Properties

Label 2667.2.a
Level $2667$
Weight $2$
Character orbit 2667.a
Rep. character $\chi_{2667}(1,\cdot)$
Character field $\Q$
Dimension $127$
Newform subspaces $17$
Sturm bound $682$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(682\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2667))\).

Total New Old
Modular forms 344 127 217
Cusp forms 337 127 210
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)\(127\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(38\)\(14\)\(24\)\(38\)\(14\)\(24\)\(0\)\(0\)\(0\)
\(+\)\(+\)\(-\)\(-\)\(47\)\(19\)\(28\)\(46\)\(19\)\(27\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(42\)\(13\)\(29\)\(41\)\(13\)\(28\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(43\)\(18\)\(25\)\(42\)\(18\)\(24\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(48\)\(17\)\(31\)\(47\)\(17\)\(30\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(39\)\(14\)\(25\)\(38\)\(14\)\(24\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(44\)\(10\)\(34\)\(43\)\(10\)\(33\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(43\)\(22\)\(21\)\(42\)\(22\)\(20\)\(1\)\(0\)\(1\)
Plus space\(+\)\(164\)\(56\)\(108\)\(161\)\(56\)\(105\)\(3\)\(0\)\(3\)
Minus space\(-\)\(180\)\(71\)\(109\)\(176\)\(71\)\(105\)\(4\)\(0\)\(4\)

Trace form

\( 127 q + q^{2} - q^{3} + 133 q^{4} + 10 q^{5} + 5 q^{6} - q^{7} - 3 q^{8} + 127 q^{9} - 2 q^{10} - 12 q^{11} - 7 q^{12} + 2 q^{13} - 3 q^{14} + 2 q^{15} + 133 q^{16} + 14 q^{17} + q^{18} - 4 q^{19} + 38 q^{20}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2667))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7 127
2667.2.a.a 2667.a 1.a $1$ $21.296$ \(\Q\) None 2667.2.a.a \(-2\) \(1\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+q^{3}+2q^{4}-2q^{6}-q^{7}+q^{9}+\cdots\)
2667.2.a.b 2667.a 1.a $1$ $21.296$ \(\Q\) None 2667.2.a.b \(-1\) \(-1\) \(4\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}-q^{4}+4q^{5}+q^{6}-q^{7}+\cdots\)
2667.2.a.c 2667.a 1.a $1$ $21.296$ \(\Q\) None 2667.2.a.c \(-1\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}-q^{6}+q^{7}+3q^{8}+\cdots\)
2667.2.a.d 2667.a 1.a $1$ $21.296$ \(\Q\) None 2667.2.a.d \(0\) \(1\) \(3\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}+3q^{5}+q^{7}+q^{9}+6q^{11}+\cdots\)
2667.2.a.e 2667.a 1.a $1$ $21.296$ \(\Q\) None 2667.2.a.e \(2\) \(1\) \(3\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+q^{3}+2q^{4}+3q^{5}+2q^{6}+\cdots\)
2667.2.a.f 2667.a 1.a $2$ $21.296$ \(\Q(\sqrt{17}) \) None 2667.2.a.f \(0\) \(2\) \(-3\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}+(-1-\beta )q^{5}-q^{7}+q^{9}+\cdots\)
2667.2.a.g 2667.a 1.a $2$ $21.296$ \(\Q(\sqrt{2}) \) None 2667.2.a.g \(0\) \(2\) \(0\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{3}-\beta q^{5}+\beta q^{6}+q^{7}-2\beta q^{8}+\cdots\)
2667.2.a.h 2667.a 1.a $2$ $21.296$ \(\Q(\sqrt{6}) \) None 2667.2.a.h \(0\) \(2\) \(0\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{3}+4q^{4}+\beta q^{5}+\beta q^{6}+\cdots\)
2667.2.a.i 2667.a 1.a $2$ $21.296$ \(\Q(\sqrt{17}) \) None 2667.2.a.i \(1\) \(-2\) \(3\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-q^{3}+(2+\beta )q^{4}+(1+\beta )q^{5}+\cdots\)
2667.2.a.j 2667.a 1.a $7$ $21.296$ 7.7.118870813.1 None 2667.2.a.j \(-2\) \(7\) \(-8\) \(7\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{4}q^{2}+q^{3}+(\beta _{1}+\beta _{2}+\beta _{3}-\beta _{4}+\cdots)q^{4}+\cdots\)
2667.2.a.k 2667.a 1.a $11$ $21.296$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 2667.2.a.k \(-2\) \(11\) \(1\) \(-11\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}-\beta _{7}q^{5}+\cdots\)
2667.2.a.l 2667.a 1.a $13$ $21.296$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 2667.2.a.l \(4\) \(-13\) \(12\) \(13\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}+(1-\beta _{10}+\cdots)q^{5}+\cdots\)
2667.2.a.m 2667.a 1.a $14$ $21.296$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 2667.2.a.m \(-5\) \(-14\) \(-4\) \(-14\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}-\beta _{3}q^{5}+\cdots\)
2667.2.a.n 2667.a 1.a $16$ $21.296$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 2667.2.a.n \(4\) \(16\) \(5\) \(-16\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}+\beta _{7}q^{5}+\cdots\)
2667.2.a.o 2667.a 1.a $16$ $21.296$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 2667.2.a.o \(5\) \(-16\) \(-1\) \(-16\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}+\beta _{13}q^{5}+\cdots\)
2667.2.a.p 2667.a 1.a $18$ $21.296$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 2667.2.a.p \(-6\) \(-18\) \(-10\) \(18\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}+(-1+\beta _{12}+\cdots)q^{5}+\cdots\)
2667.2.a.q 2667.a 1.a $19$ $21.296$ \(\mathbb{Q}[x]/(x^{19} - \cdots)\) None 2667.2.a.q \(4\) \(19\) \(5\) \(19\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}-\beta _{10}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2667))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2667)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(127))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(381))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(889))\)\(^{\oplus 2}\)