Properties

Label 2667.2.a.k.1.6
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $1$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11,-2,11,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(1\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - 2 x^{10} - 15 x^{9} + 25 x^{8} + 88 x^{7} - 112 x^{6} - 247 x^{5} + 215 x^{4} + 313 x^{3} + \cdots + 57 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.455441\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.455441 q^{2} +1.00000 q^{3} -1.79257 q^{4} -0.749481 q^{5} -0.455441 q^{6} -1.00000 q^{7} +1.72729 q^{8} +1.00000 q^{9} +0.341344 q^{10} -1.95920 q^{11} -1.79257 q^{12} +2.51893 q^{13} +0.455441 q^{14} -0.749481 q^{15} +2.79847 q^{16} -1.75736 q^{17} -0.455441 q^{18} -3.76981 q^{19} +1.34350 q^{20} -1.00000 q^{21} +0.892299 q^{22} +7.74151 q^{23} +1.72729 q^{24} -4.43828 q^{25} -1.14723 q^{26} +1.00000 q^{27} +1.79257 q^{28} +1.80755 q^{29} +0.341344 q^{30} +7.78196 q^{31} -4.72912 q^{32} -1.95920 q^{33} +0.800374 q^{34} +0.749481 q^{35} -1.79257 q^{36} +2.63088 q^{37} +1.71693 q^{38} +2.51893 q^{39} -1.29457 q^{40} -8.09399 q^{41} +0.455441 q^{42} -11.7597 q^{43} +3.51201 q^{44} -0.749481 q^{45} -3.52580 q^{46} -3.25780 q^{47} +2.79847 q^{48} +1.00000 q^{49} +2.02137 q^{50} -1.75736 q^{51} -4.51538 q^{52} +0.297989 q^{53} -0.455441 q^{54} +1.46838 q^{55} -1.72729 q^{56} -3.76981 q^{57} -0.823230 q^{58} +0.440342 q^{59} +1.34350 q^{60} +4.23592 q^{61} -3.54422 q^{62} -1.00000 q^{63} -3.44310 q^{64} -1.88789 q^{65} +0.892299 q^{66} -13.5402 q^{67} +3.15020 q^{68} +7.74151 q^{69} -0.341344 q^{70} -1.44289 q^{71} +1.72729 q^{72} -2.90207 q^{73} -1.19821 q^{74} -4.43828 q^{75} +6.75767 q^{76} +1.95920 q^{77} -1.14723 q^{78} +2.11951 q^{79} -2.09740 q^{80} +1.00000 q^{81} +3.68633 q^{82} -4.47544 q^{83} +1.79257 q^{84} +1.31711 q^{85} +5.35583 q^{86} +1.80755 q^{87} -3.38411 q^{88} +2.94756 q^{89} +0.341344 q^{90} -2.51893 q^{91} -13.8772 q^{92} +7.78196 q^{93} +1.48374 q^{94} +2.82540 q^{95} -4.72912 q^{96} -9.80554 q^{97} -0.455441 q^{98} -1.95920 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - 2 q^{2} + 11 q^{3} + 12 q^{4} + q^{5} - 2 q^{6} - 11 q^{7} - 15 q^{8} + 11 q^{9} - 12 q^{10} - 7 q^{11} + 12 q^{12} - 24 q^{13} + 2 q^{14} + q^{15} - 6 q^{16} - 15 q^{17} - 2 q^{18} - 19 q^{19}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.455441 −0.322045 −0.161023 0.986951i \(-0.551479\pi\)
−0.161023 + 0.986951i \(0.551479\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.79257 −0.896287
\(5\) −0.749481 −0.335178 −0.167589 0.985857i \(-0.553598\pi\)
−0.167589 + 0.985857i \(0.553598\pi\)
\(6\) −0.455441 −0.185933
\(7\) −1.00000 −0.377964
\(8\) 1.72729 0.610690
\(9\) 1.00000 0.333333
\(10\) 0.341344 0.107942
\(11\) −1.95920 −0.590721 −0.295361 0.955386i \(-0.595440\pi\)
−0.295361 + 0.955386i \(0.595440\pi\)
\(12\) −1.79257 −0.517471
\(13\) 2.51893 0.698627 0.349313 0.937006i \(-0.386415\pi\)
0.349313 + 0.937006i \(0.386415\pi\)
\(14\) 0.455441 0.121722
\(15\) −0.749481 −0.193515
\(16\) 2.79847 0.699617
\(17\) −1.75736 −0.426223 −0.213111 0.977028i \(-0.568360\pi\)
−0.213111 + 0.977028i \(0.568360\pi\)
\(18\) −0.455441 −0.107348
\(19\) −3.76981 −0.864854 −0.432427 0.901669i \(-0.642343\pi\)
−0.432427 + 0.901669i \(0.642343\pi\)
\(20\) 1.34350 0.300416
\(21\) −1.00000 −0.218218
\(22\) 0.892299 0.190239
\(23\) 7.74151 1.61422 0.807108 0.590404i \(-0.201031\pi\)
0.807108 + 0.590404i \(0.201031\pi\)
\(24\) 1.72729 0.352582
\(25\) −4.43828 −0.887656
\(26\) −1.14723 −0.224989
\(27\) 1.00000 0.192450
\(28\) 1.79257 0.338765
\(29\) 1.80755 0.335653 0.167826 0.985817i \(-0.446325\pi\)
0.167826 + 0.985817i \(0.446325\pi\)
\(30\) 0.341344 0.0623206
\(31\) 7.78196 1.39768 0.698841 0.715277i \(-0.253700\pi\)
0.698841 + 0.715277i \(0.253700\pi\)
\(32\) −4.72912 −0.835998
\(33\) −1.95920 −0.341053
\(34\) 0.800374 0.137263
\(35\) 0.749481 0.126685
\(36\) −1.79257 −0.298762
\(37\) 2.63088 0.432514 0.216257 0.976336i \(-0.430615\pi\)
0.216257 + 0.976336i \(0.430615\pi\)
\(38\) 1.71693 0.278522
\(39\) 2.51893 0.403352
\(40\) −1.29457 −0.204690
\(41\) −8.09399 −1.26407 −0.632034 0.774940i \(-0.717780\pi\)
−0.632034 + 0.774940i \(0.717780\pi\)
\(42\) 0.455441 0.0702760
\(43\) −11.7597 −1.79333 −0.896667 0.442706i \(-0.854019\pi\)
−0.896667 + 0.442706i \(0.854019\pi\)
\(44\) 3.51201 0.529456
\(45\) −0.749481 −0.111726
\(46\) −3.52580 −0.519851
\(47\) −3.25780 −0.475199 −0.237600 0.971363i \(-0.576361\pi\)
−0.237600 + 0.971363i \(0.576361\pi\)
\(48\) 2.79847 0.403924
\(49\) 1.00000 0.142857
\(50\) 2.02137 0.285865
\(51\) −1.75736 −0.246080
\(52\) −4.51538 −0.626170
\(53\) 0.297989 0.0409319 0.0204659 0.999791i \(-0.493485\pi\)
0.0204659 + 0.999791i \(0.493485\pi\)
\(54\) −0.455441 −0.0619776
\(55\) 1.46838 0.197997
\(56\) −1.72729 −0.230819
\(57\) −3.76981 −0.499324
\(58\) −0.823230 −0.108095
\(59\) 0.440342 0.0573277 0.0286638 0.999589i \(-0.490875\pi\)
0.0286638 + 0.999589i \(0.490875\pi\)
\(60\) 1.34350 0.173445
\(61\) 4.23592 0.542354 0.271177 0.962529i \(-0.412587\pi\)
0.271177 + 0.962529i \(0.412587\pi\)
\(62\) −3.54422 −0.450117
\(63\) −1.00000 −0.125988
