Properties

Label 8001.2.a.x.1.16
Level 80018001
Weight 22
Character 8001.1
Self dual yes
Analytic conductor 63.88863.888
Analytic rank 11
Dimension 2222
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 8001=327127 8001 = 3^{2} \cdot 7 \cdot 127
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 63.888306657263.8883066572
Analytic rank: 11
Dimension: 2222
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.16
Character χ\chi == 8001.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.775659q21.39835q4+0.833166q5+1.00000q72.63596q8+0.646253q10+0.821214q113.40878q13+0.775659q14+0.752101q162.50310q17+1.40296q191.16506q20+0.636982q22+0.947115q234.30583q252.64405q261.39835q28+1.78577q29+8.51944q31+5.85530q321.94155q34+0.833166q352.89168q37+1.08822q382.19620q40+2.30169q41+5.58041q431.14835q44+0.734638q46+2.14718q47+1.00000q493.33986q50+4.76668q520.992903q53+0.684208q552.63596q56+1.38515q5813.0882q597.19849q61+6.60817q62+3.03751q642.84008q655.77977q67+3.50022q68+0.646253q700.675593q7110.0038q732.24296q741.96183q76+0.821214q77+1.57957q79+0.626625q80+1.78533q82+3.31531q832.08550q85+4.32849q862.16469q881.39169q893.40878q911.32440q92+1.66548q94+1.16890q954.55016q97+0.775659q98+O(q100)q+0.775659 q^{2} -1.39835 q^{4} +0.833166 q^{5} +1.00000 q^{7} -2.63596 q^{8} +0.646253 q^{10} +0.821214 q^{11} -3.40878 q^{13} +0.775659 q^{14} +0.752101 q^{16} -2.50310 q^{17} +1.40296 q^{19} -1.16506 q^{20} +0.636982 q^{22} +0.947115 q^{23} -4.30583 q^{25} -2.64405 q^{26} -1.39835 q^{28} +1.78577 q^{29} +8.51944 q^{31} +5.85530 q^{32} -1.94155 q^{34} +0.833166 q^{35} -2.89168 q^{37} +1.08822 q^{38} -2.19620 q^{40} +2.30169 q^{41} +5.58041 q^{43} -1.14835 q^{44} +0.734638 q^{46} +2.14718 q^{47} +1.00000 q^{49} -3.33986 q^{50} +4.76668 q^{52} -0.992903 q^{53} +0.684208 q^{55} -2.63596 q^{56} +1.38515 q^{58} -13.0882 q^{59} -7.19849 q^{61} +6.60817 q^{62} +3.03751 q^{64} -2.84008 q^{65} -5.77977 q^{67} +3.50022 q^{68} +0.646253 q^{70} -0.675593 q^{71} -10.0038 q^{73} -2.24296 q^{74} -1.96183 q^{76} +0.821214 q^{77} +1.57957 q^{79} +0.626625 q^{80} +1.78533 q^{82} +3.31531 q^{83} -2.08550 q^{85} +4.32849 q^{86} -2.16469 q^{88} -1.39169 q^{89} -3.40878 q^{91} -1.32440 q^{92} +1.66548 q^{94} +1.16890 q^{95} -4.55016 q^{97} +0.775659 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 22q+10q4+22q74q1010q136q1618q1934q2226q25+10q2842q3116q3436q3746q4054q4312q46+22q4922q52+56q97+O(q100) 22 q + 10 q^{4} + 22 q^{7} - 4 q^{10} - 10 q^{13} - 6 q^{16} - 18 q^{19} - 34 q^{22} - 26 q^{25} + 10 q^{28} - 42 q^{31} - 16 q^{34} - 36 q^{37} - 46 q^{40} - 54 q^{43} - 12 q^{46} + 22 q^{49} - 22 q^{52}+ \cdots - 56 q^{97}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.775659 0.548473 0.274237 0.961662i 0.411575π-0.411575\pi
0.274237 + 0.961662i 0.411575π0.411575\pi
33 0 0
44 −1.39835 −0.699177
55 0.833166 0.372603 0.186302 0.982493i 0.440350π-0.440350\pi
0.186302 + 0.982493i 0.440350π0.440350\pi
66 0 0
77 1.00000 0.377964
88 −2.63596 −0.931953
99 0 0
1010 0.646253 0.204363
1111 0.821214 0.247605 0.123803 0.992307i 0.460491π-0.460491\pi
0.123803 + 0.992307i 0.460491π0.460491\pi
1212 0 0
1313 −3.40878 −0.945424 −0.472712 0.881217i 0.656725π-0.656725\pi
−0.472712 + 0.881217i 0.656725π0.656725\pi
1414 0.775659 0.207303
1515 0 0
1616 0.752101 0.188025
1717 −2.50310 −0.607091 −0.303546 0.952817i 0.598170π-0.598170\pi
−0.303546 + 0.952817i 0.598170π0.598170\pi
1818 0 0
1919 1.40296 0.321861 0.160931 0.986966i 0.448550π-0.448550\pi
0.160931 + 0.986966i 0.448550π0.448550\pi
2020 −1.16506 −0.260516
2121 0 0
2222 0.636982 0.135805
2323 0.947115 0.197487 0.0987436 0.995113i 0.468518π-0.468518\pi
0.0987436 + 0.995113i 0.468518π0.468518\pi
2424 0 0
2525 −4.30583 −0.861167
2626 −2.64405 −0.518540
2727 0 0
2828 −1.39835 −0.264264
2929 1.78577 0.331610 0.165805 0.986159i 0.446978π-0.446978\pi
0.165805 + 0.986159i 0.446978π0.446978\pi
3030 0 0
3131 8.51944 1.53014 0.765068 0.643949i 0.222705π-0.222705\pi
0.765068 + 0.643949i 0.222705π0.222705\pi
3232 5.85530 1.03508
3333 0 0
3434 −1.94155 −0.332973
3535 0.833166 0.140831
3636 0 0
3737 −2.89168 −0.475390 −0.237695 0.971340i 0.576392π-0.576392\pi
−0.237695 + 0.971340i 0.576392π0.576392\pi
3838 1.08822 0.176532
3939 0 0
4040 −2.19620 −0.347249
4141 2.30169 0.359464 0.179732 0.983716i 0.442477π-0.442477\pi
0.179732 + 0.983716i 0.442477π0.442477\pi
4242 0 0
4343 5.58041 0.851004 0.425502 0.904957i 0.360098π-0.360098\pi
0.425502 + 0.904957i 0.360098π0.360098\pi
4444 −1.14835 −0.173120
4545 0 0
4646 0.734638 0.108316
4747 2.14718 0.313198 0.156599 0.987662i 0.449947π-0.449947\pi
0.156599 + 0.987662i 0.449947π0.449947\pi
4848 0 0
4949 1.00000 0.142857
