Properties

Label 8001.2.a.m.1.6
Level $8001$
Weight $2$
Character 8001.1
Self dual yes
Analytic conductor $63.888$
Analytic rank $1$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11,2,0,12,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8883066572\)
Analytic rank: \(1\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 2 x^{10} - 15 x^{9} + 25 x^{8} + 88 x^{7} - 112 x^{6} - 247 x^{5} + 215 x^{4} + 313 x^{3} + \cdots + 57 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2667)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.455441\) of defining polynomial
Character \(\chi\) \(=\) 8001.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.455441 q^{2} -1.79257 q^{4} +0.749481 q^{5} -1.00000 q^{7} -1.72729 q^{8} +0.341344 q^{10} +1.95920 q^{11} +2.51893 q^{13} -0.455441 q^{14} +2.79847 q^{16} +1.75736 q^{17} -3.76981 q^{19} -1.34350 q^{20} +0.892299 q^{22} -7.74151 q^{23} -4.43828 q^{25} +1.14723 q^{26} +1.79257 q^{28} -1.80755 q^{29} +7.78196 q^{31} +4.72912 q^{32} +0.800374 q^{34} -0.749481 q^{35} +2.63088 q^{37} -1.71693 q^{38} -1.29457 q^{40} +8.09399 q^{41} -11.7597 q^{43} -3.51201 q^{44} -3.52580 q^{46} +3.25780 q^{47} +1.00000 q^{49} -2.02137 q^{50} -4.51538 q^{52} -0.297989 q^{53} +1.46838 q^{55} +1.72729 q^{56} -0.823230 q^{58} -0.440342 q^{59} +4.23592 q^{61} +3.54422 q^{62} -3.44310 q^{64} +1.88789 q^{65} -13.5402 q^{67} -3.15020 q^{68} -0.341344 q^{70} +1.44289 q^{71} -2.90207 q^{73} +1.19821 q^{74} +6.75767 q^{76} -1.95920 q^{77} +2.11951 q^{79} +2.09740 q^{80} +3.68633 q^{82} +4.47544 q^{83} +1.31711 q^{85} -5.35583 q^{86} -3.38411 q^{88} -2.94756 q^{89} -2.51893 q^{91} +13.8772 q^{92} +1.48374 q^{94} -2.82540 q^{95} -9.80554 q^{97} +0.455441 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q + 2 q^{2} + 12 q^{4} - q^{5} - 11 q^{7} + 15 q^{8} - 12 q^{10} + 7 q^{11} - 24 q^{13} - 2 q^{14} - 6 q^{16} + 15 q^{17} - 19 q^{19} - 3 q^{20} - 3 q^{22} + 11 q^{23} + 10 q^{25} - 10 q^{26} - 12 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.455441 0.322045 0.161023 0.986951i \(-0.448521\pi\)
0.161023 + 0.986951i \(0.448521\pi\)
\(3\) 0 0
\(4\) −1.79257 −0.896287
\(5\) 0.749481 0.335178 0.167589 0.985857i \(-0.446402\pi\)
0.167589 + 0.985857i \(0.446402\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −1.72729 −0.610690
\(9\) 0 0
\(10\) 0.341344 0.107942
\(11\) 1.95920 0.590721 0.295361 0.955386i \(-0.404560\pi\)
0.295361 + 0.955386i \(0.404560\pi\)
\(12\) 0 0
\(13\) 2.51893 0.698627 0.349313 0.937006i \(-0.386415\pi\)
0.349313 + 0.937006i \(0.386415\pi\)
\(14\) −0.455441 −0.121722
\(15\) 0 0
\(16\) 2.79847 0.699617
\(17\) 1.75736 0.426223 0.213111 0.977028i \(-0.431640\pi\)
0.213111 + 0.977028i \(0.431640\pi\)
\(18\) 0 0
\(19\) −3.76981 −0.864854 −0.432427 0.901669i \(-0.642343\pi\)
−0.432427 + 0.901669i \(0.642343\pi\)
\(20\) −1.34350 −0.300416
\(21\) 0 0
\(22\) 0.892299 0.190239
\(23\) −7.74151 −1.61422 −0.807108 0.590404i \(-0.798969\pi\)
−0.807108 + 0.590404i \(0.798969\pi\)
\(24\) 0 0
\(25\) −4.43828 −0.887656
\(26\) 1.14723 0.224989
\(27\) 0 0
\(28\) 1.79257 0.338765
\(29\) −1.80755 −0.335653 −0.167826 0.985817i \(-0.553675\pi\)
−0.167826 + 0.985817i \(0.553675\pi\)
\(30\) 0 0
\(31\) 7.78196 1.39768 0.698841 0.715277i \(-0.253700\pi\)
0.698841 + 0.715277i \(0.253700\pi\)
\(32\) 4.72912 0.835998
\(33\) 0 0
\(34\) 0.800374 0.137263
\(35\) −0.749481 −0.126685
\(36\) 0 0
\(37\) 2.63088 0.432514 0.216257 0.976336i \(-0.430615\pi\)
0.216257 + 0.976336i \(0.430615\pi\)
\(38\) −1.71693 −0.278522
\(39\) 0 0
\(40\) −1.29457 −0.204690
\(41\) 8.09399 1.26407 0.632034 0.774940i \(-0.282220\pi\)
0.632034 + 0.774940i \(0.282220\pi\)
\(42\) 0 0
\(43\) −11.7597 −1.79333 −0.896667 0.442706i \(-0.854019\pi\)
−0.896667 + 0.442706i \(0.854019\pi\)
\(44\) −3.51201 −0.529456
\(45\) 0 0
\(46\) −3.52580 −0.519851
\(47\) 3.25780 0.475199 0.237600 0.971363i \(-0.423639\pi\)
0.237600 + 0.971363i \(0.423639\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −2.02137 −0.285865
\(51\) 0 0
\(52\) −4.51538 −0.626170
\(53\) −0.297989 −0.0409319 −0.0204659 0.999791i \(-0.506515\pi\)
−0.0204659 + 0.999791i \(0.506515\pi\)
\(54\) 0 0
\(55\) 1.46838 0.197997
\(56\) 1.72729 0.230819
\(57\) 0 0
\(58\) −0.823230 −0.108095
\(59\) −0.440342 −0.0573277 −0.0286638 0.999589i \(-0.509125\pi\)
−0.0286638 + 0.999589i \(0.509125\pi\)
\(60\) 0 0
\(61\) 4.23592 0.542354 0.271177 0.962529i \(-0.412587\pi\)
0.271177 + 0.962529i \(0.412587\pi\)
\(62\) 3.54422 0.450117
\(63\) 0 0
\(64\) −3.44310 −0.430388