\(64\) −3.44310 −0.430388
\(65\) −1.88789 −0.234164
\(66\) 0.892299 0.109834
\(67\) −13.5402 −1.65420 −0.827101 0.562054i \(-0.810011\pi\)
−0.827101 + 0.562054i \(0.810011\pi\)
\(68\) 3.15020 0.382018
\(69\) 7.74151 0.931968
\(70\) −0.341344 −0.0407984
\(71\) −1.44289 −0.171239 −0.0856196 0.996328i \(-0.527287\pi\)
−0.0856196 + 0.996328i \(0.527287\pi\)
\(72\) 1.72729 0.203563
\(73\) −2.90207 −0.339662 −0.169831 0.985473i \(-0.554322\pi\)
−0.169831 + 0.985473i \(0.554322\pi\)
\(74\) −1.19821 −0.139289
\(75\) −4.43828 −0.512488
\(76\) 6.75767 0.775158
\(77\) 1.95920 0.223272
\(78\) −1.14723 −0.129898
\(79\) 2.11951 0.238464 0.119232 0.992866i \(-0.461957\pi\)
0.119232 + 0.992866i \(0.461957\pi\)
\(80\) −2.09740 −0.234496
\(81\) 1.00000 0.111111
\(82\) 3.68633 0.407087
\(83\) −4.47544 −0.491243 −0.245622 0.969366i \(-0.578992\pi\)
−0.245622 + 0.969366i \(0.578992\pi\)
\(84\) 1.79257 0.195586
\(85\) 1.31711 0.142860
\(86\) 5.35583 0.577535
\(87\) 1.80755 0.193789
\(88\) −3.38411 −0.360747
\(89\) 2.94756 0.312441 0.156220 0.987722i \(-0.450069\pi\)
0.156220 + 0.987722i \(0.450069\pi\)
\(90\) 0.341344 0.0359808
\(91\) −2.51893 −0.264056
\(92\) −13.8772 −1.44680
\(93\) 7.78196 0.806952
\(94\) 1.48374 0.153036
\(95\) 2.82540 0.289880
\(96\) −4.72912 −0.482664
\(97\) −9.80554 −0.995602 −0.497801 0.867291i \(-0.665859\pi\)
−0.497801 + 0.867291i \(0.665859\pi\)
\(98\) −0.455441 −0.0460065
\(99\) −1.95920 −0.196907
\(100\) 7.95594 0.795594
\(101\) −17.0317 −1.69472 −0.847360 0.531019i \(-0.821809\pi\)
−0.847360 + 0.531019i \(0.821809\pi\)
\(102\) 0.800374 0.0792488
\(103\) 9.72210 0.957947 0.478974 0.877829i \(-0.341009\pi\)
0.478974 + 0.877829i \(0.341009\pi\)
\(104\) 4.35094 0.426644
\(105\) 0.749481 0.0731418
\(106\) −0.135716 −0.0131819
\(107\) −8.65396 −0.836610 −0.418305 0.908307i \(-0.637376\pi\)
−0.418305 + 0.908307i \(0.637376\pi\)
\(108\) −1.79257 −0.172490
\(109\) −12.5836 −1.20529 −0.602647 0.798008i \(-0.705887\pi\)
−0.602647 + 0.798008i \(0.705887\pi\)
\(110\) −0.668761 −0.0637639
\(111\) 2.63088 0.249712
\(112\) −2.79847 −0.264430
\(113\) 4.54886 0.427921 0.213960 0.976842i \(-0.431364\pi\)
0.213960 + 0.976842i \(0.431364\pi\)
\(114\) 1.71693 0.160805
\(115\) −5.80211 −0.541050
\(116\) −3.24016 −0.300841
\(117\) 2.51893 0.232876
\(118\) −0.200550 −0.0184621
\(119\) 1.75736 0.161097
\(120\) −1.29457 −0.118178
\(121\) −7.16153 −0.651049
\(122\) −1.92921 −0.174663
\(123\) −8.09399 −0.729810
\(124\) −13.9497 −1.25272
\(125\) 7.07381 0.632701
\(126\) 0.455441 0.0405739
\(127\) 1.00000 0.0887357
\(128\) 11.0264 0.974603
\(129\) −11.7597 −1.03538
\(130\) 0.859823 0.0754115
\(131\) 3.88980 0.339853 0.169927 0.985457i \(-0.445647\pi\)
0.169927 + 0.985457i \(0.445647\pi\)
\(132\) 3.51201 0.305681
\(133\) 3.76981 0.326884
\(134\) 6.16677 0.532727
\(135\) −0.749481 −0.0645050
\(136\) −3.03548 −0.260290
\(137\) 12.5423 1.07156 0.535779 0.844358i \(-0.320018\pi\)
0.535779 + 0.844358i \(0.320018\pi\)
\(138\) −3.52580 −0.300136
\(139\) −21.1389 −1.79298 −0.896488 0.443069i \(-0.853890\pi\)
−0.896488 + 0.443069i \(0.853890\pi\)
\(140\) −1.34350 −0.113546
\(141\) −3.25780 −0.274357
\(142\) 0.657149 0.0551468
\(143\) −4.93510 −0.412694
\(144\) 2.79847 0.233206
\(145\) −1.35472 −0.112504
\(146\) 1.32172 0.109386
\(147\) 1.00000 0.0824786
\(148\) −4.71605 −0.387657
\(149\) −18.2486 −1.49498 −0.747492 0.664271i \(-0.768742\pi\)
−0.747492 + 0.664271i \(0.768742\pi\)
\(150\) 2.02137 0.165044
\(151\) −4.00291 −0.325752 −0.162876 0.986647i \(-0.552077\pi\)
−0.162876 + 0.986647i \(0.552077\pi\)
\(152\) −6.51157 −0.528158
\(153\) −1.75736 −0.142074
\(154\) −0.892299 −0.0719035
\(155\) −5.83243 −0.468472
\(156\) −4.51538 −0.361519
\(157\) −3.26752 −0.260776 −0.130388 0.991463i \(-0.541622\pi\)
−0.130388 + 0.991463i \(0.541622\pi\)
\(158\) −0.965313 −0.0767961
\(159\) 0.297989 0.0236320
\(160\) 3.54439 0.280208
\(161\) −7.74151 −0.610116
\(162\) −0.455441 −0.0357828
\(163\) −5.99201 −0.469331 −0.234665 0.972076i \(-0.575399\pi\)
−0.234665 + 0.972076i \(0.575399\pi\)
\(164\) 14.5091 1.13297
\(165\) 1.46838 0.114313
\(166\) 2.03830 0.158202
\(167\) −21.2819 −1.64684 −0.823421 0.567431i \(-0.807937\pi\)
−0.823421 + 0.567431i \(0.807937\pi\)
\(168\) −1.72729 −0.133263
\(169\) −6.65497 −0.511921
\(170\) −0.599865 −0.0460075
\(171\) −3.76981 −0.288285
\(172\) 21.0801 1.60734
\(173\) 2.41503 0.183612 0.0918058 0.995777i \(-0.470736\pi\)
0.0918058 + 0.995777i \(0.470736\pi\)
\(174\) −0.823230 −0.0624089
\(175\) 4.43828 0.335502
\(176\) −5.48276 −0.413279
\(177\) 0.440342 0.0330982
\(178\) −1.34244 −0.100620
\(179\) 14.3890 1.07548 0.537741 0.843110i \(-0.319278\pi\)
0.537741 + 0.843110i \(0.319278\pi\)
\(180\) 1.34350 0.100139
\(181\) 6.74044 0.501013 0.250506 0.968115i \(-0.419403\pi\)
0.250506 + 0.968115i \(0.419403\pi\)
\(182\) 1.14723 0.0850380
\(183\) 4.23592 0.313128
\(184\) 13.3719 0.985786
\(185\) −1.97179 −0.144969
\(186\) −3.54422 −0.259875
\(187\) 3.44302 0.251779
\(188\) 5.83985 0.425915
\(189\) −1.00000 −0.0727393
\(190\) −1.28680 −0.0933545
\(191\) 17.9119 1.29606 0.648031 0.761614i \(-0.275593\pi\)
0.648031 + 0.761614i \(0.275593\pi\)