5050 −3.33986 −0.472327
5151 0 0
5252 4.76668 0.661019
5353 −0.992903 −0.136386 −0.0681929 0.997672i 0.521723π-0.521723\pi
−0.0681929 + 0.997672i 0.521723π0.521723\pi
5454 0 0
5555 0.684208 0.0922586
5656 −2.63596 −0.352245
5757 0 0
5858 1.38515 0.181879
5959 −13.0882 −1.70394 −0.851971 0.523589i 0.824593π-0.824593\pi
−0.851971 + 0.523589i 0.824593π0.824593\pi
6060 0 0
6161 −7.19849 −0.921672 −0.460836 0.887485i 0.652450π-0.652450\pi
−0.460836 + 0.887485i 0.652450π0.652450\pi
6262 6.60817 0.839239
6363 0 0
6464 3.03751 0.379689
6565 −2.84008 −0.352268
6666 0 0
6767 −5.77977 −0.706111 −0.353056 0.935602i 0.614857π-0.614857\pi
−0.353056 + 0.935602i 0.614857π0.614857\pi
6868 3.50022 0.424464
6969 0 0
7070 0.646253 0.0772420
7171 −0.675593 −0.0801781 −0.0400891 0.999196i 0.512764π-0.512764\pi
−0.0400891 + 0.999196i 0.512764π0.512764\pi
7272 0 0
7373 −10.0038 −1.17086 −0.585429 0.810724i 0.699074π-0.699074\pi
−0.585429 + 0.810724i 0.699074π0.699074\pi
7474 −2.24296 −0.260739
7575 0 0
7676 −1.96183 −0.225038
7777 0.821214 0.0935860
7878 0 0
7979 1.57957 0.177716 0.0888578 0.996044i 0.471678π-0.471678\pi
0.0888578 + 0.996044i 0.471678π0.471678\pi
8080 0.626625 0.0700589
8181 0 0
8282 1.78533 0.197156
8383 3.31531 0.363902 0.181951 0.983308i 0.441759π-0.441759\pi
0.181951 + 0.983308i 0.441759π0.441759\pi
8484 0 0
8585 −2.08550 −0.226204
8686 4.32849 0.466753
8787 0 0
8888 −2.16469 −0.230757
8989 −1.39169 −0.147519 −0.0737595 0.997276i 0.523500π-0.523500\pi
−0.0737595 + 0.997276i 0.523500π0.523500\pi
9090 0 0
9191 −3.40878 −0.357337
9292 −1.32440 −0.138078
9393 0 0
9494 1.66548 0.171781
9595 1.16890 0.119927
9696 0 0
9797 −4.55016 −0.461999 −0.230999 0.972954i 0.574200π-0.574200\pi
−0.230999 + 0.972954i 0.574200π0.574200\pi
9898 0.775659 0.0783533
9999 0 0
100100 6.02108 0.602108
101101 8.82048 0.877670 0.438835 0.898568i 0.355391π-0.355391\pi
0.438835 + 0.898568i 0.355391π0.355391\pi
102102 0 0
103103 5.65003 0.556714 0.278357 0.960478i 0.410210π-0.410210\pi
0.278357 + 0.960478i 0.410210π0.410210\pi
104104 8.98540 0.881091
105105 0 0
106106 −0.770154 −0.0748039
107107 −20.2463 −1.95729 −0.978643 0.205567i 0.934096π-0.934096\pi
−0.978643 + 0.205567i 0.934096π0.934096\pi
108108 0 0
109109 −0.369111 −0.0353545 −0.0176772 0.999844i 0.505627π-0.505627\pi
−0.0176772 + 0.999844i 0.505627π0.505627\pi
110110 0.530712 0.0506014
111111 0 0
112112 0.752101 0.0710669
113113 −10.8983 −1.02523 −0.512613 0.858620i 0.671323π-0.671323\pi
−0.512613 + 0.858620i 0.671323π0.671323\pi
114114 0 0
115115 0.789105 0.0735844
116116 −2.49714 −0.231854
117117 0 0
118118 −10.1520 −0.934567
119119 −2.50310 −0.229459
120120 0 0
121121 −10.3256 −0.938692
122122 −5.58357 −0.505513
123123 0 0
124124 −11.9132 −1.06984
125125 −7.75331 −0.693477
126126 0 0
127127 1.00000 0.0887357
128128 −9.35453 −0.826831
129129 0 0
130130 −2.20293 −0.193210
131131 −6.34339 −0.554224 −0.277112 0.960838i 0.589377π-0.589377\pi
−0.277112 + 0.960838i 0.589377π0.589377\pi
132132 0 0
133133 1.40296 0.121652
134134 −4.48313 −0.387283
135135 0 0
136136 6.59808 0.565781
137137 −16.5664 −1.41536 −0.707682 0.706531i 0.750259π-0.750259\pi
−0.707682 + 0.706531i 0.750259π0.750259\pi
138138 0 0
139139 −14.6965 −1.24654 −0.623271 0.782006i 0.714197π-0.714197\pi
−0.623271 + 0.782006i 0.714197π0.714197\pi
140140 −1.16506 −0.0984657
141141 0 0
142142 −0.524029 −0.0439756
143143 −2.79933 −0.234092
144144 0 0
145145 1.48785 0.123559
146146 −7.75955 −0.642185
147147 0 0
148148 4.04359 0.332381
149149 12.6949 1.04001 0.520003 0.854164i 0.325931π-0.325931\pi
0.520003 + 0.854164i 0.325931π0.325931\pi
150150 0 0
151151 −0.318150 −0.0258906 −0.0129453 0.999916i 0.504121π-0.504121\pi
−0.0129453 + 0.999916i 0.504121π0.504121\pi
152152 −3.69815 −0.299960
153153 0 0
154154 0.636982 0.0513294
155155 7.09811 0.570134
156156 0 0
157157 8.24209 0.657790 0.328895 0.944366i 0.393324π-0.393324\pi
0.328895 + 0.944366i 0.393324π0.393324\pi
158158 1.22521 0.0974723
159159 0 0
160160 4.87844 0.385674
161161 0.947115 0.0746431
162162 0 0
163163 12.7768 1.00076 0.500379 0.865806i 0.333194π-0.333194\pi
0.500379 + 0.865806i 0.333194π0.333194\pi
164164 −3.21858 −0.251329
165165 0 0
166166 2.57155 0.199591
167167 19.9015 1.54002 0.770010 0.638031i 0.220251π-0.220251\pi
0.770010 + 0.638031i 0.220251π0.220251\pi
168168 0 0
169169 −1.38025 −0.106173
170170 −1.61764 −0.124067
171171 0 0
172172 −7.80338 −0.595002
173173 6.38620 0.485534 0.242767 0.970085i 0.421945π-0.421945\pi
0.242767 + 0.970085i 0.421945π0.421945\pi
174174 0 0
175175 −4.30583 −0.325490
176176 0.617636 0.0465561
177177 0 0
178178 −1.07948 −0.0809102
179179 −13.5632 −1.01376 −0.506879 0.862017i 0.669201π-0.669201\pi