\(65\) 1.88789 0.234164
\(66\) 0 0
\(67\) −13.5402 −1.65420 −0.827101 0.562054i \(-0.810011\pi\)
−0.827101 + 0.562054i \(0.810011\pi\)
\(68\) −3.15020 −0.382018
\(69\) 0 0
\(70\) −0.341344 −0.0407984
\(71\) 1.44289 0.171239 0.0856196 0.996328i \(-0.472713\pi\)
0.0856196 + 0.996328i \(0.472713\pi\)
\(72\) 0 0
\(73\) −2.90207 −0.339662 −0.169831 0.985473i \(-0.554322\pi\)
−0.169831 + 0.985473i \(0.554322\pi\)
\(74\) 1.19821 0.139289
\(75\) 0 0
\(76\) 6.75767 0.775158
\(77\) −1.95920 −0.223272
\(78\) 0 0
\(79\) 2.11951 0.238464 0.119232 0.992866i \(-0.461957\pi\)
0.119232 + 0.992866i \(0.461957\pi\)
\(80\) 2.09740 0.234496
\(81\) 0 0
\(82\) 3.68633 0.407087
\(83\) 4.47544 0.491243 0.245622 0.969366i \(-0.421008\pi\)
0.245622 + 0.969366i \(0.421008\pi\)
\(84\) 0 0
\(85\) 1.31711 0.142860
\(86\) −5.35583 −0.577535
\(87\) 0 0
\(88\) −3.38411 −0.360747
\(89\) −2.94756 −0.312441 −0.156220 0.987722i \(-0.549931\pi\)
−0.156220 + 0.987722i \(0.549931\pi\)
\(90\) 0 0
\(91\) −2.51893 −0.264056
\(92\) 13.8772 1.44680
\(93\) 0 0
\(94\) 1.48374 0.153036
\(95\) −2.82540 −0.289880
\(96\) 0 0
\(97\) −9.80554 −0.995602 −0.497801 0.867291i \(-0.665859\pi\)
−0.497801 + 0.867291i \(0.665859\pi\)
\(98\) 0.455441 0.0460065
\(99\) 0 0
\(100\) 7.95594 0.795594
\(101\) 17.0317 1.69472 0.847360 0.531019i \(-0.178191\pi\)
0.847360 + 0.531019i \(0.178191\pi\)
\(102\) 0 0
\(103\) 9.72210 0.957947 0.478974 0.877829i \(-0.341009\pi\)
0.478974 + 0.877829i \(0.341009\pi\)
\(104\) −4.35094 −0.426644
\(105\) 0 0
\(106\) −0.135716 −0.0131819
\(107\) 8.65396 0.836610 0.418305 0.908307i \(-0.362624\pi\)
0.418305 + 0.908307i \(0.362624\pi\)
\(108\) 0 0
\(109\) −12.5836 −1.20529 −0.602647 0.798008i \(-0.705887\pi\)
−0.602647 + 0.798008i \(0.705887\pi\)
\(110\) 0.668761 0.0637639
\(111\) 0 0
\(112\) −2.79847 −0.264430
\(113\) −4.54886 −0.427921 −0.213960 0.976842i \(-0.568636\pi\)
−0.213960 + 0.976842i \(0.568636\pi\)
\(114\) 0 0
\(115\) −5.80211 −0.541050
\(116\) 3.24016 0.300841
\(117\) 0 0
\(118\) −0.200550 −0.0184621
\(119\) −1.75736 −0.161097
\(120\) 0 0
\(121\) −7.16153 −0.651049
\(122\) 1.92921 0.174663
\(123\) 0 0
\(124\) −13.9497 −1.25272
\(125\) −7.07381 −0.632701
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) −11.0264 −0.974603
\(129\) 0 0
\(130\) 0.859823 0.0754115
\(131\) −3.88980 −0.339853 −0.169927 0.985457i \(-0.554353\pi\)
−0.169927 + 0.985457i \(0.554353\pi\)
\(132\) 0 0
\(133\) 3.76981 0.326884
\(134\) −6.16677 −0.532727
\(135\) 0 0
\(136\) −3.03548 −0.260290
\(137\) −12.5423 −1.07156 −0.535779 0.844358i \(-0.679982\pi\)
−0.535779 + 0.844358i \(0.679982\pi\)
\(138\) 0 0
\(139\) −21.1389 −1.79298 −0.896488 0.443069i \(-0.853890\pi\)
−0.896488 + 0.443069i \(0.853890\pi\)
\(140\) 1.34350 0.113546
\(141\) 0 0
\(142\) 0.657149 0.0551468
\(143\) 4.93510 0.412694
\(144\) 0 0
\(145\) −1.35472 −0.112504
\(146\) −1.32172 −0.109386
\(147\) 0 0
\(148\) −4.71605 −0.387657
\(149\) 18.2486 1.49498 0.747492 0.664271i \(-0.231258\pi\)
0.747492 + 0.664271i \(0.231258\pi\)
\(150\) 0 0
\(151\) −4.00291 −0.325752 −0.162876 0.986647i \(-0.552077\pi\)
−0.162876 + 0.986647i \(0.552077\pi\)
\(152\) 6.51157 0.528158
\(153\) 0 0
\(154\) −0.892299 −0.0719035
\(155\) 5.83243 0.468472
\(156\) 0 0
\(157\) −3.26752 −0.260776 −0.130388 0.991463i \(-0.541622\pi\)
−0.130388 + 0.991463i \(0.541622\pi\)
\(158\) 0.965313 0.0767961
\(159\) 0 0
\(160\) 3.54439 0.280208
\(161\) 7.74151 0.610116
\(162\) 0 0
\(163\) −5.99201 −0.469331 −0.234665 0.972076i \(-0.575399\pi\)
−0.234665 + 0.972076i \(0.575399\pi\)
\(164\) −14.5091 −1.13297
\(165\) 0 0
\(166\) 2.03830 0.158202
\(167\) 21.2819 1.64684 0.823421 0.567431i \(-0.192063\pi\)
0.823421 + 0.567431i \(0.192063\pi\)
\(168\) 0 0
\(169\) −6.65497 −0.511921
\(170\) 0.599865 0.0460075
\(171\) 0 0
\(172\) 21.0801 1.60734
\(173\) −2.41503 −0.183612 −0.0918058 0.995777i \(-0.529264\pi\)
−0.0918058 + 0.995777i \(0.529264\pi\)
\(174\) 0 0
\(175\) 4.43828 0.335502
\(176\) 5.48276 0.413279
\(177\) 0 0
\(178\) −1.34244 −0.100620
\(179\) −14.3890 −1.07548 −0.537741 0.843110i \(-0.680722\pi\)
−0.537741 + 0.843110i \(0.680722\pi\)
\(180\) 0 0
\(181\) 6.74044 0.501013 0.250506 0.968115i \(-0.419403\pi\)
0.250506 + 0.968115i \(0.419403\pi\)
\(182\) −1.14723 −0.0850380
\(183\) 0 0
\(184\) 13.3719 0.985786
\(185\) 1.97179 0.144969
\(186\) 0 0
\(187\) 3.44302 0.251779
\(188\) −5.83985 −0.425915
\(189\) 0 0
\(190\) −1.28680 −0.0933545
\(191\) −17.9119 −1.29606 −0.648031 0.761614i \(-0.724407\pi\)