\(192\) −3.44310 −0.248485
\(193\) 8.61234 0.619930 0.309965 0.950748i \(-0.399683\pi\)
0.309965 + 0.950748i \(0.399683\pi\)
\(194\) 4.46584 0.320629
\(195\) −1.88789 −0.135195
\(196\) −1.79257 −0.128041
\(197\) −26.3709 −1.87885 −0.939423 0.342759i \(-0.888639\pi\)
−0.939423 + 0.342759i \(0.888639\pi\)
\(198\) 0.892299 0.0634130
\(199\) −12.3460 −0.875185 −0.437593 0.899173i \(-0.644169\pi\)
−0.437593 + 0.899173i \(0.644169\pi\)
\(200\) −7.66620 −0.542082
\(201\) −13.5402 −0.955053
\(202\) 7.75694 0.545776
\(203\) −1.80755 −0.126865
\(204\) 3.15020 0.220558
\(205\) 6.06629 0.423688
\(206\) −4.42784 −0.308502
\(207\) 7.74151 0.538072
\(208\) 7.04916 0.488771
\(209\) 7.38582 0.510888
\(210\) −0.341344 −0.0235550
\(211\) −28.4545 −1.95889 −0.979445 0.201711i \(-0.935350\pi\)
−0.979445 + 0.201711i \(0.935350\pi\)
\(212\) −0.534167 −0.0366867
\(213\) −1.44289 −0.0988650
\(214\) 3.94136 0.269426
\(215\) 8.81365 0.601086
\(216\) 1.72729 0.117527
\(217\) −7.78196 −0.528274
\(218\) 5.73110 0.388159
\(219\) −2.90207 −0.196104
\(220\) −2.63219 −0.177462
\(221\) −4.42668 −0.297771
\(222\) −1.19821 −0.0804186
\(223\) 5.39195 0.361071 0.180536 0.983568i \(-0.442217\pi\)
0.180536 + 0.983568i \(0.442217\pi\)
\(224\) 4.72912 0.315978
\(225\) −4.43828 −0.295885
\(226\) −2.07174 −0.137810
\(227\) 10.8739 0.721729 0.360865 0.932618i \(-0.382482\pi\)
0.360865 + 0.932618i \(0.382482\pi\)
\(228\) 6.75767 0.447537
\(229\) 3.50976 0.231932 0.115966 0.993253i \(-0.463004\pi\)
0.115966 + 0.993253i \(0.463004\pi\)
\(230\) 2.64252 0.174243
\(231\) 1.95920 0.128906
\(232\) 3.12216 0.204980
\(233\) 2.48327 0.162685 0.0813424 0.996686i \(-0.474079\pi\)
0.0813424 + 0.996686i \(0.474079\pi\)
\(234\) −1.14723 −0.0749965
\(235\) 2.44166 0.159276
\(236\) −0.789346 −0.0513821
\(237\) 2.11951 0.137677
\(238\) −0.800374 −0.0518805
\(239\) 21.1743 1.36965 0.684826 0.728706i \(-0.259878\pi\)
0.684826 + 0.728706i \(0.259878\pi\)
\(240\) −2.09740 −0.135387
\(241\) −17.1342 −1.10371 −0.551854 0.833941i \(-0.686080\pi\)
−0.551854 + 0.833941i \(0.686080\pi\)
\(242\) 3.26165 0.209667
\(243\) 1.00000 0.0641500
\(244\) −7.59321 −0.486105
\(245\) −0.749481 −0.0478826
\(246\) 3.68633 0.235032
\(247\) −9.49591 −0.604210
\(248\) 13.4417 0.853550
\(249\) −4.47544 −0.283619
\(250\) −3.22170 −0.203758
\(251\) −2.98515 −0.188421 −0.0942104 0.995552i \(-0.530033\pi\)
−0.0942104 + 0.995552i \(0.530033\pi\)
\(252\) 1.79257 0.112922
\(253\) −15.1672 −0.953552
\(254\) −0.455441 −0.0285769
\(255\) 1.31711 0.0824805
\(256\) 1.86435 0.116522
\(257\) −14.2653 −0.889845 −0.444923 0.895569i \(-0.646769\pi\)
−0.444923 + 0.895569i \(0.646769\pi\)
\(258\) 5.35583 0.333440
\(259\) −2.63088 −0.163475
\(260\) 3.38419 0.209878
\(261\) 1.80755 0.111884
\(262\) −1.77157 −0.109448
\(263\) −6.23379 −0.384392 −0.192196 0.981357i \(-0.561561\pi\)
−0.192196 + 0.981357i \(0.561561\pi\)
\(264\) −3.38411 −0.208278
\(265\) −0.223337 −0.0137195
\(266\) −1.71693 −0.105271
\(267\) 2.94756 0.180388
\(268\) 24.2718 1.48264
\(269\) 9.49493 0.578916 0.289458 0.957191i \(-0.406525\pi\)
0.289458 + 0.957191i \(0.406525\pi\)
\(270\) 0.341344 0.0207735
\(271\) −24.8348 −1.50860 −0.754302 0.656528i \(-0.772025\pi\)
−0.754302 + 0.656528i \(0.772025\pi\)
\(272\) −4.91792 −0.298193
\(273\) −2.51893 −0.152453
\(274\) −5.71225 −0.345090
\(275\) 8.69548 0.524357
\(276\) −13.8772 −0.835311
\(277\) 16.1475 0.970208 0.485104 0.874457i \(-0.338782\pi\)
0.485104 + 0.874457i \(0.338782\pi\)
\(278\) 9.62750 0.577419
\(279\) 7.78196 0.465894
\(280\) 1.29457 0.0773655
\(281\) −9.45191 −0.563854 −0.281927 0.959436i \(-0.590974\pi\)
−0.281927 + 0.959436i \(0.590974\pi\)
\(282\) 1.48374 0.0883552
\(283\) 14.1920 0.843625 0.421812 0.906683i \(-0.361394\pi\)
0.421812 + 0.906683i \(0.361394\pi\)
\(284\) 2.58648 0.153479
\(285\) 2.82540 0.167362
\(286\) 2.24764 0.132906
\(287\) 8.09399 0.477773
\(288\) −4.72912 −0.278666
\(289\) −13.9117 −0.818334
\(290\) 0.616995 0.0362312
\(291\) −9.80554 −0.574811
\(292\) 5.20218 0.304434
\(293\) 18.0263 1.05311 0.526554 0.850141i \(-0.323484\pi\)
0.526554 + 0.850141i \(0.323484\pi\)
\(294\) −0.455441 −0.0265618
\(295\) −0.330028 −0.0192150
\(296\) 4.54430 0.264132
\(297\) −1.95920 −0.113684
\(298\) 8.31115 0.481452
\(299\) 19.5004 1.12773
\(300\) 7.95594 0.459337
\(301\) 11.7597 0.677817
\(302\) 1.82309 0.104907
\(303\) −17.0317 −0.978447
\(304\) −10.5497 −0.605067
\(305\) −3.17474 −0.181785
\(306\) 0.800374 0.0457543
\(307\) 16.0943 0.918552 0.459276 0.888294i \(-0.348109\pi\)
0.459276 + 0.888294i \(0.348109\pi\)
\(308\) −3.51201 −0.200115
\(309\) 9.72210 0.553071
\(310\) 2.65633 0.150869
\(311\) 19.3077 1.09484 0.547421 0.836857i \(-0.315610\pi\)
0.547421 + 0.836857i \(0.315610\pi\)
\(312\) 4.35094 0.246323
\(313\) −30.8613 −1.74438 −0.872191 0.489166i \(-0.837301\pi\)
−0.872191 + 0.489166i \(0.837301\pi\)
\(314\) 1.48816 0.0839817
\(315\) 0.749481 0.0422285
\(316\) −3.79938 −0.213732
\(317\) 30.6756 1.72291 0.861457 0.507831i \(-0.169553\pi\)
0.861457 + 0.507831i \(0.169553\pi\)
\(318\) −0.135716 −0.00761058
\(319\) −3.54135 −0.198277
\(320\) 2.58054 0.144257
\(321\) −8.65396 −0.483017
