L(s) = 1 | + 0.775·2-s − 1.39·4-s + 0.833·5-s + 7-s − 2.63·8-s + 0.646·10-s + 0.821·11-s − 3.40·13-s + 0.775·14-s + 0.752·16-s − 2.50·17-s + 1.40·19-s − 1.16·20-s + 0.636·22-s + 0.947·23-s − 4.30·25-s − 2.64·26-s − 1.39·28-s + 1.78·29-s + 8.51·31-s + 5.85·32-s − 1.94·34-s + 0.833·35-s − 2.89·37-s + 1.08·38-s − 2.19·40-s + 2.30·41-s + ⋯ |
L(s) = 1 | + 0.548·2-s − 0.699·4-s + 0.372·5-s + 0.377·7-s − 0.931·8-s + 0.204·10-s + 0.247·11-s − 0.945·13-s + 0.207·14-s + 0.188·16-s − 0.607·17-s + 0.321·19-s − 0.260·20-s + 0.135·22-s + 0.197·23-s − 0.861·25-s − 0.518·26-s − 0.264·28-s + 0.331·29-s + 1.53·31-s + 1.03·32-s − 0.332·34-s + 0.140·35-s − 0.475·37-s + 0.176·38-s − 0.347·40-s + 0.359·41-s + ⋯ |
Λ(s)=(=(8001s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8001s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−T |
| 127 | 1−T |
good | 2 | 1−0.775T+2T2 |
| 5 | 1−0.833T+5T2 |
| 11 | 1−0.821T+11T2 |
| 13 | 1+3.40T+13T2 |
| 17 | 1+2.50T+17T2 |
| 19 | 1−1.40T+19T2 |
| 23 | 1−0.947T+23T2 |
| 29 | 1−1.78T+29T2 |
| 31 | 1−8.51T+31T2 |
| 37 | 1+2.89T+37T2 |
| 41 | 1−2.30T+41T2 |
| 43 | 1−5.58T+43T2 |
| 47 | 1−2.14T+47T2 |
| 53 | 1+0.992T+53T2 |
| 59 | 1+13.0T+59T2 |
| 61 | 1+7.19T+61T2 |
| 67 | 1+5.77T+67T2 |
| 71 | 1+0.675T+71T2 |
| 73 | 1+10.0T+73T2 |
| 79 | 1−1.57T+79T2 |
| 83 | 1−3.31T+83T2 |
| 89 | 1+1.39T+89T2 |
| 97 | 1+4.55T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.57623897500493107979985451167, −6.61533375681355708334265429357, −5.99254634153604882424884093242, −5.29355216261997936746014283960, −4.59007160712681598180962648915, −4.18817671620810698914021787922, −3.10857898972745479761479085123, −2.42351803265814026152408113383, −1.27278531426221914198838988334, 0,
1.27278531426221914198838988334, 2.42351803265814026152408113383, 3.10857898972745479761479085123, 4.18817671620810698914021787922, 4.59007160712681598180962648915, 5.29355216261997936746014283960, 5.99254634153604882424884093242, 6.61533375681355708334265429357, 7.57623897500493107979985451167