−0.648031 + 0.761614i \(0.724407\pi\)
\(192\) 0 0
\(193\) 8.61234 0.619930 0.309965 0.950748i \(-0.399683\pi\)
0.309965 + 0.950748i \(0.399683\pi\)
\(194\) −4.46584 −0.320629
\(195\) 0 0
\(196\) −1.79257 −0.128041
\(197\) 26.3709 1.87885 0.939423 0.342759i \(-0.111361\pi\)
0.939423 + 0.342759i \(0.111361\pi\)
\(198\) 0 0
\(199\) −12.3460 −0.875185 −0.437593 0.899173i \(-0.644169\pi\)
−0.437593 + 0.899173i \(0.644169\pi\)
\(200\) 7.66620 0.542082
\(201\) 0 0
\(202\) 7.75694 0.545776
\(203\) 1.80755 0.126865
\(204\) 0 0
\(205\) 6.06629 0.423688
\(206\) 4.42784 0.308502
\(207\) 0 0
\(208\) 7.04916 0.488771
\(209\) −7.38582 −0.510888
\(210\) 0 0
\(211\) −28.4545 −1.95889 −0.979445 0.201711i \(-0.935350\pi\)
−0.979445 + 0.201711i \(0.935350\pi\)
\(212\) 0.534167 0.0366867
\(213\) 0 0
\(214\) 3.94136 0.269426
\(215\) −8.81365 −0.601086
\(216\) 0 0
\(217\) −7.78196 −0.528274
\(218\) −5.73110 −0.388159
\(219\) 0 0
\(220\) −2.63219 −0.177462
\(221\) 4.42668 0.297771
\(222\) 0 0
\(223\) 5.39195 0.361071 0.180536 0.983568i \(-0.442217\pi\)
0.180536 + 0.983568i \(0.442217\pi\)
\(224\) −4.72912 −0.315978
\(225\) 0 0
\(226\) −2.07174 −0.137810
\(227\) −10.8739 −0.721729 −0.360865 0.932618i \(-0.617518\pi\)
−0.360865 + 0.932618i \(0.617518\pi\)
\(228\) 0 0
\(229\) 3.50976 0.231932 0.115966 0.993253i \(-0.463004\pi\)
0.115966 + 0.993253i \(0.463004\pi\)
\(230\) −2.64252 −0.174243
\(231\) 0 0
\(232\) 3.12216 0.204980
\(233\) −2.48327 −0.162685 −0.0813424 0.996686i \(-0.525921\pi\)
−0.0813424 + 0.996686i \(0.525921\pi\)
\(234\) 0 0
\(235\) 2.44166 0.159276
\(236\) 0.789346 0.0513821
\(237\) 0 0
\(238\) −0.800374 −0.0518805
\(239\) −21.1743 −1.36965 −0.684826 0.728706i \(-0.740122\pi\)
−0.684826 + 0.728706i \(0.740122\pi\)
\(240\) 0 0
\(241\) −17.1342 −1.10371 −0.551854 0.833941i \(-0.686080\pi\)
−0.551854 + 0.833941i \(0.686080\pi\)
\(242\) −3.26165 −0.209667
\(243\) 0 0
\(244\) −7.59321 −0.486105
\(245\) 0.749481 0.0478826
\(246\) 0 0
\(247\) −9.49591 −0.604210
\(248\) −13.4417 −0.853550
\(249\) 0 0
\(250\) −3.22170 −0.203758
\(251\) 2.98515 0.188421 0.0942104 0.995552i \(-0.469967\pi\)
0.0942104 + 0.995552i \(0.469967\pi\)
\(252\) 0 0
\(253\) −15.1672 −0.953552
\(254\) 0.455441 0.0285769
\(255\) 0 0
\(256\) 1.86435 0.116522
\(257\) 14.2653 0.889845 0.444923 0.895569i \(-0.353231\pi\)
0.444923 + 0.895569i \(0.353231\pi\)
\(258\) 0 0
\(259\) −2.63088 −0.163475
\(260\) −3.38419 −0.209878
\(261\) 0 0
\(262\) −1.77157 −0.109448
\(263\) 6.23379 0.384392 0.192196 0.981357i \(-0.438439\pi\)
0.192196 + 0.981357i \(0.438439\pi\)
\(264\) 0 0
\(265\) −0.223337 −0.0137195
\(266\) 1.71693 0.105271
\(267\) 0 0
\(268\) 24.2718 1.48264
\(269\) −9.49493 −0.578916 −0.289458 0.957191i \(-0.593475\pi\)
−0.289458 + 0.957191i \(0.593475\pi\)
\(270\) 0 0
\(271\) −24.8348 −1.50860 −0.754302 0.656528i \(-0.772025\pi\)
−0.754302 + 0.656528i \(0.772025\pi\)
\(272\) 4.91792 0.298193
\(273\) 0 0
\(274\) −5.71225 −0.345090
\(275\) −8.69548 −0.524357
\(276\) 0 0
\(277\) 16.1475 0.970208 0.485104 0.874457i \(-0.338782\pi\)
0.485104 + 0.874457i \(0.338782\pi\)
\(278\) −9.62750 −0.577419
\(279\) 0 0
\(280\) 1.29457 0.0773655
\(281\) 9.45191 0.563854 0.281927 0.959436i \(-0.409026\pi\)
0.281927 + 0.959436i \(0.409026\pi\)
\(282\) 0 0
\(283\) 14.1920 0.843625 0.421812 0.906683i \(-0.361394\pi\)
0.421812 + 0.906683i \(0.361394\pi\)
\(284\) −2.58648 −0.153479
\(285\) 0 0
\(286\) 2.24764 0.132906
\(287\) −8.09399 −0.477773
\(288\) 0 0
\(289\) −13.9117 −0.818334
\(290\) −0.616995 −0.0362312
\(291\) 0 0
\(292\) 5.20218 0.304434
\(293\) −18.0263 −1.05311 −0.526554 0.850141i \(-0.676516\pi\)
−0.526554 + 0.850141i \(0.676516\pi\)
\(294\) 0 0
\(295\) −0.330028 −0.0192150
\(296\) −4.54430 −0.264132
\(297\) 0 0
\(298\) 8.31115 0.481452
\(299\) −19.5004 −1.12773
\(300\) 0 0
\(301\) 11.7597 0.677817
\(302\) −1.82309 −0.104907
\(303\) 0 0
\(304\) −10.5497 −0.605067
\(305\) 3.17474 0.181785
\(306\) 0 0
\(307\) 16.0943 0.918552 0.459276 0.888294i \(-0.348109\pi\)
0.459276 + 0.888294i \(0.348109\pi\)
\(308\) 3.51201 0.200115
\(309\) 0 0
\(310\) 2.65633 0.150869
\(311\) −19.3077 −1.09484 −0.547421 0.836857i \(-0.684390\pi\)
−0.547421 + 0.836857i \(0.684390\pi\)
\(312\) 0 0
\(313\) −30.8613 −1.74438 −0.872191 0.489166i \(-0.837301\pi\)
−0.872191 + 0.489166i \(0.837301\pi\)
\(314\) −1.48816 −0.0839817
\(315\) 0 0
\(316\) −3.79938 −0.213732
\(317\) −30.6756 −1.72291 −0.861457 0.507831i \(-0.830447\pi\)
−0.861457 + 0.507831i \(0.830447\pi\)
\(318\) 0 0
\(319\) −3.54135 −0.198277