\(322\) 3.52580 0.196485
\(323\) 6.62492 0.368621
\(324\) −1.79257 −0.0995874
\(325\) −11.1797 −0.620140
\(326\) 2.72901 0.151146
\(327\) −12.5836 −0.695876
\(328\) −13.9807 −0.771954
\(329\) 3.25780 0.179608
\(330\) −0.668761 −0.0368141
\(331\) −10.2450 −0.563114 −0.281557 0.959544i \(-0.590851\pi\)
−0.281557 + 0.959544i \(0.590851\pi\)
\(332\) 8.02255 0.440295
\(333\) 2.63088 0.144171
\(334\) 9.69263 0.530357
\(335\) 10.1481 0.554452
\(336\) −2.79847 −0.152669
\(337\) −1.30395 −0.0710307 −0.0355154 0.999369i \(-0.511307\pi\)
−0.0355154 + 0.999369i \(0.511307\pi\)
\(338\) 3.03094 0.164862
\(339\) 4.54886 0.247060
\(340\) −2.36101 −0.128044
\(341\) −15.2464 −0.825640
\(342\) 1.71693 0.0928407
\(343\) −1.00000 −0.0539949
\(344\) −20.3124 −1.09517
\(345\) −5.80211 −0.312375
\(346\) −1.09990 −0.0591312
\(347\) 18.6437 1.00085 0.500424 0.865780i \(-0.333177\pi\)
0.500424 + 0.865780i \(0.333177\pi\)
\(348\) −3.24016 −0.173691
\(349\) 7.47368 0.400057 0.200029 0.979790i \(-0.435897\pi\)
0.200029 + 0.979790i \(0.435897\pi\)
\(350\) −2.02137 −0.108047
\(351\) 2.51893 0.134451
\(352\) 9.26529 0.493842
\(353\) −10.4557 −0.556502 −0.278251 0.960508i \(-0.589755\pi\)
−0.278251 + 0.960508i \(0.589755\pi\)
\(354\) −0.200550 −0.0106591
\(355\) 1.08142 0.0573956
\(356\) −5.28372 −0.280037
\(357\) 1.75736 0.0930094
\(358\) −6.55332 −0.346354
\(359\) 35.8946 1.89444 0.947222 0.320579i \(-0.103877\pi\)
0.947222 + 0.320579i \(0.103877\pi\)
\(360\) −1.29457 −0.0682300
\(361\) −4.78851 −0.252027
\(362\) −3.06987 −0.161349
\(363\) −7.16153 −0.375883
\(364\) 4.51538 0.236670
\(365\) 2.17505 0.113847
\(366\) −1.92921 −0.100842
\(367\) 3.15632 0.164758 0.0823792 0.996601i \(-0.473748\pi\)
0.0823792 + 0.996601i \(0.473748\pi\)
\(368\) 21.6644 1.12933
\(369\) −8.09399 −0.421356
\(370\) 0.898035 0.0466866
\(371\) −0.297989 −0.0154708
\(372\) −13.9497 −0.723260
\(373\) −4.08938 −0.211740 −0.105870 0.994380i \(-0.533763\pi\)
−0.105870 + 0.994380i \(0.533763\pi\)
\(374\) −1.56809 −0.0810841
\(375\) 7.07381 0.365290
\(376\) −5.62718 −0.290200
\(377\) 4.55309 0.234496
\(378\) 0.455441 0.0234253
\(379\) −34.1819 −1.75581 −0.877903 0.478839i \(-0.841058\pi\)
−0.877903 + 0.478839i \(0.841058\pi\)
\(380\) −5.06474 −0.259816
\(381\) 1.00000 0.0512316
\(382\) −8.15782 −0.417391
\(383\) 35.9813 1.83856 0.919279 0.393606i \(-0.128772\pi\)
0.919279 + 0.393606i \(0.128772\pi\)
\(384\) 11.0264 0.562687
\(385\) −1.46838 −0.0748357
\(386\) −3.92241 −0.199645
\(387\) −11.7597 −0.597778
\(388\) 17.5772 0.892345
\(389\) −10.0249 −0.508281 −0.254141 0.967167i \(-0.581793\pi\)
−0.254141 + 0.967167i \(0.581793\pi\)
\(390\) 0.859823 0.0435389
\(391\) −13.6046 −0.688016
\(392\) 1.72729 0.0872414
\(393\) 3.88980 0.196214
\(394\) 12.0104 0.605074
\(395\) −1.58853 −0.0799279
\(396\) 3.51201 0.176485
\(397\) −33.3894 −1.67576 −0.837882 0.545852i \(-0.816206\pi\)
−0.837882 + 0.545852i \(0.816206\pi\)
\(398\) 5.62287 0.281849
\(399\) 3.76981 0.188727
\(400\) −12.4204 −0.621019
\(401\) 38.9495 1.94505 0.972524 0.232804i \(-0.0747901\pi\)
0.972524 + 0.232804i \(0.0747901\pi\)
\(402\) 6.16677 0.307570
\(403\) 19.6023 0.976458
\(404\) 30.5306 1.51896
\(405\) −0.749481 −0.0372420
\(406\) 0.823230 0.0408562
\(407\) −5.15442 −0.255495
\(408\) −3.03548 −0.150278
\(409\) −27.7656 −1.37292 −0.686461 0.727167i \(-0.740837\pi\)
−0.686461 + 0.727167i \(0.740837\pi\)
\(410\) −2.76283 −0.136447
\(411\) 12.5423 0.618664
\(412\) −17.4276 −0.858596
\(413\) −0.440342 −0.0216678
\(414\) −3.52580 −0.173284
\(415\) 3.35425 0.164654
\(416\) −11.9123 −0.584051
\(417\) −21.1389 −1.03517
\(418\) −3.36380 −0.164529
\(419\) 31.9442 1.56058 0.780288 0.625420i \(-0.215072\pi\)
0.780288 + 0.625420i \(0.215072\pi\)
\(420\) −1.34350 −0.0655561
\(421\) 16.0201 0.780771 0.390386 0.920651i \(-0.372342\pi\)
0.390386 + 0.920651i \(0.372342\pi\)
\(422\) 12.9593 0.630851
\(423\) −3.25780 −0.158400
\(424\) 0.514713 0.0249967
\(425\) 7.79966 0.378339
\(426\) 0.657149 0.0318390
\(427\) −4.23592 −0.204991
\(428\) 15.5129 0.749842
\(429\) −4.93510 −0.238269
\(430\) −4.01410 −0.193577
\(431\) −30.1897 −1.45419 −0.727094 0.686537i \(-0.759130\pi\)
−0.727094 + 0.686537i \(0.759130\pi\)
\(432\) 2.79847 0.134641
\(433\) 22.6091 1.08652 0.543262 0.839563i \(-0.317189\pi\)
0.543262 + 0.839563i \(0.317189\pi\)
\(434\) 3.54422 0.170128
\(435\) −1.35472 −0.0649539
\(436\) 22.5571 1.08029
\(437\) −29.1840 −1.39606
\(438\) 1.32172 0.0631543
\(439\) 30.2295 1.44278 0.721389 0.692530i \(-0.243504\pi\)
0.721389 + 0.692530i \(0.243504\pi\)
\(440\) 2.53633 0.120915
\(441\) 1.00000 0.0476190
\(442\) 2.01609 0.0958956
\(443\) −4.67658 −0.222191 −0.111096 0.993810i \(-0.535436\pi\)
−0.111096 + 0.993810i \(0.535436\pi\)
\(444\) −4.71605 −0.223814
\(445\) −2.20914 −0.104723
\(446\) −2.45571 −0.116281
\(447\) −18.2486 −0.863129
\(448\) 3.44310 0.162671
\(449\) −1.91605 −0.0904240 −0.0452120 0.998977i \(-0.514396\pi\)
−0.0452120 + 0.998977i \(0.514396\pi\)
\(450\) 2.02137 0.0952884
\(451\) 15.8577 0.746712
\(452\) −8.15417 −0.383540
\(453\) −4.00291 −0.188073
\(454\) −4.95244 −0.232429
\(455\) 1.88789 0.0885058
\(456\) −6.51157 −0.304932