−0.506879 + 0.862017i 0.669201π0.669201\pi
180180 0 0
181181 −7.27667 −0.540871 −0.270435 0.962738i 0.587168π-0.587168\pi
−0.270435 + 0.962738i 0.587168π0.587168\pi
182182 −2.64405 −0.195990
183183 0 0
184184 −2.49656 −0.184049
185185 −2.40925 −0.177132
186186 0 0
187187 −2.05558 −0.150319
188188 −3.00251 −0.218981
189189 0 0
190190 0.906667 0.0657765
191191 −2.22153 −0.160744 −0.0803721 0.996765i 0.525611π-0.525611\pi
−0.0803721 + 0.996765i 0.525611π0.525611\pi
192192 0 0
193193 −15.4286 −1.11057 −0.555287 0.831659i 0.687392π-0.687392\pi
−0.555287 + 0.831659i 0.687392π0.687392\pi
194194 −3.52937 −0.253394
195195 0 0
196196 −1.39835 −0.0998824
197197 12.8028 0.912162 0.456081 0.889938i 0.349253π-0.349253\pi
0.456081 + 0.889938i 0.349253π0.349253\pi
198198 0 0
199199 3.89117 0.275838 0.137919 0.990444i 0.455959π-0.455959\pi
0.137919 + 0.990444i 0.455959π0.455959\pi
200200 11.3500 0.802567
201201 0 0
202202 6.84168 0.481379
203203 1.78577 0.125337
204204 0 0
205205 1.91769 0.133937
206206 4.38249 0.305343
207207 0 0
208208 −2.56374 −0.177764
209209 1.15213 0.0796945
210210 0 0
211211 23.1279 1.59219 0.796095 0.605172i 0.206896π-0.206896\pi
0.796095 + 0.605172i 0.206896π0.206896\pi
212212 1.38843 0.0953577
213213 0 0
214214 −15.7042 −1.07352
215215 4.64941 0.317087
216216 0 0
217217 8.51944 0.578337
218218 −0.286304 −0.0193910
219219 0 0
220220 −0.956765 −0.0645051
221221 8.53251 0.573959
222222 0 0
223223 6.28503 0.420877 0.210438 0.977607i 0.432511π-0.432511\pi
0.210438 + 0.977607i 0.432511π0.432511\pi
224224 5.85530 0.391224
225225 0 0
226226 −8.45336 −0.562309
227227 7.52578 0.499503 0.249752 0.968310i 0.419651π-0.419651\pi
0.249752 + 0.968310i 0.419651π0.419651\pi
228228 0 0
229229 −27.0451 −1.78719 −0.893596 0.448872i 0.851826π-0.851826\pi
−0.893596 + 0.448872i 0.851826π0.851826\pi
230230 0.612076 0.0403591
231231 0 0
232232 −4.70723 −0.309045
233233 −20.8606 −1.36663 −0.683313 0.730126i 0.739461π-0.739461\pi
−0.683313 + 0.730126i 0.739461π0.739461\pi
234234 0 0
235235 1.78896 0.116699
236236 18.3020 1.19136
237237 0 0
238238 −1.94155 −0.125852
239239 20.7716 1.34360 0.671800 0.740732i 0.265521π-0.265521\pi
0.671800 + 0.740732i 0.265521π0.265521\pi
240240 0 0
241241 −26.7249 −1.72150 −0.860750 0.509028i 0.830005π-0.830005\pi
−0.860750 + 0.509028i 0.830005π0.830005\pi
242242 −8.00915 −0.514847
243243 0 0
244244 10.0660 0.644412
245245 0.833166 0.0532291
246246 0 0
247247 −4.78238 −0.304295
248248 −22.4569 −1.42602
249249 0 0
250250 −6.01392 −0.380354
251251 −24.2026 −1.52765 −0.763827 0.645420i 0.776682π-0.776682\pi
−0.763827 + 0.645420i 0.776682π0.776682\pi
252252 0 0
253253 0.777784 0.0488989
254254 0.775659 0.0486691
255255 0 0
256256 −13.3309 −0.833184
257257 −29.2037 −1.82168 −0.910838 0.412765i 0.864563π-0.864563\pi
−0.910838 + 0.412765i 0.864563π0.864563\pi
258258 0 0
259259 −2.89168 −0.179680
260260 3.97143 0.246298
261261 0 0
262262 −4.92030 −0.303977
263263 8.46412 0.521920 0.260960 0.965350i 0.415961π-0.415961\pi
0.260960 + 0.965350i 0.415961π0.415961\pi
264264 0 0
265265 −0.827253 −0.0508178
266266 1.08822 0.0667229
267267 0 0
268268 8.08217 0.493697
269269 −25.1306 −1.53224 −0.766119 0.642699i 0.777815π-0.777815\pi
−0.766119 + 0.642699i 0.777815π0.777815\pi
270270 0 0
271271 0.485582 0.0294970 0.0147485 0.999891i 0.495305π-0.495305\pi
0.0147485 + 0.999891i 0.495305π0.495305\pi
272272 −1.88259 −0.114149
273273 0 0
274274 −12.8499 −0.776290
275275 −3.53601 −0.213229
276276 0 0
277277 −12.5162 −0.752027 −0.376013 0.926614i 0.622705π-0.622705\pi
−0.376013 + 0.926614i 0.622705π0.622705\pi
278278 −11.3995 −0.683695
279279 0 0
280280 −2.19620 −0.131248
281281 4.50129 0.268524 0.134262 0.990946i 0.457134π-0.457134\pi
0.134262 + 0.990946i 0.457134π0.457134\pi
282282 0 0
283283 −4.68047 −0.278225 −0.139112 0.990277i 0.544425π-0.544425\pi
−0.139112 + 0.990277i 0.544425π0.544425\pi
284284 0.944718 0.0560587
285285 0 0
286286 −2.17133 −0.128393
287287 2.30169 0.135865
288288 0 0
289289 −10.7345 −0.631440
290290 1.15406 0.0677688
291291 0 0
292292 13.9889 0.818637
293293 21.7063 1.26809 0.634047 0.773295i 0.281393π-0.281393\pi
0.634047 + 0.773295i 0.281393π0.281393\pi
294294 0 0
295295 −10.9047 −0.634894
296296 7.62236 0.443041
297297 0 0
298298 9.84690 0.570416
299299 −3.22850 −0.186709
300300 0 0
301301 5.58041 0.321649
302302 −0.246775 −0.0142003
303303 0 0
304304 1.05517 0.0605180
305305 −5.99754 −0.343418
306306 0 0
307307 7.76773 0.443328 0.221664 0.975123i 0.428851π-0.428851\pi
0.221664 + 0.975123i 0.428851π0.428851\pi
308308 −1.14835 −0.0654332
309309 0 0
310310 5.50571 0.312703
