s − 0.691·14-s + 1.35·16-s + 4.88·17-s + 2.13·19-s + 0.360·20-s + 3.27·22-s + 1.62·23-s − 4.94·25-s + 1.05·26-s − 1.52·28-s − 0.481·29-s − 9.10·31-s − 5.81·32-s − 3.37·34-s − 0.236·35-s + 10.9·37-s − 1.47·38-s − 0.576·40-s − 4.78·41-s + ⋯ |
L(s) = 1 | − 0.489·2-s − 0.760·4-s − 0.105·5-s + 0.377·7-s + 0.861·8-s + 0.0517·10-s − 1.42·11-s − 0.421·13-s − 0.184·14-s + 0.339·16-s + 1.18·17-s + 0.490·19-s + 0.0805·20-s + 0.697·22-s + 0.337·23-s − 0.988·25-s + 0.206·26-s − 0.287·28-s − 0.0894·29-s − 1.63·31-s − 1.02·32-s − 0.579·34-s − 0.0400·35-s + 1.80·37-s − 0.239·38-s − 0.0911·40-s − 0.746·41-s + ⋯ |
Λ(s)=(=(8001s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8001s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−T |
| 127 | 1−T |
good | 2 | 1+0.691T+2T2 |
| 5 | 1+0.236T+5T2 |
| 11 | 1+4.73T+11T2 |
| 13 | 1+1.51T+13T2 |
| 17 | 1−4.88T+17T2 |
| 19 | 1−2.13T+19T2 |
| 23 | 1−1.62T+23T2 |
| 29 | 1+0.481T+29T2 |
| 31 | 1+9.10T+31T2 |
| 37 | 1−10.9T+37T2 |
| 41 | 1+4.78T+41T2 |
| 43 | 1−1.26T+43T2 |
| 47 | 1−6.43T+47T2 |
| 53 | 1−11.2T+53T2 |
| 59 | 1+7.68T+59T2 |
| 61 | 1−5.26T+61T2 |
| 67 | 1+15.1T+67T2 |
| 71 | 1−2.66T+71T2 |
| 73 | 1−10.5T+73T2 |
| 79 | 1+13.1T+79T2 |
| 83 | 1+11.1T+83T2 |
| 89 | 1−11.0T+89T2 |
| 97 | 1+9.66T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.56329215535314457841628051932, −7.29581335746637612987421282161, −5.76150841196712808944009957956, −5.47718613775717386504204046568, −4.73213467374506407780500889808, −3.95956078633368946842248590821, −3.09909966367938572002132810958, −2.13217468065781512912438098371, −1.04873500308700696088563453412, 0,
1.04873500308700696088563453412, 2.13217468065781512912438098371, 3.09909966367938572002132810958, 3.95956078633368946842248590821, 4.73213467374506407780500889808, 5.47718613775717386504204046568, 5.76150841196712808944009957956, 7.29581335746637612987421282161, 7.56329215535314457841628051932