\(457\) −8.96919 −0.419561 −0.209780 0.977749i \(-0.567275\pi\)
−0.209780 + 0.977749i \(0.567275\pi\)
\(458\) −1.59849 −0.0746924
\(459\) −1.75736 −0.0820266
\(460\) 10.4007 0.484936
\(461\) −40.4148 −1.88231 −0.941153 0.337979i \(-0.890257\pi\)
−0.941153 + 0.337979i \(0.890257\pi\)
\(462\) −0.892299 −0.0415135
\(463\) 18.4440 0.857165 0.428582 0.903503i \(-0.359013\pi\)
0.428582 + 0.903503i \(0.359013\pi\)
\(464\) 5.05836 0.234829
\(465\) −5.83243 −0.270473
\(466\) −1.13098 −0.0523918
\(467\) 1.77695 0.0822273 0.0411136 0.999154i \(-0.486909\pi\)
0.0411136 + 0.999154i \(0.486909\pi\)
\(468\) −4.51538 −0.208723
\(469\) 13.5402 0.625229
\(470\) −1.11203 −0.0512942
\(471\) −3.26752 −0.150559
\(472\) 0.760600 0.0350094
\(473\) 23.0396 1.05936
\(474\) −0.965313 −0.0443383
\(475\) 16.7315 0.767693
\(476\) −3.15020 −0.144389
\(477\) 0.297989 0.0136440
\(478\) −9.64364 −0.441090
\(479\) −5.47638 −0.250222 −0.125111 0.992143i \(-0.539929\pi\)
−0.125111 + 0.992143i \(0.539929\pi\)
\(480\) 3.54439 0.161778
\(481\) 6.62702 0.302166
\(482\) 7.80359 0.355444
\(483\) −7.74151 −0.352251
\(484\) 12.8376 0.583526
\(485\) 7.34907 0.333704
\(486\) −0.455441 −0.0206592
\(487\) −34.6833 −1.57165 −0.785826 0.618448i \(-0.787762\pi\)
−0.785826 + 0.618448i \(0.787762\pi\)
\(488\) 7.31668 0.331210
\(489\) −5.99201 −0.270968
\(490\) 0.341344 0.0154204
\(491\) 5.81719 0.262526 0.131263 0.991348i \(-0.458097\pi\)
0.131263 + 0.991348i \(0.458097\pi\)
\(492\) 14.5091 0.654119
\(493\) −3.17651 −0.143063
\(494\) 4.32482 0.194583
\(495\) 1.46838 0.0659989
\(496\) 21.7776 0.977842
\(497\) 1.44289 0.0647223
\(498\) 2.03830 0.0913382
\(499\) −2.83170 −0.126764 −0.0633822 0.997989i \(-0.520189\pi\)
−0.0633822 + 0.997989i \(0.520189\pi\)
\(500\) −12.6803 −0.567081
\(501\) −21.2819 −0.950804
\(502\) 1.35956 0.0606800
\(503\) −11.1295 −0.496242 −0.248121 0.968729i \(-0.579813\pi\)
−0.248121 + 0.968729i \(0.579813\pi\)
\(504\) −1.72729 −0.0769397
\(505\) 12.7650 0.568033
\(506\) 6.90774 0.307087
\(507\) −6.65497 −0.295558
\(508\) −1.79257 −0.0795326
\(509\) 0.0947118 0.00419803 0.00209901 0.999998i \(-0.499332\pi\)
0.00209901 + 0.999998i \(0.499332\pi\)
\(510\) −0.599865 −0.0265625
\(511\) 2.90207 0.128380
\(512\) −22.9018 −1.01213
\(513\) −3.76981 −0.166441
\(514\) 6.49700 0.286570
\(515\) −7.28653 −0.321083
\(516\) 21.0801 0.927999
\(517\) 6.38269 0.280710
\(518\) 1.19821 0.0526463
\(519\) 2.41503 0.106008
\(520\) −3.26094 −0.143002
\(521\) 17.2116 0.754054 0.377027 0.926202i \(-0.376946\pi\)
0.377027 + 0.926202i \(0.376946\pi\)
\(522\) −0.823230 −0.0360318
\(523\) −30.7334 −1.34388 −0.671938 0.740607i \(-0.734538\pi\)
−0.671938 + 0.740607i \(0.734538\pi\)
\(524\) −6.97275 −0.304606
\(525\) 4.43828 0.193702
\(526\) 2.83912 0.123791
\(527\) −13.6757 −0.595724
\(528\) −5.48276 −0.238607
\(529\) 36.9310 1.60569
\(530\) 0.101717 0.00441829
\(531\) 0.440342 0.0191092
\(532\) −6.75767 −0.292982
\(533\) −20.3882 −0.883112
\(534\) −1.34244 −0.0580930
\(535\) 6.48598 0.280413
\(536\) −23.3879 −1.01020
\(537\) 14.3890 0.620930
\(538\) −4.32438 −0.186437
\(539\) −1.95920 −0.0843887
\(540\) 1.34350 0.0578150
\(541\) −45.4903 −1.95578 −0.977891 0.209117i \(-0.932941\pi\)
−0.977891 + 0.209117i \(0.932941\pi\)
\(542\) 11.3108 0.485839
\(543\) 6.74044 0.289260
\(544\) 8.31077 0.356321
\(545\) 9.43119 0.403988
\(546\) 1.14723 0.0490967
\(547\) −2.40242 −0.102720 −0.0513599 0.998680i \(-0.516356\pi\)
−0.0513599 + 0.998680i \(0.516356\pi\)
\(548\) −22.4829 −0.960423
\(549\) 4.23592 0.180785
\(550\) −3.96027 −0.168867
\(551\) −6.81411 −0.290291
\(552\) 13.3719 0.569144
\(553\) −2.11951 −0.0901309
\(554\) −7.35422 −0.312451
\(555\) −1.97179 −0.0836980
\(556\) 37.8930 1.60702
\(557\) −14.6511 −0.620788 −0.310394 0.950608i \(-0.600461\pi\)
−0.310394 + 0.950608i \(0.600461\pi\)
\(558\) −3.54422 −0.150039
\(559\) −29.6219 −1.25287
\(560\) 2.09740 0.0886313
\(561\) 3.44302 0.145365
\(562\) 4.30478 0.181586
\(563\) −37.5930 −1.58436 −0.792178 0.610291i \(-0.791053\pi\)
−0.792178 + 0.610291i \(0.791053\pi\)
\(564\) 5.83985 0.245902
\(565\) −3.40929 −0.143430
\(566\) −6.46360 −0.271685
\(567\) −1.00000 −0.0419961
\(568\) −2.49229 −0.104574
\(569\) 3.82876 0.160510 0.0802550 0.996774i \(-0.474427\pi\)
0.0802550 + 0.996774i \(0.474427\pi\)
\(570\) −1.28680 −0.0538983
\(571\) 17.2172 0.720519 0.360260 0.932852i \(-0.382688\pi\)
0.360260 + 0.932852i \(0.382688\pi\)
\(572\) 8.84653 0.369892
\(573\) 17.9119 0.748282
\(574\) −3.68633 −0.153864
\(575\) −34.3590 −1.43287
\(576\) −3.44310 −0.143463
\(577\) 17.9929 0.749055 0.374527 0.927216i \(-0.377805\pi\)
0.374527 + 0.927216i \(0.377805\pi\)
\(578\) 6.33595 0.263541
\(579\) 8.61234 0.357917
\(580\) 2.42844 0.100835
\(581\) 4.47544 0.185672
\(582\) 4.46584 0.185115
\(583\) −0.583819 −0.0241793
\(584\) −5.01273 −0.207428
\(585\) −1.88789 −0.0780548
\(586\) −8.20992 −0.339149
\(587\) −15.1685 −0.626070 −0.313035 0.949742i \(-0.601346\pi\)
−0.313035 + 0.949742i \(0.601346\pi\)
\(588\) −1.79257 −0.0739245
\(589\) −29.3365 −1.20879
\(590\) 0.150308 0.00618809
\(591\) −26.3709 −1.08475
\(592\) 7.36244 0.302594
\(593\) 29.4625 1.20988 0.604940 0.796271i \(-0.293197\pi\)