311311 3.35408 0.190192 0.0950961 0.995468i 0.469684π-0.469684\pi
0.0950961 + 0.995468i 0.469684π0.469684\pi
312312 0 0
313313 4.56356 0.257948 0.128974 0.991648i 0.458832π-0.458832\pi
0.128974 + 0.991648i 0.458832π0.458832\pi
314314 6.39305 0.360780
315315 0 0
316316 −2.20880 −0.124255
317317 0.418733 0.0235184 0.0117592 0.999931i 0.496257π-0.496257\pi
0.0117592 + 0.999931i 0.496257π0.496257\pi
318318 0 0
319319 1.46650 0.0821083
320320 2.53075 0.141473
321321 0 0
322322 0.734638 0.0409398
323323 −3.51175 −0.195399
324324 0 0
325325 14.6776 0.814168
326326 9.91046 0.548889
327327 0 0
328328 −6.06717 −0.335003
329329 2.14718 0.118378
330330 0 0
331331 13.6681 0.751266 0.375633 0.926768i 0.377425π-0.377425\pi
0.375633 + 0.926768i 0.377425π0.377425\pi
332332 −4.63597 −0.254432
333333 0 0
334334 15.4367 0.844660
335335 −4.81551 −0.263099
336336 0 0
337337 −13.1006 −0.713637 −0.356819 0.934174i 0.616139π-0.616139\pi
−0.356819 + 0.934174i 0.616139π0.616139\pi
338338 −1.07060 −0.0582329
339339 0 0
340340 2.91627 0.158157
341341 6.99628 0.378870
342342 0 0
343343 1.00000 0.0539949
344344 −14.7097 −0.793096
345345 0 0
346346 4.95351 0.266302
347347 −3.79071 −0.203496 −0.101748 0.994810i 0.532444π-0.532444\pi
−0.101748 + 0.994810i 0.532444π0.532444\pi
348348 0 0
349349 −18.5522 −0.993075 −0.496537 0.868015i 0.665395π-0.665395\pi
−0.496537 + 0.868015i 0.665395π0.665395\pi
350350 −3.33986 −0.178523
351351 0 0
352352 4.80845 0.256291
353353 3.95098 0.210289 0.105145 0.994457i 0.466469π-0.466469\pi
0.105145 + 0.994457i 0.466469π0.466469\pi
354354 0 0
355355 −0.562881 −0.0298746
356356 1.94608 0.103142
357357 0 0
358358 −10.5204 −0.556019
359359 −5.14938 −0.271774 −0.135887 0.990724i 0.543388π-0.543388\pi
−0.135887 + 0.990724i 0.543388π0.543388\pi
360360 0 0
361361 −17.0317 −0.896405
362362 −5.64421 −0.296653
363363 0 0
364364 4.76668 0.249842
365365 −8.33485 −0.436266
366366 0 0
367367 −31.8116 −1.66055 −0.830276 0.557353i 0.811817π-0.811817\pi
−0.830276 + 0.557353i 0.811817π0.811817\pi
368368 0.712326 0.0371326
369369 0 0
370370 −1.86876 −0.0971521
371371 −0.992903 −0.0515490
372372 0 0
373373 −17.4919 −0.905695 −0.452848 0.891588i 0.649592π-0.649592\pi
−0.452848 + 0.891588i 0.649592π0.649592\pi
374374 −1.59443 −0.0824460
375375 0 0
376376 −5.65988 −0.291886
377377 −6.08730 −0.313512
378378 0 0
379379 −23.3687 −1.20037 −0.600185 0.799861i 0.704906π-0.704906\pi
−0.600185 + 0.799861i 0.704906π0.704906\pi
380380 −1.63453 −0.0838499
381381 0 0
382382 −1.72315 −0.0881639
383383 12.7842 0.653242 0.326621 0.945155i 0.394090π-0.394090\pi
0.326621 + 0.945155i 0.394090π0.394090\pi
384384 0 0
385385 0.684208 0.0348705
386386 −11.9673 −0.609121
387387 0 0
388388 6.36273 0.323019
389389 −31.1873 −1.58126 −0.790630 0.612294i 0.790247π-0.790247\pi
−0.790630 + 0.612294i 0.790247π0.790247\pi
390390 0 0
391391 −2.37073 −0.119893
392392 −2.63596 −0.133136
393393 0 0
394394 9.93060 0.500296
395395 1.31605 0.0662174
396396 0 0
397397 36.1511 1.81437 0.907186 0.420729i 0.138226π-0.138226\pi
0.907186 + 0.420729i 0.138226π0.138226\pi
398398 3.01822 0.151290
399399 0 0
400400 −3.23842 −0.161921
401401 22.0119 1.09922 0.549611 0.835421i 0.314776π-0.314776\pi
0.549611 + 0.835421i 0.314776π0.314776\pi
402402 0 0
403403 −29.0409 −1.44663
404404 −12.3341 −0.613647
405405 0 0
406406 1.38515 0.0687438
407407 −2.37469 −0.117709
408408 0 0
409409 −23.7967 −1.17667 −0.588335 0.808617i 0.700216π-0.700216\pi
−0.588335 + 0.808617i 0.700216π0.700216\pi
410410 1.48747 0.0734611
411411 0 0
412412 −7.90074 −0.389242
413413 −13.0882 −0.644029
414414 0 0
415415 2.76220 0.135591
416416 −19.9594 −0.978590
417417 0 0
418418 0.893660 0.0437103
419419 19.9178 0.973048 0.486524 0.873667i 0.338265π-0.338265\pi
0.486524 + 0.873667i 0.338265π0.338265\pi
420420 0 0
421421 −7.26730 −0.354187 −0.177093 0.984194i 0.556669π-0.556669\pi
−0.177093 + 0.984194i 0.556669π0.556669\pi
422422 17.9393 0.873274
423423 0 0
424424 2.61725 0.127105
425425 10.7779 0.522807
426426 0 0
427427 −7.19849 −0.348359
428428 28.3115 1.36849
429429 0 0
430430 3.60635 0.173914
431431 11.2632 0.542529 0.271264 0.962505i 0.412558π-0.412558\pi
0.271264 + 0.962505i 0.412558π0.412558\pi
432432 0 0
433433 −37.4552 −1.79998 −0.899992 0.435907i 0.856428π-0.856428\pi
−0.899992 + 0.435907i 0.856428π0.856428\pi
434434 6.60817 0.317203
435435 0 0
436436 0.516148 0.0247190
437437 1.32876 0.0635634
438438 0 0
439439 −7.93341 −0.378641 −0.189321 0.981915i 0.560629π-0.560629\pi
−0.189321 + 0.981915i 0.560629π0.560629\pi
440440 −1.80355 −0.0859807
441441 0 0
442442 6.61832 0.314801
443443 8.55610 0.406513 0.203256 0.979126i 0.434848π-0.434848\pi
0.203256 + 0.979126i 0.434848π0.434848\pi