\(320\) −2.58054 −0.144257
\(321\) 0 0
\(322\) 3.52580 0.196485
\(323\) −6.62492 −0.368621
\(324\) 0 0
\(325\) −11.1797 −0.620140
\(326\) −2.72901 −0.151146
\(327\) 0 0
\(328\) −13.9807 −0.771954
\(329\) −3.25780 −0.179608
\(330\) 0 0
\(331\) −10.2450 −0.563114 −0.281557 0.959544i \(-0.590851\pi\)
−0.281557 + 0.959544i \(0.590851\pi\)
\(332\) −8.02255 −0.440295
\(333\) 0 0
\(334\) 9.69263 0.530357
\(335\) −10.1481 −0.554452
\(336\) 0 0
\(337\) −1.30395 −0.0710307 −0.0355154 0.999369i \(-0.511307\pi\)
−0.0355154 + 0.999369i \(0.511307\pi\)
\(338\) −3.03094 −0.164862
\(339\) 0 0
\(340\) −2.36101 −0.128044
\(341\) 15.2464 0.825640
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 20.3124 1.09517
\(345\) 0 0
\(346\) −1.09990 −0.0591312
\(347\) −18.6437 −1.00085 −0.500424 0.865780i \(-0.666823\pi\)
−0.500424 + 0.865780i \(0.666823\pi\)
\(348\) 0 0
\(349\) 7.47368 0.400057 0.200029 0.979790i \(-0.435897\pi\)
0.200029 + 0.979790i \(0.435897\pi\)
\(350\) 2.02137 0.108047
\(351\) 0 0
\(352\) 9.26529 0.493842
\(353\) 10.4557 0.556502 0.278251 0.960508i \(-0.410245\pi\)
0.278251 + 0.960508i \(0.410245\pi\)
\(354\) 0 0
\(355\) 1.08142 0.0573956
\(356\) 5.28372 0.280037
\(357\) 0 0
\(358\) −6.55332 −0.346354
\(359\) −35.8946 −1.89444 −0.947222 0.320579i \(-0.896123\pi\)
−0.947222 + 0.320579i \(0.896123\pi\)
\(360\) 0 0
\(361\) −4.78851 −0.252027
\(362\) 3.06987 0.161349
\(363\) 0 0
\(364\) 4.51538 0.236670
\(365\) −2.17505 −0.113847
\(366\) 0 0
\(367\) 3.15632 0.164758 0.0823792 0.996601i \(-0.473748\pi\)
0.0823792 + 0.996601i \(0.473748\pi\)
\(368\) −21.6644 −1.12933
\(369\) 0 0
\(370\) 0.898035 0.0466866
\(371\) 0.297989 0.0154708
\(372\) 0 0
\(373\) −4.08938 −0.211740 −0.105870 0.994380i \(-0.533763\pi\)
−0.105870 + 0.994380i \(0.533763\pi\)
\(374\) 1.56809 0.0810841
\(375\) 0 0
\(376\) −5.62718 −0.290200
\(377\) −4.55309 −0.234496
\(378\) 0 0
\(379\) −34.1819 −1.75581 −0.877903 0.478839i \(-0.841058\pi\)
−0.877903 + 0.478839i \(0.841058\pi\)
\(380\) 5.06474 0.259816
\(381\) 0 0
\(382\) −8.15782 −0.417391
\(383\) −35.9813 −1.83856 −0.919279 0.393606i \(-0.871228\pi\)
−0.919279 + 0.393606i \(0.871228\pi\)
\(384\) 0 0
\(385\) −1.46838 −0.0748357
\(386\) 3.92241 0.199645
\(387\) 0 0
\(388\) 17.5772 0.892345
\(389\) 10.0249 0.508281 0.254141 0.967167i \(-0.418207\pi\)
0.254141 + 0.967167i \(0.418207\pi\)
\(390\) 0 0
\(391\) −13.6046 −0.688016
\(392\) −1.72729 −0.0872414
\(393\) 0 0
\(394\) 12.0104 0.605074
\(395\) 1.58853 0.0799279
\(396\) 0 0
\(397\) −33.3894 −1.67576 −0.837882 0.545852i \(-0.816206\pi\)
−0.837882 + 0.545852i \(0.816206\pi\)
\(398\) −5.62287 −0.281849
\(399\) 0 0
\(400\) −12.4204 −0.621019
\(401\) −38.9495 −1.94505 −0.972524 0.232804i \(-0.925210\pi\)
−0.972524 + 0.232804i \(0.925210\pi\)
\(402\) 0 0
\(403\) 19.6023 0.976458
\(404\) −30.5306 −1.51896
\(405\) 0 0
\(406\) 0.823230 0.0408562
\(407\) 5.15442 0.255495
\(408\) 0 0
\(409\) −27.7656 −1.37292 −0.686461 0.727167i \(-0.740837\pi\)
−0.686461 + 0.727167i \(0.740837\pi\)
\(410\) 2.76283 0.136447
\(411\) 0 0
\(412\) −17.4276 −0.858596
\(413\) 0.440342 0.0216678
\(414\) 0 0
\(415\) 3.35425 0.164654
\(416\) 11.9123 0.584051
\(417\) 0 0
\(418\) −3.36380 −0.164529
\(419\) −31.9442 −1.56058 −0.780288 0.625420i \(-0.784928\pi\)
−0.780288 + 0.625420i \(0.784928\pi\)
\(420\) 0 0
\(421\) 16.0201 0.780771 0.390386 0.920651i \(-0.372342\pi\)
0.390386 + 0.920651i \(0.372342\pi\)
\(422\) −12.9593 −0.630851
\(423\) 0 0
\(424\) 0.514713 0.0249967
\(425\) −7.79966 −0.378339
\(426\) 0 0
\(427\) −4.23592 −0.204991
\(428\) −15.5129 −0.749842
\(429\) 0 0
\(430\) −4.01410 −0.193577
\(431\) 30.1897 1.45419 0.727094 0.686537i \(-0.240870\pi\)
0.727094 + 0.686537i \(0.240870\pi\)
\(432\) 0 0
\(433\) 22.6091 1.08652 0.543262 0.839563i \(-0.317189\pi\)
0.543262 + 0.839563i \(0.317189\pi\)
\(434\) −3.54422 −0.170128
\(435\) 0 0
\(436\) 22.5571 1.08029
\(437\) 29.1840 1.39606
\(438\) 0 0
\(439\) 30.2295 1.44278 0.721389 0.692530i \(-0.243504\pi\)
0.721389 + 0.692530i \(0.243504\pi\)
\(440\) −2.53633 −0.120915
\(441\) 0 0
\(442\) 2.01609 0.0958956
\(443\) 4.67658 0.222191 0.111096 0.993810i \(-0.464564\pi\)
0.111096 + 0.993810i \(0.464564\pi\)
\(444\) 0 0
\(445\) −2.20914 −0.104723
\(446\) 2.45571 0.116281
\(447\) 0 0
\(448\) 3.44310 0.162671
\(449\) 1.91605 0.0904240 0.0452120 0.998977i \(-0.485604\pi\)
0.0452120 + 0.998977i \(0.485604\pi\)
\(450\) 0 0
\(451\) 15.8577 0.746712
\(452\) 8.15417 0.383540
\(453\) 0 0
\(454\) −4.95244 −0.232429