0.604940 + 0.796271i \(0.293197\pi\)
\(594\) 0.892299 0.0366115
\(595\) −1.31711 −0.0539962
\(596\) 32.7120 1.33993
\(597\) −12.3460 −0.505289
\(598\) −8.88126 −0.363182
\(599\) 6.27754 0.256493 0.128247 0.991742i \(-0.459065\pi\)
0.128247 + 0.991742i \(0.459065\pi\)
\(600\) −7.66620 −0.312971
\(601\) 21.5091 0.877373 0.438687 0.898640i \(-0.355444\pi\)
0.438687 + 0.898640i \(0.355444\pi\)
\(602\) −5.35583 −0.218288
\(603\) −13.5402 −0.551400
\(604\) 7.17551 0.291967
\(605\) 5.36743 0.218217
\(606\) 7.75694 0.315104
\(607\) 36.2458 1.47117 0.735586 0.677431i \(-0.236907\pi\)
0.735586 + 0.677431i \(0.236907\pi\)
\(608\) 17.8279 0.723017
\(609\) −1.80755 −0.0732455
\(610\) 1.44591 0.0585431
\(611\) −8.20619 −0.331987
\(612\) 3.15020 0.127339
\(613\) 4.88666 0.197370 0.0986851 0.995119i \(-0.468536\pi\)
0.0986851 + 0.995119i \(0.468536\pi\)
\(614\) −7.33001 −0.295815
\(615\) 6.06629 0.244616
\(616\) 3.38411 0.136350
\(617\) 4.27798 0.172225 0.0861126 0.996285i \(-0.472556\pi\)
0.0861126 + 0.996285i \(0.472556\pi\)
\(618\) −4.42784 −0.178114
\(619\) 32.3159 1.29888 0.649442 0.760411i \(-0.275003\pi\)
0.649442 + 0.760411i \(0.275003\pi\)
\(620\) 10.4551 0.419886
\(621\) 7.74151 0.310656
\(622\) −8.79353 −0.352589
\(623\) −2.94756 −0.118092
\(624\) 7.04916 0.282192
\(625\) 16.8897 0.675588
\(626\) 14.0555 0.561770
\(627\) 7.38582 0.294961
\(628\) 5.85726 0.233730
\(629\) −4.62341 −0.184347
\(630\) −0.341344 −0.0135995
\(631\) −0.860434 −0.0342533 −0.0171267 0.999853i \(-0.505452\pi\)
−0.0171267 + 0.999853i \(0.505452\pi\)
\(632\) 3.66102 0.145628
\(633\) −28.4545 −1.13097
\(634\) −13.9709 −0.554856
\(635\) −0.749481 −0.0297422
\(636\) −0.534167 −0.0211811
\(637\) 2.51893 0.0998038
\(638\) 1.61287 0.0638542
\(639\) −1.44289 −0.0570797
\(640\) −8.26405 −0.326665
\(641\) 1.41230 0.0557827 0.0278913 0.999611i \(-0.491121\pi\)
0.0278913 + 0.999611i \(0.491121\pi\)
\(642\) 3.94136 0.155553
\(643\) −11.5508 −0.455518 −0.227759 0.973718i \(-0.573140\pi\)
−0.227759 + 0.973718i \(0.573140\pi\)
\(644\) 13.8772 0.546839
\(645\) 8.81365 0.347037
\(646\) −3.01726 −0.118712
\(647\) 1.61666 0.0635574 0.0317787 0.999495i \(-0.489883\pi\)
0.0317787 + 0.999495i \(0.489883\pi\)
\(648\) 1.72729 0.0678544
\(649\) −0.862719 −0.0338647
\(650\) 5.09170 0.199713
\(651\) −7.78196 −0.304999
\(652\) 10.7411 0.420655
\(653\) −14.8742 −0.582071 −0.291035 0.956712i \(-0.594000\pi\)
−0.291035 + 0.956712i \(0.594000\pi\)
\(654\) 5.73110 0.224104
\(655\) −2.91533 −0.113911
\(656\) −22.6508 −0.884364
\(657\) −2.90207 −0.113221
\(658\) −1.48374 −0.0578420
\(659\) 19.5325 0.760878 0.380439 0.924806i \(-0.375773\pi\)
0.380439 + 0.924806i \(0.375773\pi\)
\(660\) −2.63219 −0.102458
\(661\) 36.3289 1.41303 0.706516 0.707697i \(-0.250266\pi\)
0.706516 + 0.707697i \(0.250266\pi\)
\(662\) 4.66597 0.181348
\(663\) −4.42668 −0.171918
\(664\) −7.73039 −0.299997
\(665\) −2.82540 −0.109564
\(666\) −1.19821 −0.0464297
\(667\) 13.9931 0.541817
\(668\) 38.1493 1.47604
\(669\) 5.39195 0.208465
\(670\) −4.62187 −0.178559
\(671\) −8.29902 −0.320380
\(672\) 4.72912 0.182430
\(673\) 6.49459 0.250348 0.125174 0.992135i \(-0.460051\pi\)
0.125174 + 0.992135i \(0.460051\pi\)
\(674\) 0.593872 0.0228751
\(675\) −4.43828 −0.170829
\(676\) 11.9295 0.458828
\(677\) 47.4029 1.82184 0.910921 0.412582i \(-0.135373\pi\)
0.910921 + 0.412582i \(0.135373\pi\)
\(678\) −2.07174 −0.0795646
\(679\) 9.80554 0.376302
\(680\) 2.27503 0.0872435
\(681\) 10.8739 0.416691
\(682\) 6.94384 0.265893
\(683\) −32.5349 −1.24491 −0.622456 0.782655i \(-0.713865\pi\)
−0.622456 + 0.782655i \(0.713865\pi\)
\(684\) 6.75767 0.258386
\(685\) −9.40018 −0.359163
\(686\) 0.455441 0.0173888
\(687\) 3.50976 0.133906
\(688\) −32.9091 −1.25465
\(689\) 0.750614 0.0285961
\(690\) 2.64252 0.100599
\(691\) −1.09394 −0.0416155 −0.0208078 0.999783i \(-0.506624\pi\)
−0.0208078 + 0.999783i \(0.506624\pi\)
\(692\) −4.32912 −0.164569
\(693\) 1.95920 0.0744239
\(694\) −8.49112 −0.322318
\(695\) 15.8432 0.600966
\(696\) 3.12216 0.118345
\(697\) 14.2241 0.538775
\(698\) −3.40382 −0.128836
\(699\) 2.48327 0.0939261
\(700\) −7.95594 −0.300706
\(701\) 37.3987 1.41253 0.706264 0.707949i \(-0.250379\pi\)
0.706264 + 0.707949i \(0.250379\pi\)
\(702\) −1.14723 −0.0432992
\(703\) −9.91793 −0.374062
\(704\) 6.74573 0.254239
\(705\) 2.44166 0.0919583
\(706\) 4.76196 0.179219
\(707\) 17.0317 0.640544
\(708\) −0.789346 −0.0296654
\(709\) 27.4538 1.03105 0.515524 0.856875i \(-0.327597\pi\)
0.515524 + 0.856875i \(0.327597\pi\)
\(710\) −0.492521 −0.0184840
\(711\) 2.11951 0.0794880
\(712\) 5.09130 0.190804
\(713\) 60.2441 2.25616
\(714\) −0.800374 −0.0299532
\(715\) 3.69876 0.138326
\(716\) −25.7933 −0.963941
\(717\) 21.1743 0.790769
\(718\) −16.3479 −0.610096
\(719\) 14.8902 0.555312 0.277656 0.960681i \(-0.410443\pi\)
0.277656 + 0.960681i \(0.410443\pi\)
\(720\) −2.09740 −0.0781654
\(721\) −9.72210 −0.362070
\(722\) 2.18088 0.0811641
\(723\) −17.1342 −0.637226
\(724\) −12.0827 −0.449051
\(725\) −8.02239 −0.297944
\(726\) 3.26165 0.121051
\(727\) 8.84554 0.328063 0.164032 0.986455i \(-0.447550\pi\)
0.164032 + 0.986455i \(0.447550\pi\)