444444 0 0
445445 −1.15951 −0.0549661
446446 4.87504 0.230840
447447 0 0
448448 3.03751 0.143509
449449 38.8738 1.83457 0.917285 0.398232i 0.130376π-0.130376\pi
0.917285 + 0.398232i 0.130376π0.130376\pi
450450 0 0
451451 1.89018 0.0890051
452452 15.2397 0.716815
453453 0 0
454454 5.83743 0.273964
455455 −2.84008 −0.133145
456456 0 0
457457 −4.65559 −0.217779 −0.108890 0.994054i 0.534730π-0.534730\pi
−0.108890 + 0.994054i 0.534730π0.534730\pi
458458 −20.9778 −0.980227
459459 0 0
460460 −1.10345 −0.0514485
461461 0.338860 0.0157823 0.00789114 0.999969i 0.497488π-0.497488\pi
0.00789114 + 0.999969i 0.497488π0.497488\pi
462462 0 0
463463 −34.1206 −1.58572 −0.792858 0.609406i 0.791408π-0.791408\pi
−0.792858 + 0.609406i 0.791408π0.791408\pi
464464 1.34308 0.0623510
465465 0 0
466466 −16.1807 −0.749558
467467 15.2172 0.704166 0.352083 0.935969i 0.385473π-0.385473\pi
0.352083 + 0.935969i 0.385473π0.385473\pi
468468 0 0
469469 −5.77977 −0.266885
470470 1.38762 0.0640061
471471 0 0
472472 34.5001 1.58799
473473 4.58271 0.210713
474474 0 0
475475 −6.04091 −0.277176
476476 3.50022 0.160432
477477 0 0
478478 16.1116 0.736929
479479 −41.7641 −1.90825 −0.954126 0.299405i 0.903212π-0.903212\pi
−0.954126 + 0.299405i 0.903212π0.903212\pi
480480 0 0
481481 9.85710 0.449445
482482 −20.7294 −0.944197
483483 0 0
484484 14.4389 0.656312
485485 −3.79104 −0.172142
486486 0 0
487487 12.0202 0.544689 0.272344 0.962200i 0.412201π-0.412201\pi
0.272344 + 0.962200i 0.412201π0.412201\pi
488488 18.9749 0.858956
489489 0 0
490490 0.646253 0.0291947
491491 20.4192 0.921506 0.460753 0.887528i 0.347579π-0.347579\pi
0.460753 + 0.887528i 0.347579π0.347579\pi
492492 0 0
493493 −4.46997 −0.201317
494494 −3.70949 −0.166898
495495 0 0
496496 6.40748 0.287704
497497 −0.675593 −0.0303045
498498 0 0
499499 −23.7661 −1.06392 −0.531958 0.846771i 0.678544π-0.678544\pi
−0.531958 + 0.846771i 0.678544π0.678544\pi
500500 10.8419 0.484863
501501 0 0
502502 −18.7730 −0.837878
503503 17.3725 0.774604 0.387302 0.921953i 0.373407π-0.373407\pi
0.387302 + 0.921953i 0.373407π0.373407\pi
504504 0 0
505505 7.34892 0.327023
506506 0.603295 0.0268197
507507 0 0
508508 −1.39835 −0.0620419
509509 −3.06618 −0.135906 −0.0679531 0.997689i 0.521647π-0.521647\pi
−0.0679531 + 0.997689i 0.521647π0.521647\pi
510510 0 0
511511 −10.0038 −0.442543
512512 8.36880 0.369852
513513 0 0
514514 −22.6521 −0.999140
515515 4.70742 0.207433
516516 0 0
517517 1.76329 0.0775495
518518 −2.24296 −0.0985499
519519 0 0
520520 7.48634 0.328298
521521 −26.9322 −1.17992 −0.589961 0.807431i 0.700857π-0.700857\pi
−0.589961 + 0.807431i 0.700857π0.700857\pi
522522 0 0
523523 7.30944 0.319619 0.159810 0.987148i 0.448912π-0.448912\pi
0.159810 + 0.987148i 0.448912π0.448912\pi
524524 8.87030 0.387501
525525 0 0
526526 6.56527 0.286259
527527 −21.3250 −0.928932
528528 0 0
529529 −22.1030 −0.960999
530530 −0.641666 −0.0278722
531531 0 0
532532 −1.96183 −0.0850563
533533 −7.84595 −0.339846
534534 0 0
535535 −16.8686 −0.729291
536536 15.2353 0.658063
537537 0 0
538538 −19.4927 −0.840392
539539 0.821214 0.0353722
540540 0 0
541541 −30.5215 −1.31222 −0.656111 0.754664i 0.727800π-0.727800\pi
−0.656111 + 0.754664i 0.727800π0.727800\pi
542542 0.376646 0.0161783
543543 0 0
544544 −14.6564 −0.628388
545545 −0.307531 −0.0131732
546546 0 0
547547 −38.3344 −1.63906 −0.819531 0.573035i 0.805766π-0.805766\pi
−0.819531 + 0.573035i 0.805766π0.805766\pi
548548 23.1657 0.989590
549549 0 0
550550 −2.74274 −0.116951
551551 2.50537 0.106732
552552 0 0
553553 1.57957 0.0671702
554554 −9.70831 −0.412467
555555 0 0
556556 20.5509 0.871553
557557 0.188070 0.00796880 0.00398440 0.999992i 0.498732π-0.498732\pi
0.00398440 + 0.999992i 0.498732π0.498732\pi
558558 0 0
559559 −19.0224 −0.804560
560560 0.626625 0.0264798
561561 0 0
562562 3.49146 0.147278
563563 20.4436 0.861594 0.430797 0.902449i 0.358232π-0.358232\pi
0.430797 + 0.902449i 0.358232π0.358232\pi
564564 0 0
565565 −9.08010 −0.382003
566566 −3.63045 −0.152599
567567 0 0
568568 1.78084 0.0747223
569569 27.1530 1.13831 0.569157 0.822229i 0.307270π-0.307270\pi
0.569157 + 0.822229i 0.307270π0.307270\pi
570570 0 0
571571 6.65084 0.278329 0.139165 0.990269i 0.455558π-0.455558\pi
0.139165 + 0.990269i 0.455558π0.455558\pi
572572 3.91446 0.163672
573573 0 0
574574 1.78533 0.0745181
575575 −4.07812 −0.170069
576576 0 0
577577 36.7405 1.52953 0.764764 0.644310i 0.222856π-0.222856\pi
0.764764 + 0.644310i 0.222856π0.222856\pi
578578 −8.32629 −0.346328
579579 0 0
580580 −2.08054 −0.0863895
581581 3.31531 0.137542
582582 0 0
583583 −0.815386 −0.0337698
584584 26.3697 1.09119
585585 0 0
586586 16.8366 0.695515