\(455\) −1.88789 −0.0885058
\(456\) 0 0
\(457\) −8.96919 −0.419561 −0.209780 0.977749i \(-0.567275\pi\)
−0.209780 + 0.977749i \(0.567275\pi\)
\(458\) 1.59849 0.0746924
\(459\) 0 0
\(460\) 10.4007 0.484936
\(461\) 40.4148 1.88231 0.941153 0.337979i \(-0.109743\pi\)
0.941153 + 0.337979i \(0.109743\pi\)
\(462\) 0 0
\(463\) 18.4440 0.857165 0.428582 0.903503i \(-0.359013\pi\)
0.428582 + 0.903503i \(0.359013\pi\)
\(464\) −5.05836 −0.234829
\(465\) 0 0
\(466\) −1.13098 −0.0523918
\(467\) −1.77695 −0.0822273 −0.0411136 0.999154i \(-0.513091\pi\)
−0.0411136 + 0.999154i \(0.513091\pi\)
\(468\) 0 0
\(469\) 13.5402 0.625229
\(470\) 1.11203 0.0512942
\(471\) 0 0
\(472\) 0.760600 0.0350094
\(473\) −23.0396 −1.05936
\(474\) 0 0
\(475\) 16.7315 0.767693
\(476\) 3.15020 0.144389
\(477\) 0 0
\(478\) −9.64364 −0.441090
\(479\) 5.47638 0.250222 0.125111 0.992143i \(-0.460071\pi\)
0.125111 + 0.992143i \(0.460071\pi\)
\(480\) 0 0
\(481\) 6.62702 0.302166
\(482\) −7.80359 −0.355444
\(483\) 0 0
\(484\) 12.8376 0.583526
\(485\) −7.34907 −0.333704
\(486\) 0 0
\(487\) −34.6833 −1.57165 −0.785826 0.618448i \(-0.787762\pi\)
−0.785826 + 0.618448i \(0.787762\pi\)
\(488\) −7.31668 −0.331210
\(489\) 0 0
\(490\) 0.341344 0.0154204
\(491\) −5.81719 −0.262526 −0.131263 0.991348i \(-0.541903\pi\)
−0.131263 + 0.991348i \(0.541903\pi\)
\(492\) 0 0
\(493\) −3.17651 −0.143063
\(494\) −4.32482 −0.194583
\(495\) 0 0
\(496\) 21.7776 0.977842
\(497\) −1.44289 −0.0647223
\(498\) 0 0
\(499\) −2.83170 −0.126764 −0.0633822 0.997989i \(-0.520189\pi\)
−0.0633822 + 0.997989i \(0.520189\pi\)
\(500\) 12.6803 0.567081
\(501\) 0 0
\(502\) 1.35956 0.0606800
\(503\) 11.1295 0.496242 0.248121 0.968729i \(-0.420187\pi\)
0.248121 + 0.968729i \(0.420187\pi\)
\(504\) 0 0
\(505\) 12.7650 0.568033
\(506\) −6.90774 −0.307087
\(507\) 0 0
\(508\) −1.79257 −0.0795326
\(509\) −0.0947118 −0.00419803 −0.00209901 0.999998i \(-0.500668\pi\)
−0.00209901 + 0.999998i \(0.500668\pi\)
\(510\) 0 0
\(511\) 2.90207 0.128380
\(512\) 22.9018 1.01213
\(513\) 0 0
\(514\) 6.49700 0.286570
\(515\) 7.28653 0.321083
\(516\) 0 0
\(517\) 6.38269 0.280710
\(518\) −1.19821 −0.0526463
\(519\) 0 0
\(520\) −3.26094 −0.143002
\(521\) −17.2116 −0.754054 −0.377027 0.926202i \(-0.623054\pi\)
−0.377027 + 0.926202i \(0.623054\pi\)
\(522\) 0 0
\(523\) −30.7334 −1.34388 −0.671938 0.740607i \(-0.734538\pi\)
−0.671938 + 0.740607i \(0.734538\pi\)
\(524\) 6.97275 0.304606
\(525\) 0 0
\(526\) 2.83912 0.123791
\(527\) 13.6757 0.595724
\(528\) 0 0
\(529\) 36.9310 1.60569
\(530\) −0.101717 −0.00441829
\(531\) 0 0
\(532\) −6.75767 −0.292982
\(533\) 20.3882 0.883112
\(534\) 0 0
\(535\) 6.48598 0.280413
\(536\) 23.3879 1.01020
\(537\) 0 0
\(538\) −4.32438 −0.186437
\(539\) 1.95920 0.0843887
\(540\) 0 0
\(541\) −45.4903 −1.95578 −0.977891 0.209117i \(-0.932941\pi\)
−0.977891 + 0.209117i \(0.932941\pi\)
\(542\) −11.3108 −0.485839
\(543\) 0 0
\(544\) 8.31077 0.356321
\(545\) −9.43119 −0.403988
\(546\) 0 0
\(547\) −2.40242 −0.102720 −0.0513599 0.998680i \(-0.516356\pi\)
−0.0513599 + 0.998680i \(0.516356\pi\)
\(548\) 22.4829 0.960423
\(549\) 0 0
\(550\) −3.96027 −0.168867
\(551\) 6.81411 0.290291
\(552\) 0 0
\(553\) −2.11951 −0.0901309
\(554\) 7.35422 0.312451
\(555\) 0 0
\(556\) 37.8930 1.60702
\(557\) 14.6511 0.620788 0.310394 0.950608i \(-0.399539\pi\)
0.310394 + 0.950608i \(0.399539\pi\)
\(558\) 0 0
\(559\) −29.6219 −1.25287
\(560\) −2.09740 −0.0886313
\(561\) 0 0
\(562\) 4.30478 0.181586
\(563\) 37.5930 1.58436 0.792178 0.610291i \(-0.208947\pi\)
0.792178 + 0.610291i \(0.208947\pi\)
\(564\) 0 0
\(565\) −3.40929 −0.143430
\(566\) 6.46360 0.271685
\(567\) 0 0
\(568\) −2.49229 −0.104574
\(569\) −3.82876 −0.160510 −0.0802550 0.996774i \(-0.525573\pi\)
−0.0802550 + 0.996774i \(0.525573\pi\)
\(570\) 0 0
\(571\) 17.2172 0.720519 0.360260 0.932852i \(-0.382688\pi\)
0.360260 + 0.932852i \(0.382688\pi\)
\(572\) −8.84653 −0.369892
\(573\) 0 0
\(574\) −3.68633 −0.153864
\(575\) 34.3590 1.43287
\(576\) 0 0
\(577\) 17.9929 0.749055 0.374527 0.927216i \(-0.377805\pi\)
0.374527 + 0.927216i \(0.377805\pi\)
\(578\) −6.33595 −0.263541
\(579\) 0 0
\(580\) 2.42844 0.100835
\(581\) −4.47544 −0.185672
\(582\) 0 0
\(583\) −0.583819 −0.0241793
\(584\) 5.01273 0.207428
\(585\) 0 0
\(586\) −8.20992 −0.339149
\(587\) 15.1685 0.626070 0.313035 0.949742i \(-0.398654\pi\)
0.313035 + 0.949742i \(0.398654\pi\)
\(588\) 0 0
\(589\) −29.3365 −1.20879
\(590\) −0.150308 −0.00618809
\(591\) 0 0
\(592\) 7.36244 0.302594