\(728\) −4.35094 −0.161256
\(729\) 1.00000 0.0370370
\(730\) −0.990605 −0.0366639
\(731\) 20.6660 0.764360
\(732\) −7.59321 −0.280653
\(733\) 51.0985 1.88737 0.943683 0.330851i \(-0.107336\pi\)
0.943683 + 0.330851i \(0.107336\pi\)
\(734\) −1.43752 −0.0530597
\(735\) −0.749481 −0.0276450
\(736\) −36.6105 −1.34948
\(737\) 26.5280 0.977171
\(738\) 3.68633 0.135696
\(739\) 1.57429 0.0579112 0.0289556 0.999581i \(-0.490782\pi\)
0.0289556 + 0.999581i \(0.490782\pi\)
\(740\) 3.53459 0.129934
\(741\) −9.49591 −0.348841
\(742\) 0.135716 0.00498230
\(743\) 39.0343 1.43203 0.716015 0.698085i \(-0.245964\pi\)
0.716015 + 0.698085i \(0.245964\pi\)
\(744\) 13.4417 0.492797
\(745\) 13.6770 0.501086
\(746\) 1.86247 0.0681899
\(747\) −4.47544 −0.163748
\(748\) −6.17187 −0.225666
\(749\) 8.65396 0.316209
\(750\) −3.22170 −0.117640
\(751\) 9.74428 0.355574 0.177787 0.984069i \(-0.443106\pi\)
0.177787 + 0.984069i \(0.443106\pi\)
\(752\) −9.11686 −0.332458
\(753\) −2.98515 −0.108785
\(754\) −2.07366 −0.0755183
\(755\) 3.00010 0.109185
\(756\) 1.79257 0.0651953
\(757\) −17.7563 −0.645363 −0.322682 0.946508i \(-0.604584\pi\)
−0.322682 + 0.946508i \(0.604584\pi\)
\(758\) 15.5678 0.565449
\(759\) −15.1672 −0.550533
\(760\) 4.88030 0.177027
\(761\) −14.0688 −0.509994 −0.254997 0.966942i \(-0.582075\pi\)
−0.254997 + 0.966942i \(0.582075\pi\)
\(762\) −0.455441 −0.0164989
\(763\) 12.5836 0.455558
\(764\) −32.1085 −1.16164
\(765\) 1.31711 0.0476202
\(766\) −16.3873 −0.592099
\(767\) 1.10919 0.0400507
\(768\) 1.86435 0.0672739
\(769\) −2.66067 −0.0959461 −0.0479730 0.998849i \(-0.515276\pi\)
−0.0479730 + 0.998849i \(0.515276\pi\)
\(770\) 0.668761 0.0241005
\(771\) −14.2653 −0.513752
\(772\) −15.4383 −0.555635
\(773\) −3.52993 −0.126963 −0.0634814 0.997983i \(-0.520220\pi\)
−0.0634814 + 0.997983i \(0.520220\pi\)
\(774\) 5.35583 0.192512
\(775\) −34.5385 −1.24066
\(776\) −16.9370 −0.608004
\(777\) −2.63088 −0.0943823
\(778\) 4.56573 0.163690
\(779\) 30.5128 1.09324
\(780\) 3.38419 0.121173
\(781\) 2.82690 0.101155
\(782\) 6.19610 0.221572
\(783\) 1.80755 0.0645964
\(784\) 2.79847 0.0999453
\(785\) 2.44894 0.0874065
\(786\) −1.77157 −0.0631899
\(787\) 9.63057 0.343293 0.171646 0.985159i \(-0.445091\pi\)
0.171646 + 0.985159i \(0.445091\pi\)
\(788\) 47.2717 1.68399
\(789\) −6.23379 −0.221929
\(790\) 0.723483 0.0257404
\(791\) −4.54886 −0.161739
\(792\) −3.38411 −0.120249
\(793\) 10.6700 0.378903
\(794\) 15.2069 0.539672
\(795\) −0.223337 −0.00792094
\(796\) 22.1311 0.784417
\(797\) −5.94571 −0.210608 −0.105304 0.994440i \(-0.533582\pi\)
−0.105304 + 0.994440i \(0.533582\pi\)
\(798\) −1.71693 −0.0607785
\(799\) 5.72514 0.202541
\(800\) 20.9892 0.742079
\(801\) 2.94756 0.104147
\(802\) −17.7392 −0.626393
\(803\) 5.68574 0.200645
\(804\) 24.2718 0.856002
\(805\) 5.80211 0.204498
\(806\) −8.92766 −0.314464
\(807\) 9.49493 0.334237
\(808\) −29.4188 −1.03495
\(809\) −38.1282 −1.34051 −0.670257 0.742129i \(-0.733816\pi\)
−0.670257 + 0.742129i \(0.733816\pi\)
\(810\) 0.341344 0.0119936
\(811\) 21.9571 0.771018 0.385509 0.922704i \(-0.374026\pi\)
0.385509 + 0.922704i \(0.374026\pi\)
\(812\) 3.24016 0.113707
\(813\) −24.8348 −0.870993
\(814\) 2.34753 0.0822810
\(815\) 4.49090 0.157309
\(816\) −4.91792 −0.172162
\(817\) 44.3318 1.55097
\(818\) 12.6456 0.442143
\(819\) −2.51893 −0.0880187
\(820\) −10.8743 −0.379746
\(821\) 31.2927 1.09212 0.546061 0.837746i \(-0.316127\pi\)
0.546061 + 0.837746i \(0.316127\pi\)
\(822\) −5.71225 −0.199238
\(823\) 18.8063 0.655547 0.327773 0.944756i \(-0.393702\pi\)
0.327773 + 0.944756i \(0.393702\pi\)
\(824\) 16.7929 0.585009
\(825\) 8.69548 0.302738
\(826\) 0.200550 0.00697802
\(827\) −23.1897 −0.806386 −0.403193 0.915115i \(-0.632100\pi\)
−0.403193 + 0.915115i \(0.632100\pi\)
\(828\) −13.8772 −0.482267
\(829\) −56.7692 −1.97168 −0.985838 0.167700i \(-0.946366\pi\)
−0.985838 + 0.167700i \(0.946366\pi\)
\(830\) −1.52766 −0.0530260
\(831\) 16.1475 0.560150
\(832\) −8.67295 −0.300681
\(833\) −1.75736 −0.0608890
\(834\) 9.62750 0.333373
\(835\) 15.9504 0.551985
\(836\) −13.2396 −0.457902
\(837\) 7.78196 0.268984
\(838\) −14.5487 −0.502576
\(839\) −28.5757 −0.986542 −0.493271 0.869876i \(-0.664199\pi\)
−0.493271 + 0.869876i \(0.664199\pi\)
\(840\) 1.29457 0.0446670
\(841\) −25.7328 −0.887337
\(842\) −7.29620 −0.251444
\(843\) −9.45191 −0.325541
\(844\) 51.0068 1.75573
\(845\) 4.98777 0.171585
\(846\) 1.48374 0.0510119
\(847\) 7.16153 0.246073
\(848\) 0.833912 0.0286366
\(849\) 14.1920 0.487067
\(850\) −3.55228 −0.121842
\(851\) 20.3670 0.698171
\(852\) 2.58648 0.0886114
\(853\) 17.4300 0.596792 0.298396 0.954442i \(-0.403548\pi\)
0.298396 + 0.954442i \(0.403548\pi\)
\(854\) 1.92921 0.0660163
\(855\) 2.82540 0.0966267
\(856\) −14.9479 −0.510909
\(857\) −31.4574 −1.07456 −0.537282 0.843403i \(-0.680549\pi\)
−0.537282 + 0.843403i \(0.680549\pi\)
\(858\) 2.24764 0.0767333
\(859\) −17.7552 −0.605799 −0.302900 0.953022i \(-0.597955\pi\)
−0.302900 + 0.953022i \(0.597955\pi\)
\(860\) −15.7991 −0.538746
\(861\) 8.09399 0.275842
\(862\) 13.7496 0.468315
\(863\) 16.9150 0.575793 0.287897 0.957661i \(-0.407044\pi\)
0.287897 + 0.957661i \(0.407044\pi\)