587587 12.4810 0.515145 0.257572 0.966259i 0.417077π-0.417077\pi
0.257572 + 0.966259i 0.417077π0.417077\pi
588588 0 0
589589 11.9524 0.492491
590590 −8.45830 −0.348223
591591 0 0
592592 −2.17484 −0.0893853
593593 44.7690 1.83844 0.919221 0.393742i 0.128820π-0.128820\pi
0.919221 + 0.393742i 0.128820π0.128820\pi
594594 0 0
595595 −2.08550 −0.0854972
596596 −17.7519 −0.727148
597597 0 0
598598 −2.50422 −0.102405
599599 −39.1831 −1.60098 −0.800490 0.599346i 0.795427π-0.795427\pi
−0.800490 + 0.599346i 0.795427π0.795427\pi
600600 0 0
601601 −9.78843 −0.399279 −0.199639 0.979869i 0.563977π-0.563977\pi
−0.199639 + 0.979869i 0.563977π0.563977\pi
602602 4.32849 0.176416
603603 0 0
604604 0.444886 0.0181021
605605 −8.60295 −0.349760
606606 0 0
607607 −11.8224 −0.479857 −0.239929 0.970791i 0.577124π-0.577124\pi
−0.239929 + 0.970791i 0.577124π0.577124\pi
608608 8.21475 0.333152
609609 0 0
610610 −4.65204 −0.188356
611611 −7.31924 −0.296105
612612 0 0
613613 20.7346 0.837461 0.418730 0.908111i 0.362475π-0.362475\pi
0.418730 + 0.908111i 0.362475π0.362475\pi
614614 6.02511 0.243154
615615 0 0
616616 −2.16469 −0.0872178
617617 −29.3288 −1.18073 −0.590367 0.807135i 0.701017π-0.701017\pi
−0.590367 + 0.807135i 0.701017π0.701017\pi
618618 0 0
619619 15.0032 0.603029 0.301515 0.953462i 0.402508π-0.402508\pi
0.301515 + 0.953462i 0.402508π0.402508\pi
620620 −9.92567 −0.398624
621621 0 0
622622 2.60162 0.104315
623623 −1.39169 −0.0557569
624624 0 0
625625 15.0694 0.602775
626626 3.53977 0.141477
627627 0 0
628628 −11.5254 −0.459912
629629 7.23817 0.288605
630630 0 0
631631 11.3359 0.451273 0.225637 0.974212i 0.427554π-0.427554\pi
0.225637 + 0.974212i 0.427554π0.427554\pi
632632 −4.16369 −0.165623
633633 0 0
634634 0.324794 0.0128992
635635 0.833166 0.0330632
636636 0 0
637637 −3.40878 −0.135061
638638 1.13750 0.0450342
639639 0 0
640640 −7.79388 −0.308080
641641 12.5109 0.494149 0.247074 0.968997i 0.420531π-0.420531\pi
0.247074 + 0.968997i 0.420531π0.420531\pi
642642 0 0
643643 −15.8249 −0.624073 −0.312037 0.950070i 0.601011π-0.601011\pi
−0.312037 + 0.950070i 0.601011π0.601011\pi
644644 −1.32440 −0.0521888
645645 0 0
646646 −2.72392 −0.107171
647647 17.2085 0.676534 0.338267 0.941050i 0.390159π-0.390159\pi
0.338267 + 0.941050i 0.390159π0.390159\pi
648648 0 0
649649 −10.7482 −0.421905
650650 11.3848 0.446550
651651 0 0
652652 −17.8665 −0.699707
653653 16.6436 0.651315 0.325657 0.945488i 0.394414π-0.394414\pi
0.325657 + 0.945488i 0.394414π0.394414\pi
654654 0 0
655655 −5.28510 −0.206506
656656 1.73110 0.0675883
657657 0 0
658658 1.66548 0.0649270
659659 35.9180 1.39917 0.699583 0.714551i 0.253369π-0.253369\pi
0.699583 + 0.714551i 0.253369π0.253369\pi
660660 0 0
661661 28.3781 1.10378 0.551890 0.833917i 0.313907π-0.313907\pi
0.551890 + 0.833917i 0.313907π0.313907\pi
662662 10.6018 0.412049
663663 0 0
664664 −8.73903 −0.339140
665665 1.16890 0.0453280
666666 0 0
667667 1.69133 0.0654887
668668 −27.8293 −1.07675
669669 0 0
670670 −3.73519 −0.144303
671671 −5.91150 −0.228211
672672 0 0
673673 −45.0138 −1.73515 −0.867577 0.497303i 0.834324π-0.834324\pi
−0.867577 + 0.497303i 0.834324π0.834324\pi
674674 −10.1616 −0.391411
675675 0 0
676676 1.93007 0.0742335
677677 −24.6030 −0.945570 −0.472785 0.881178i 0.656751π-0.656751\pi
−0.472785 + 0.881178i 0.656751π0.656751\pi
678678 0 0
679679 −4.55016 −0.174619
680680 5.49730 0.210812
681681 0 0
682682 5.42673 0.207800
683683 17.5156 0.670217 0.335109 0.942179i 0.391227π-0.391227\pi
0.335109 + 0.942179i 0.391227π0.391227\pi
684684 0 0
685685 −13.8026 −0.527369
686686 0.775659 0.0296148
687687 0 0
688688 4.19703 0.160010
689689 3.38458 0.128942
690690 0 0
691691 16.1962 0.616132 0.308066 0.951365i 0.400318π-0.400318\pi
0.308066 + 0.951365i 0.400318π0.400318\pi
692692 −8.93017 −0.339474
693693 0 0
694694 −2.94029 −0.111612
695695 −12.2446 −0.464466
696696 0 0
697697 −5.76136 −0.218227
698698 −14.3901 −0.544675
699699 0 0
700700 6.02108 0.227575
701701 40.1314 1.51574 0.757871 0.652405i 0.226240π-0.226240\pi
0.757871 + 0.652405i 0.226240π0.226240\pi
702702 0 0
703703 −4.05691 −0.153009
704704 2.49444 0.0940129
705705 0 0
706706 3.06461 0.115338
707707 8.82048 0.331728
708708 0 0
709709 −30.6274 −1.15024 −0.575118 0.818070i 0.695044π-0.695044\pi
−0.575118 + 0.818070i 0.695044π0.695044\pi
710710 −0.436604 −0.0163854
711711 0 0
712712 3.66844 0.137481
713713 8.06889 0.302182
714714 0 0
715715 −2.33231 −0.0872235
716716 18.9661 0.708796
717717 0 0
718718 −3.99416 −0.149061
719719 −31.6921 −1.18192 −0.590958 0.806702i 0.701250π-0.701250\pi
−0.590958 + 0.806702i 0.701250π0.701250\pi
720720 0 0
721721 5.65003 0.210418
722722 −13.2108 −0.491655
723723 0 0