\(593\) −29.4625 −1.20988 −0.604940 0.796271i \(-0.706803\pi\)
−0.604940 + 0.796271i \(0.706803\pi\)
\(594\) 0 0
\(595\) −1.31711 −0.0539962
\(596\) −32.7120 −1.33993
\(597\) 0 0
\(598\) −8.88126 −0.363182
\(599\) −6.27754 −0.256493 −0.128247 0.991742i \(-0.540935\pi\)
−0.128247 + 0.991742i \(0.540935\pi\)
\(600\) 0 0
\(601\) 21.5091 0.877373 0.438687 0.898640i \(-0.355444\pi\)
0.438687 + 0.898640i \(0.355444\pi\)
\(602\) 5.35583 0.218288
\(603\) 0 0
\(604\) 7.17551 0.291967
\(605\) −5.36743 −0.218217
\(606\) 0 0
\(607\) 36.2458 1.47117 0.735586 0.677431i \(-0.236907\pi\)
0.735586 + 0.677431i \(0.236907\pi\)
\(608\) −17.8279 −0.723017
\(609\) 0 0
\(610\) 1.44591 0.0585431
\(611\) 8.20619 0.331987
\(612\) 0 0
\(613\) 4.88666 0.197370 0.0986851 0.995119i \(-0.468536\pi\)
0.0986851 + 0.995119i \(0.468536\pi\)
\(614\) 7.33001 0.295815
\(615\) 0 0
\(616\) 3.38411 0.136350
\(617\) −4.27798 −0.172225 −0.0861126 0.996285i \(-0.527444\pi\)
−0.0861126 + 0.996285i \(0.527444\pi\)
\(618\) 0 0
\(619\) 32.3159 1.29888 0.649442 0.760411i \(-0.275003\pi\)
0.649442 + 0.760411i \(0.275003\pi\)
\(620\) −10.4551 −0.419886
\(621\) 0 0
\(622\) −8.79353 −0.352589
\(623\) 2.94756 0.118092
\(624\) 0 0
\(625\) 16.8897 0.675588
\(626\) −14.0555 −0.561770
\(627\) 0 0
\(628\) 5.85726 0.233730
\(629\) 4.62341 0.184347
\(630\) 0 0
\(631\) −0.860434 −0.0342533 −0.0171267 0.999853i \(-0.505452\pi\)
−0.0171267 + 0.999853i \(0.505452\pi\)
\(632\) −3.66102 −0.145628
\(633\) 0 0
\(634\) −13.9709 −0.554856
\(635\) 0.749481 0.0297422
\(636\) 0 0
\(637\) 2.51893 0.0998038
\(638\) −1.61287 −0.0638542
\(639\) 0 0
\(640\) −8.26405 −0.326665
\(641\) −1.41230 −0.0557827 −0.0278913 0.999611i \(-0.508879\pi\)
−0.0278913 + 0.999611i \(0.508879\pi\)
\(642\) 0 0
\(643\) −11.5508 −0.455518 −0.227759 0.973718i \(-0.573140\pi\)
−0.227759 + 0.973718i \(0.573140\pi\)
\(644\) −13.8772 −0.546839
\(645\) 0 0
\(646\) −3.01726 −0.118712
\(647\) −1.61666 −0.0635574 −0.0317787 0.999495i \(-0.510117\pi\)
−0.0317787 + 0.999495i \(0.510117\pi\)
\(648\) 0 0
\(649\) −0.862719 −0.0338647
\(650\) −5.09170 −0.199713
\(651\) 0 0
\(652\) 10.7411 0.420655
\(653\) 14.8742 0.582071 0.291035 0.956712i \(-0.406000\pi\)
0.291035 + 0.956712i \(0.406000\pi\)
\(654\) 0 0
\(655\) −2.91533 −0.113911
\(656\) 22.6508 0.884364
\(657\) 0 0
\(658\) −1.48374 −0.0578420
\(659\) −19.5325 −0.760878 −0.380439 0.924806i \(-0.624227\pi\)
−0.380439 + 0.924806i \(0.624227\pi\)
\(660\) 0 0
\(661\) 36.3289 1.41303 0.706516 0.707697i \(-0.250266\pi\)
0.706516 + 0.707697i \(0.250266\pi\)
\(662\) −4.66597 −0.181348
\(663\) 0 0
\(664\) −7.73039 −0.299997
\(665\) 2.82540 0.109564
\(666\) 0 0
\(667\) 13.9931 0.541817
\(668\) −38.1493 −1.47604
\(669\) 0 0
\(670\) −4.62187 −0.178559
\(671\) 8.29902 0.320380
\(672\) 0 0
\(673\) 6.49459 0.250348 0.125174 0.992135i \(-0.460051\pi\)
0.125174 + 0.992135i \(0.460051\pi\)
\(674\) −0.593872 −0.0228751
\(675\) 0 0
\(676\) 11.9295 0.458828
\(677\) −47.4029 −1.82184 −0.910921 0.412582i \(-0.864627\pi\)
−0.910921 + 0.412582i \(0.864627\pi\)
\(678\) 0 0
\(679\) 9.80554 0.376302
\(680\) −2.27503 −0.0872435
\(681\) 0 0
\(682\) 6.94384 0.265893
\(683\) 32.5349 1.24491 0.622456 0.782655i \(-0.286135\pi\)
0.622456 + 0.782655i \(0.286135\pi\)
\(684\) 0 0
\(685\) −9.40018 −0.359163
\(686\) −0.455441 −0.0173888
\(687\) 0 0
\(688\) −32.9091 −1.25465
\(689\) −0.750614 −0.0285961
\(690\) 0 0
\(691\) −1.09394 −0.0416155 −0.0208078 0.999783i \(-0.506624\pi\)
−0.0208078 + 0.999783i \(0.506624\pi\)
\(692\) 4.32912 0.164569
\(693\) 0 0
\(694\) −8.49112 −0.322318
\(695\) −15.8432 −0.600966
\(696\) 0 0
\(697\) 14.2241 0.538775
\(698\) 3.40382 0.128836
\(699\) 0 0
\(700\) −7.95594 −0.300706
\(701\) −37.3987 −1.41253 −0.706264 0.707949i \(-0.749621\pi\)
−0.706264 + 0.707949i \(0.749621\pi\)
\(702\) 0 0
\(703\) −9.91793 −0.374062
\(704\) −6.74573 −0.254239
\(705\) 0 0
\(706\) 4.76196 0.179219
\(707\) −17.0317 −0.640544
\(708\) 0 0
\(709\) 27.4538 1.03105 0.515524 0.856875i \(-0.327597\pi\)
0.515524 + 0.856875i \(0.327597\pi\)
\(710\) 0.492521 0.0184840
\(711\) 0 0
\(712\) 5.09130 0.190804
\(713\) −60.2441 −2.25616
\(714\) 0 0
\(715\) 3.69876 0.138326
\(716\) 25.7933 0.963941
\(717\) 0 0
\(718\) −16.3479 −0.610096
\(719\) −14.8902 −0.555312 −0.277656 0.960681i \(-0.589557\pi\)
−0.277656 + 0.960681i \(0.589557\pi\)
\(720\) 0 0
\(721\) −9.72210 −0.362070
\(722\) −2.18088 −0.0811641
\(723\) 0 0
\(724\) −12.0827 −0.449051
\(725\) 8.02239 0.297944
\(726\) 0 0
\(727\) 8.84554 0.328063 0.164032 0.986455i \(-0.447550\pi\)