\(864\) −4.72912 −0.160888
\(865\) −1.81002 −0.0615426
\(866\) −10.2971 −0.349910
\(867\) −13.9117 −0.472465
\(868\) 13.9497 0.473485
\(869\) −4.15255 −0.140866
\(870\) 0.616995 0.0209181
\(871\) −34.1069 −1.15567
\(872\) −21.7356 −0.736060
\(873\) −9.80554 −0.331867
\(874\) 13.2916 0.449595
\(875\) −7.07381 −0.239138
\(876\) 5.20218 0.175765
\(877\) −13.3300 −0.450121 −0.225061 0.974345i \(-0.572258\pi\)
−0.225061 + 0.974345i \(0.572258\pi\)
\(878\) −13.7678 −0.464639
\(879\) 18.0263 0.608013
\(880\) 4.10922 0.138522
\(881\) −31.1651 −1.04998 −0.524990 0.851109i \(-0.675931\pi\)
−0.524990 + 0.851109i \(0.675931\pi\)
\(882\) −0.455441 −0.0153355
\(883\) 20.0110 0.673422 0.336711 0.941608i \(-0.390685\pi\)
0.336711 + 0.941608i \(0.390685\pi\)
\(884\) 7.93515 0.266888
\(885\) −0.330028 −0.0110938
\(886\) 2.12991 0.0715556
\(887\) −10.0796 −0.338441 −0.169221 0.985578i \(-0.554125\pi\)
−0.169221 + 0.985578i \(0.554125\pi\)
\(888\) 4.54430 0.152497
\(889\) −1.00000 −0.0335389
\(890\) 1.00613 0.0337256
\(891\) −1.95920 −0.0656357
\(892\) −9.66546 −0.323624
\(893\) 12.2813 0.410978
\(894\) 8.31115 0.277967
\(895\) −10.7843 −0.360478
\(896\) −11.0264 −0.368365
\(897\) 19.5004 0.651098
\(898\) 0.872647 0.0291206
\(899\) 14.0663 0.469136
\(900\) 7.95594 0.265198
\(901\) −0.523674 −0.0174461
\(902\) −7.22226 −0.240475
\(903\) 11.7597 0.391338
\(904\) 7.85721 0.261327
\(905\) −5.05183 −0.167928
\(906\) 1.82309 0.0605680
\(907\) 32.5788 1.08176 0.540880 0.841100i \(-0.318091\pi\)
0.540880 + 0.841100i \(0.318091\pi\)
\(908\) −19.4924 −0.646876
\(909\) −17.0317 −0.564907
\(910\) −0.859823 −0.0285029
\(911\) −34.9407 −1.15764 −0.578819 0.815456i \(-0.696486\pi\)
−0.578819 + 0.815456i \(0.696486\pi\)
\(912\) −10.5497 −0.349336
\(913\) 8.76828 0.290188
\(914\) 4.08493 0.135118
\(915\) −3.17474 −0.104954
\(916\) −6.29151 −0.207877
\(917\) −3.88980 −0.128453
\(918\) 0.800374 0.0264163
\(919\) −36.5952 −1.20716 −0.603582 0.797301i \(-0.706260\pi\)
−0.603582 + 0.797301i \(0.706260\pi\)
\(920\) −10.0219 −0.330414
\(921\) 16.0943 0.530326
\(922\) 18.4066 0.606188
\(923\) −3.63454 −0.119632
\(924\) −3.51201 −0.115537
\(925\) −11.6766 −0.383924
\(926\) −8.40014 −0.276046
\(927\) 9.72210 0.319316
\(928\) −8.54811 −0.280605
\(929\) 4.37077 0.143400 0.0717002 0.997426i \(-0.477158\pi\)
0.0717002 + 0.997426i \(0.477158\pi\)
\(930\) 2.65633 0.0871044
\(931\) −3.76981 −0.123551
\(932\) −4.45145 −0.145812
\(933\) 19.3077 0.632107
\(934\) −0.809294 −0.0264809
\(935\) −2.58048 −0.0843907
\(936\) 4.35094 0.142215
\(937\) 36.0803 1.17869 0.589346 0.807881i \(-0.299386\pi\)
0.589346 + 0.807881i \(0.299386\pi\)
\(938\) −6.16677 −0.201352
\(939\) −30.8613 −1.00712
\(940\) −4.37686 −0.142757
\(941\) 17.2953 0.563810 0.281905 0.959442i \(-0.409034\pi\)
0.281905 + 0.959442i \(0.409034\pi\)
\(942\) 1.48816 0.0484869
\(943\) −62.6597 −2.04048
\(944\) 1.23228 0.0401074
\(945\) 0.749481 0.0243806
\(946\) −10.4932 −0.341162
\(947\) 28.8863 0.938679 0.469340 0.883018i \(-0.344492\pi\)
0.469340 + 0.883018i \(0.344492\pi\)
\(948\) −3.79938 −0.123398
\(949\) −7.31013 −0.237297
\(950\) −7.62020 −0.247232
\(951\) 30.6756 0.994724
\(952\) 3.03548 0.0983804
\(953\) −45.3794 −1.46998 −0.734992 0.678076i \(-0.762814\pi\)
−0.734992 + 0.678076i \(0.762814\pi\)
\(954\) −0.135716 −0.00439397
\(955\) −13.4247 −0.434412
\(956\) −37.9565 −1.22760
\(957\) −3.54135 −0.114475
\(958\) 2.49417 0.0805828
\(959\) −12.5423 −0.405011
\(960\) 2.58054 0.0832866
\(961\) 29.5589 0.953514
\(962\) −3.01821 −0.0973111
\(963\) −8.65396 −0.278870
\(964\) 30.7142 0.989239
\(965\) −6.45479 −0.207787
\(966\) 3.52580 0.113441
\(967\) −9.53966 −0.306775 −0.153387 0.988166i \(-0.549018\pi\)
−0.153387 + 0.988166i \(0.549018\pi\)
\(968\) −12.3701 −0.397589
\(969\) 6.62492 0.212823
\(970\) −3.34706 −0.107468
\(971\) 48.0293 1.54133 0.770667 0.637239i \(-0.219923\pi\)
0.770667 + 0.637239i \(0.219923\pi\)
\(972\) −1.79257 −0.0574968
\(973\) 21.1389 0.677681
\(974\) 15.7962 0.506143
\(975\) −11.1797 −0.358038
\(976\) 11.8541 0.379440
\(977\) −10.7980 −0.345460 −0.172730 0.984969i \(-0.555259\pi\)
−0.172730 + 0.984969i \(0.555259\pi\)
\(978\) 2.72901 0.0872640
\(979\) −5.77486 −0.184565
\(980\) 1.34350 0.0429165
\(981\) −12.5836 −0.401764
\(982\) −2.64939 −0.0845453
\(983\) −3.04790 −0.0972130 −0.0486065 0.998818i \(-0.515478\pi\)
−0.0486065 + 0.998818i \(0.515478\pi\)
\(984\) −13.9807 −0.445688
\(985\) 19.7645 0.629748
\(986\) 1.44671 0.0460727
\(987\) 3.25780 0.103697
\(988\) 17.0221 0.541546
\(989\) −91.0377 −2.89483
\(990\) −0.668761 −0.0212546
\(991\) −44.1141 −1.40133 −0.700665 0.713491i \(-0.747113\pi\)
−0.700665 + 0.713491i \(0.747113\pi\)
\(992\) −36.8018 −1.16846
\(993\) −10.2450 −0.325114
\(994\) −0.657149 −0.0208435
\(995\) 9.25310 0.293343
\(996\) 8.02255 0.254204
\(997\) −60.8537 −1.92726 −0.963629 0.267245i \(-0.913887\pi\)
−0.963629 + 0.267245i \(0.913887\pi\)
\(998\) 1.28967 0.0408239
\(999\) 2.63088 0.0832374
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.k.1.6 11
3.2 odd 2 8001.2.a.m.1.6 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.k.1.6 11 1.1 even 1 trivial
8001.2.a.m.1.6 11 3.2 odd 2