724724 10.1754 0.378164
725725 −7.68924 −0.285571
726726 0 0
727727 −24.4231 −0.905801 −0.452901 0.891561i 0.649611π-0.649611\pi
−0.452901 + 0.891561i 0.649611π0.649611\pi
728728 8.98540 0.333021
729729 0 0
730730 −6.46499 −0.239280
731731 −13.9683 −0.516637
732732 0 0
733733 11.9558 0.441599 0.220800 0.975319i 0.429133π-0.429133\pi
0.220800 + 0.975319i 0.429133π0.429133\pi
734734 −24.6749 −0.910769
735735 0 0
736736 5.54564 0.204415
737737 −4.74643 −0.174837
738738 0 0
739739 −15.0507 −0.553648 −0.276824 0.960921i 0.589282π-0.589282\pi
−0.276824 + 0.960921i 0.589282π0.589282\pi
740740 3.36899 0.123846
741741 0 0
742742 −0.770154 −0.0282732
743743 53.7505 1.97191 0.985957 0.166999i 0.0534075π-0.0534075\pi
0.985957 + 0.166999i 0.0534075π0.0534075\pi
744744 0 0
745745 10.5770 0.387510
746746 −13.5677 −0.496750
747747 0 0
748748 2.87443 0.105100
749749 −20.2463 −0.739785
750750 0 0
751751 9.76059 0.356169 0.178085 0.984015i 0.443010π-0.443010\pi
0.178085 + 0.984015i 0.443010π0.443010\pi
752752 1.61489 0.0588891
753753 0 0
754754 −4.72167 −0.171953
755755 −0.265072 −0.00964694
756756 0 0
757757 32.3529 1.17589 0.587944 0.808902i 0.299938π-0.299938\pi
0.587944 + 0.808902i 0.299938π0.299938\pi
758758 −18.1261 −0.658371
759759 0 0
760760 −3.08117 −0.111766
761761 −29.5981 −1.07293 −0.536465 0.843923i 0.680241π-0.680241\pi
−0.536465 + 0.843923i 0.680241π0.680241\pi
762762 0 0
763763 −0.369111 −0.0133627
764764 3.10648 0.112389
765765 0 0
766766 9.91617 0.358286
767767 44.6148 1.61095
768768 0 0
769769 −23.0353 −0.830676 −0.415338 0.909667i 0.636337π-0.636337\pi
−0.415338 + 0.909667i 0.636337π0.636337\pi
770770 0.530712 0.0191255
771771 0 0
772772 21.5746 0.776488
773773 22.4412 0.807154 0.403577 0.914946i 0.367767π-0.367767\pi
0.403577 + 0.914946i 0.367767π0.367767\pi
774774 0 0
775775 −36.6833 −1.31770
776776 11.9940 0.430561
777777 0 0
778778 −24.1907 −0.867279
779779 3.22918 0.115697
780780 0 0
781781 −0.554806 −0.0198525
782782 −1.83887 −0.0657580
783783 0 0
784784 0.752101 0.0268608
785785 6.86703 0.245095
786786 0 0
787787 34.2193 1.21979 0.609894 0.792483i 0.291212π-0.291212\pi
0.609894 + 0.792483i 0.291212π0.291212\pi
788788 −17.9028 −0.637762
789789 0 0
790790 1.02080 0.0363185
791791 −10.8983 −0.387499
792792 0 0
793793 24.5380 0.871371
794794 28.0409 0.995135
795795 0 0
796796 −5.44123 −0.192859
797797 37.5468 1.32998 0.664988 0.746854i 0.268437π-0.268437\pi
0.664988 + 0.746854i 0.268437π0.268437\pi
798798 0 0
799799 −5.37460 −0.190140
800800 −25.2119 −0.891377
801801 0 0
802802 17.0737 0.602894
803803 −8.21527 −0.289911
804804 0 0
805805 0.789105 0.0278123
806806 −22.5258 −0.793437
807807 0 0
808808 −23.2504 −0.817948
809809 18.2474 0.641544 0.320772 0.947156i 0.396058π-0.396058\pi
0.320772 + 0.947156i 0.396058π0.396058\pi
810810 0 0
811811 −27.7675 −0.975048 −0.487524 0.873110i 0.662100π-0.662100\pi
−0.487524 + 0.873110i 0.662100π0.662100\pi
812812 −2.49714 −0.0876325
813813 0 0
814814 −1.84195 −0.0645602
815815 10.6452 0.372886
816816 0 0
817817 7.82909 0.273905
818818 −18.4581 −0.645372
819819 0 0
820820 −2.68161 −0.0936459
821821 −0.530588 −0.0185176 −0.00925882 0.999957i 0.502947π-0.502947\pi
−0.00925882 + 0.999957i 0.502947π0.502947\pi
822822 0 0
823823 38.3917 1.33825 0.669125 0.743150i 0.266669π-0.266669\pi
0.669125 + 0.743150i 0.266669π0.266669\pi
824824 −14.8933 −0.518831
825825 0 0
826826 −10.1520 −0.353233
827827 −19.9999 −0.695464 −0.347732 0.937594i 0.613048π-0.613048\pi
−0.347732 + 0.937594i 0.613048π0.613048\pi
828828 0 0
829829 8.81614 0.306197 0.153099 0.988211i 0.451075π-0.451075\pi
0.153099 + 0.988211i 0.451075π0.451075\pi
830830 2.14253 0.0743682
831831 0 0
832832 −10.3542 −0.358967
833833 −2.50310 −0.0867273
834834 0 0
835835 16.5812 0.573817
836836 −1.61109 −0.0557206
837837 0 0
838838 15.4494 0.533691
839839 −22.1358 −0.764211 −0.382106 0.924119i 0.624801π-0.624801\pi
−0.382106 + 0.924119i 0.624801π0.624801\pi
840840 0 0
841841 −25.8110 −0.890035
842842 −5.63695 −0.194262
843843 0 0
844844 −32.3410 −1.11322
845845 −1.14997 −0.0395603
846846 0 0
847847 −10.3256 −0.354792
848848 −0.746763 −0.0256440
849849 0 0
850850 8.36000 0.286746
851851 −2.73876 −0.0938833
852852 0 0
853853 −8.56457 −0.293245 −0.146623 0.989192i 0.546840π-0.546840\pi
−0.146623 + 0.989192i 0.546840π0.546840\pi
854854 −5.58357 −0.191066
855855 0 0
856856 53.3685 1.82410
857857 −6.57137 −0.224474 −0.112237 0.993681i 0.535802π-0.535802\pi
−0.112237 + 0.993681i 0.535802π0.535802\pi
858858 0 0
859859 14.7406 0.502944 0.251472 0.967865i 0.419085π-0.419085\pi
0.251472 + 0.967865i 0.419085π0.419085\pi
860860 −6.50152 −0.221700
861861 0 0
862862 8.73639 0.297563