0.164032 + 0.986455i \(0.447550\pi\)
\(728\) 4.35094 0.161256
\(729\) 0 0
\(730\) −0.990605 −0.0366639
\(731\) −20.6660 −0.764360
\(732\) 0 0
\(733\) 51.0985 1.88737 0.943683 0.330851i \(-0.107336\pi\)
0.943683 + 0.330851i \(0.107336\pi\)
\(734\) 1.43752 0.0530597
\(735\) 0 0
\(736\) −36.6105 −1.34948
\(737\) −26.5280 −0.977171
\(738\) 0 0
\(739\) 1.57429 0.0579112 0.0289556 0.999581i \(-0.490782\pi\)
0.0289556 + 0.999581i \(0.490782\pi\)
\(740\) −3.53459 −0.129934
\(741\) 0 0
\(742\) 0.135716 0.00498230
\(743\) −39.0343 −1.43203 −0.716015 0.698085i \(-0.754036\pi\)
−0.716015 + 0.698085i \(0.754036\pi\)
\(744\) 0 0
\(745\) 13.6770 0.501086
\(746\) −1.86247 −0.0681899
\(747\) 0 0
\(748\) −6.17187 −0.225666
\(749\) −8.65396 −0.316209
\(750\) 0 0
\(751\) 9.74428 0.355574 0.177787 0.984069i \(-0.443106\pi\)
0.177787 + 0.984069i \(0.443106\pi\)
\(752\) 9.11686 0.332458
\(753\) 0 0
\(754\) −2.07366 −0.0755183
\(755\) −3.00010 −0.109185
\(756\) 0 0
\(757\) −17.7563 −0.645363 −0.322682 0.946508i \(-0.604584\pi\)
−0.322682 + 0.946508i \(0.604584\pi\)
\(758\) −15.5678 −0.565449
\(759\) 0 0
\(760\) 4.88030 0.177027
\(761\) 14.0688 0.509994 0.254997 0.966942i \(-0.417925\pi\)
0.254997 + 0.966942i \(0.417925\pi\)
\(762\) 0 0
\(763\) 12.5836 0.455558
\(764\) 32.1085 1.16164
\(765\) 0 0
\(766\) −16.3873 −0.592099
\(767\) −1.10919 −0.0400507
\(768\) 0 0
\(769\) −2.66067 −0.0959461 −0.0479730 0.998849i \(-0.515276\pi\)
−0.0479730 + 0.998849i \(0.515276\pi\)
\(770\) −0.668761 −0.0241005
\(771\) 0 0
\(772\) −15.4383 −0.555635
\(773\) 3.52993 0.126963 0.0634814 0.997983i \(-0.479780\pi\)
0.0634814 + 0.997983i \(0.479780\pi\)
\(774\) 0 0
\(775\) −34.5385 −1.24066
\(776\) 16.9370 0.608004
\(777\) 0 0
\(778\) 4.56573 0.163690
\(779\) −30.5128 −1.09324
\(780\) 0 0
\(781\) 2.82690 0.101155
\(782\) −6.19610 −0.221572
\(783\) 0 0
\(784\) 2.79847 0.0999453
\(785\) −2.44894 −0.0874065
\(786\) 0 0
\(787\) 9.63057 0.343293 0.171646 0.985159i \(-0.445091\pi\)
0.171646 + 0.985159i \(0.445091\pi\)
\(788\) −47.2717 −1.68399
\(789\) 0 0
\(790\) 0.723483 0.0257404
\(791\) 4.54886 0.161739
\(792\) 0 0
\(793\) 10.6700 0.378903
\(794\) −15.2069 −0.539672
\(795\) 0 0
\(796\) 22.1311 0.784417
\(797\) 5.94571 0.210608 0.105304 0.994440i \(-0.466418\pi\)
0.105304 + 0.994440i \(0.466418\pi\)
\(798\) 0 0
\(799\) 5.72514 0.202541
\(800\) −20.9892 −0.742079
\(801\) 0 0
\(802\) −17.7392 −0.626393
\(803\) −5.68574 −0.200645
\(804\) 0 0
\(805\) 5.80211 0.204498
\(806\) 8.92766 0.314464
\(807\) 0 0
\(808\) −29.4188 −1.03495
\(809\) 38.1282 1.34051 0.670257 0.742129i \(-0.266184\pi\)
0.670257 + 0.742129i \(0.266184\pi\)
\(810\) 0 0
\(811\) 21.9571 0.771018 0.385509 0.922704i \(-0.374026\pi\)
0.385509 + 0.922704i \(0.374026\pi\)
\(812\) −3.24016 −0.113707
\(813\) 0 0
\(814\) 2.34753 0.0822810
\(815\) −4.49090 −0.157309
\(816\) 0 0
\(817\) 44.3318 1.55097
\(818\) −12.6456 −0.442143
\(819\) 0 0
\(820\) −10.8743 −0.379746
\(821\) −31.2927 −1.09212 −0.546061 0.837746i \(-0.683873\pi\)
−0.546061 + 0.837746i \(0.683873\pi\)
\(822\) 0 0
\(823\) 18.8063 0.655547 0.327773 0.944756i \(-0.393702\pi\)
0.327773 + 0.944756i \(0.393702\pi\)
\(824\) −16.7929 −0.585009
\(825\) 0 0
\(826\) 0.200550 0.00697802
\(827\) 23.1897 0.806386 0.403193 0.915115i \(-0.367900\pi\)
0.403193 + 0.915115i \(0.367900\pi\)
\(828\) 0 0
\(829\) −56.7692 −1.97168 −0.985838 0.167700i \(-0.946366\pi\)
−0.985838 + 0.167700i \(0.946366\pi\)
\(830\) 1.52766 0.0530260
\(831\) 0 0
\(832\) −8.67295 −0.300681
\(833\) 1.75736 0.0608890
\(834\) 0 0
\(835\) 15.9504 0.551985
\(836\) 13.2396 0.457902
\(837\) 0 0
\(838\) −14.5487 −0.502576
\(839\) 28.5757 0.986542 0.493271 0.869876i \(-0.335801\pi\)
0.493271 + 0.869876i \(0.335801\pi\)
\(840\) 0 0
\(841\) −25.7328 −0.887337
\(842\) 7.29620 0.251444
\(843\) 0 0
\(844\) 51.0068 1.75573
\(845\) −4.98777 −0.171585
\(846\) 0 0
\(847\) 7.16153 0.246073
\(848\) −0.833912 −0.0286366
\(849\) 0 0
\(850\) −3.55228 −0.121842
\(851\) −20.3670 −0.698171
\(852\) 0 0
\(853\) 17.4300 0.596792 0.298396 0.954442i \(-0.403548\pi\)
0.298396 + 0.954442i \(0.403548\pi\)
\(854\) −1.92921 −0.0660163
\(855\) 0 0
\(856\) −14.9479 −0.510909
\(857\) 31.4574 1.07456 0.537282 0.843403i \(-0.319451\pi\)
0.537282 + 0.843403i \(0.319451\pi\)
\(858\) 0 0
\(859\) −17.7552 −0.605799 −0.302900 0.953022i \(-0.597955\pi\)
−0.302900 + 0.953022i \(0.597955\pi\)
\(860\) 15.7991 0.538746
\(861\) 0 0
\(862\) 13.7496 0.468315
\(863\) −16.9150 −0.575793 −0.287897 0.957661i \(-0.592956\pi\)
−0.287897 + 0.957661i \(0.592956\pi\)
\(864\) 0 0
\(865\) −1.81002 −0.0615426
\(866\) 10.2971 0.349910
\(867\) 0 0
\(868\) 13.9497 0.473485
\(869\) 4.15255 0.140866
\(870\) 0 0
\(871\) −34.1069 −1.15567
\(872\) 21.7356 0.736060
\(873\) 0 0
\(874\) 13.2916 0.449595
\(875\) 7.07381 0.239138
\(876\) 0 0
\(877\) −13.3300 −0.450121 −0.225061 0.974345i \(-0.572258\pi\)
−0.225061 + 0.974345i \(0.572258\pi\)
\(878\) 13.7678 0.464639
\(879\) 0 0
\(880\) 4.10922 0.138522
\(881\) 31.1651 1.04998 0.524990 0.851109i \(-0.324069\pi\)
0.524990 + 0.851109i \(0.324069\pi\)
\(882\) 0 0
\(883\) 20.0110 0.673422 0.336711 0.941608i \(-0.390685\pi\)
0.336711 + 0.941608i \(0.390685\pi\)
\(884\) −7.93515 −0.266888
\(885\) 0 0
\(886\) 2.12991 0.0715556
\(887\) 10.0796 0.338441 0.169221 0.985578i \(-0.445875\pi\)
0.169221 + 0.985578i \(0.445875\pi\)
\(888\) 0 0
\(889\) −1.00000 −0.0335389
\(890\) −1.00613 −0.0337256
\(891\) 0 0
\(892\) −9.66546 −0.323624
\(893\) −12.2813 −0.410978
\(894\) 0 0
\(895\) −10.7843 −0.360478
\(896\) 11.0264 0.368365
\(897\) 0 0
\(898\) 0.872647 0.0291206
\(899\) −14.0663 −0.469136
\(900\) 0 0
\(901\) −0.523674 −0.0174461
\(902\) 7.22226 0.240475
\(903\) 0 0
\(904\) 7.85721 0.261327
\(905\) 5.05183 0.167928
\(906\) 0 0
\(907\) 32.5788 1.08176 0.540880 0.841100i \(-0.318091\pi\)
0.540880 + 0.841100i \(0.318091\pi\)
\(908\) 19.4924 0.646876
\(909\) 0 0
\(910\) −0.859823 −0.0285029
\(911\) 34.9407 1.15764 0.578819 0.815456i \(-0.303514\pi\)
0.578819 + 0.815456i \(0.303514\pi\)
\(912\) 0 0
\(913\) 8.76828 0.290188
\(914\) −4.08493 −0.135118
\(915\) 0 0
\(916\) −6.29151 −0.207877
\(917\) 3.88980 0.128453
\(918\) 0 0
\(919\) −36.5952 −1.20716 −0.603582 0.797301i \(-0.706260\pi\)
−0.603582 + 0.797301i \(0.706260\pi\)
\(920\) 10.0219 0.330414
\(921\) 0 0
\(922\) 18.4066 0.606188
\(923\) 3.63454 0.119632
\(924\) 0 0
\(925\) −11.6766 −0.383924
\(926\) 8.40014 0.276046
\(927\) 0 0
\(928\) −8.54811 −0.280605
\(929\) −4.37077 −0.143400 −0.0717002 0.997426i \(-0.522842\pi\)
−0.0717002 + 0.997426i \(0.522842\pi\)
\(930\) 0 0
\(931\) −3.76981 −0.123551
\(932\) 4.45145 0.145812
\(933\) 0 0
\(934\) −0.809294 −0.0264809
\(935\) 2.58048 0.0843907
\(936\) 0 0
\(937\) 36.0803 1.17869 0.589346 0.807881i \(-0.299386\pi\)
0.589346 + 0.807881i \(0.299386\pi\)
\(938\) 6.16677 0.201352
\(939\) 0 0
\(940\) −4.37686 −0.142757
\(941\) −17.2953 −0.563810 −0.281905 0.959442i \(-0.590966\pi\)
−0.281905 + 0.959442i \(0.590966\pi\)
\(942\) 0 0
\(943\) −62.6597 −2.04048
\(944\) −1.23228 −0.0401074
\(945\) 0 0
\(946\) −10.4932 −0.341162
\(947\) −28.8863 −0.938679 −0.469340 0.883018i \(-0.655508\pi\)
−0.469340 + 0.883018i \(0.655508\pi\)
\(948\) 0 0
\(949\) −7.31013 −0.237297
\(950\) 7.62020 0.247232
\(951\) 0 0
\(952\) 3.03548 0.0983804
\(953\) 45.3794 1.46998 0.734992 0.678076i \(-0.237186\pi\)
0.734992 + 0.678076i \(0.237186\pi\)
\(954\) 0 0
\(955\) −13.4247 −0.434412
\(956\) 37.9565 1.22760
\(957\) 0 0
\(958\) 2.49417 0.0805828
\(959\) 12.5423 0.405011
\(960\) 0 0
\(961\) 29.5589 0.953514
\(962\) 3.01821 0.0973111
\(963\) 0 0
\(964\) 30.7142 0.989239
\(965\) 6.45479 0.207787
\(966\) 0 0
\(967\) −9.53966 −0.306775 −0.153387 0.988166i \(-0.549018\pi\)
−0.153387 + 0.988166i \(0.549018\pi\)
\(968\) 12.3701 0.397589
\(969\) 0 0
\(970\) −3.34706 −0.107468
\(971\) −48.0293 −1.54133 −0.770667 0.637239i \(-0.780077\pi\)
−0.770667 + 0.637239i \(0.780077\pi\)
\(972\) 0 0
\(973\) 21.1389 0.677681
\(974\) −15.7962 −0.506143
\(975\) 0 0
\(976\) 11.8541 0.379440
\(977\) 10.7980 0.345460 0.172730 0.984969i \(-0.444741\pi\)
0.172730 + 0.984969i \(0.444741\pi\)
\(978\) 0 0
\(979\) −5.77486 −0.184565
\(980\) −1.34350 −0.0429165
\(981\) 0 0
\(982\) −2.64939 −0.0845453
\(983\) 3.04790 0.0972130 0.0486065 0.998818i \(-0.484522\pi\)
0.0486065 + 0.998818i \(0.484522\pi\)
\(984\) 0 0
\(985\) 19.7645 0.629748
\(986\) −1.44671 −0.0460727
\(987\) 0 0
\(988\) 17.0221 0.541546
\(989\) 91.0377 2.89483
\(990\) 0 0
\(991\) −44.1141 −1.40133 −0.700665 0.713491i \(-0.747113\pi\)
−0.700665 + 0.713491i \(0.747113\pi\)
\(992\) 36.8018 1.16846
\(993\) 0 0
\(994\) −0.657149 −0.0208435
\(995\) −9.25310 −0.293343
\(996\) 0 0
\(997\) −60.8537 −1.92726 −0.963629 0.267245i \(-0.913887\pi\)
−0.963629 + 0.267245i \(0.913887\pi\)
\(998\) −1.28967 −0.0408239
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8001.2.a.m.1.6 11
3.2 odd 2 2667.2.a.k.1.6 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.k.1.6 11 3.2 odd 2
8001.2.a.m.1.6 11 1.1 even 1 trivial