863863 20.0421 0.682242 0.341121 0.940019i 0.389193π-0.389193\pi
0.341121 + 0.940019i 0.389193π0.389193\pi
864864 0 0
865865 5.32077 0.180912
866866 −29.0525 −0.987243
867867 0 0
868868 −11.9132 −0.404360
869869 1.29717 0.0440033
870870 0 0
871871 19.7019 0.667575
872872 0.972964 0.0329487
873873 0 0
874874 1.03067 0.0348628
875875 −7.75331 −0.262110
876876 0 0
877877 −31.0175 −1.04739 −0.523694 0.851907i 0.675446π-0.675446\pi
−0.523694 + 0.851907i 0.675446π0.675446\pi
878878 −6.15362 −0.207675
879879 0 0
880880 0.514594 0.0173469
881881 −4.04652 −0.136331 −0.0681654 0.997674i 0.521715π-0.521715\pi
−0.0681654 + 0.997674i 0.521715π0.521715\pi
882882 0 0
883883 55.7648 1.87663 0.938317 0.345777i 0.112385π-0.112385\pi
0.938317 + 0.345777i 0.112385π0.112385\pi
884884 −11.9315 −0.401299
885885 0 0
886886 6.63661 0.222961
887887 56.9316 1.91158 0.955788 0.294058i 0.0950058π-0.0950058\pi
0.955788 + 0.294058i 0.0950058π0.0950058\pi
888888 0 0
889889 1.00000 0.0335389
890890 −0.899384 −0.0301474
891891 0 0
892892 −8.78870 −0.294267
893893 3.01240 0.100806
894894 0 0
895895 −11.3004 −0.377730
896896 −9.35453 −0.312513
897897 0 0
898898 30.1528 1.00621
899899 15.2138 0.507408
900900 0 0
901901 2.48534 0.0827986
902902 1.46613 0.0488169
903903 0 0
904904 28.7275 0.955463
905905 −6.06268 −0.201530
906906 0 0
907907 −15.6800 −0.520645 −0.260323 0.965522i 0.583829π-0.583829\pi
−0.260323 + 0.965522i 0.583829π0.583829\pi
908908 −10.5237 −0.349241
909909 0 0
910910 −2.20293 −0.0730264
911911 −23.8935 −0.791627 −0.395814 0.918331i 0.629537π-0.629537\pi
−0.395814 + 0.918331i 0.629537π0.629537\pi
912912 0 0
913913 2.72258 0.0901042
914914 −3.61115 −0.119446
915915 0 0
916916 37.8186 1.24956
917917 −6.34339 −0.209477
918918 0 0
919919 −18.0890 −0.596702 −0.298351 0.954456i 0.596437π-0.596437\pi
−0.298351 + 0.954456i 0.596437π0.596437\pi
920920 −2.08005 −0.0685772
921921 0 0
922922 0.262840 0.00865616
923923 2.30294 0.0758024
924924 0 0
925925 12.4511 0.409390
926926 −26.4659 −0.869723
927927 0 0
928928 10.4562 0.343243
929929 10.9992 0.360873 0.180437 0.983587i 0.442249π-0.442249\pi
0.180437 + 0.983587i 0.442249π0.442249\pi
930930 0 0
931931 1.40296 0.0459802
932932 29.1706 0.955513
933933 0 0
934934 11.8033 0.386216
935935 −1.71264 −0.0560094
936936 0 0
937937 51.9182 1.69609 0.848046 0.529923i 0.177779π-0.177779\pi
0.848046 + 0.529923i 0.177779π0.177779\pi
938938 −4.48313 −0.146379
939939 0 0
940940 −2.50159 −0.0815930
941941 −13.1964 −0.430192 −0.215096 0.976593i 0.569006π-0.569006\pi
−0.215096 + 0.976593i 0.569006π0.569006\pi
942942 0 0
943943 2.17997 0.0709895
944944 −9.84367 −0.320384
945945 0 0
946946 3.55462 0.115571
947947 −39.0756 −1.26979 −0.634893 0.772600i 0.718956π-0.718956\pi
−0.634893 + 0.772600i 0.718956π0.718956\pi
948948 0 0
949949 34.1008 1.10696
950950 −4.68568 −0.152024
951951 0 0
952952 6.59808 0.213845
953953 4.31917 0.139912 0.0699559 0.997550i 0.477714π-0.477714\pi
0.0699559 + 0.997550i 0.477714π0.477714\pi
954954 0 0
955955 −1.85090 −0.0598938
956956 −29.0460 −0.939415
957957 0 0
958958 −32.3947 −1.04663
959959 −16.5664 −0.534957
960960 0 0
961961 41.5808 1.34132
962962 7.64574 0.246509
963963 0 0
964964 37.3708 1.20363
965965 −12.8546 −0.413804
966966 0 0
967967 53.6032 1.72376 0.861881 0.507110i 0.169286π-0.169286\pi
0.861881 + 0.507110i 0.169286π0.169286\pi
968968 27.2179 0.874817
969969 0 0
970970 −2.94055 −0.0944155
971971 5.46228 0.175293 0.0876465 0.996152i 0.472065π-0.472065\pi
0.0876465 + 0.996152i 0.472065π0.472065\pi
972972 0 0
973973 −14.6965 −0.471149
974974 9.32359 0.298747
975975 0 0
976976 −5.41399 −0.173298
977977 32.4956 1.03963 0.519813 0.854280i 0.326001π-0.326001\pi
0.519813 + 0.854280i 0.326001π0.326001\pi
978978 0 0
979979 −1.14288 −0.0365265
980980 −1.16506 −0.0372165
981981 0 0
982982 15.8383 0.505422
983983 3.17977 0.101419 0.0507095 0.998713i 0.483852π-0.483852\pi
0.0507095 + 0.998713i 0.483852π0.483852\pi
984984 0 0
985985 10.6669 0.339875
986986 −3.46717 −0.110417
987987 0 0
988988 6.68745 0.212756
989989 5.28529 0.168062
990990 0 0
991991 −38.3965 −1.21971 −0.609853 0.792515i 0.708771π-0.708771\pi
−0.609853 + 0.792515i 0.708771π0.708771\pi
992992 49.8838 1.58381
993993 0 0
994994 −0.524029 −0.0166212
995995 3.24199 0.102778
996996 0 0
997997 24.5944 0.778912 0.389456 0.921045i 0.372663π-0.372663\pi
0.389456 + 0.921045i 0.372663π0.372663\pi
998998 −18.4344 −0.583530
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8001.2.a.x.1.16 yes 22
3.2 odd 2 inner 8001.2.a.x.1.7 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8001.2.a.x.1.7 22 3.2 odd 2 inner
8001.2.a.x.1.16 yes 22 1.1 even 1 trivial