Defining parameters
Level: | \( N \) | \(=\) | \( 2667 = 3 \cdot 7 \cdot 127 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2667.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(682\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2667))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 344 | 127 | 217 |
Cusp forms | 337 | 127 | 210 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(127\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(38\) | \(14\) | \(24\) | \(38\) | \(14\) | \(24\) | \(0\) | \(0\) | \(0\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(47\) | \(19\) | \(28\) | \(46\) | \(19\) | \(27\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(42\) | \(13\) | \(29\) | \(41\) | \(13\) | \(28\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(43\) | \(18\) | \(25\) | \(42\) | \(18\) | \(24\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(48\) | \(17\) | \(31\) | \(47\) | \(17\) | \(30\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(39\) | \(14\) | \(25\) | \(38\) | \(14\) | \(24\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(44\) | \(10\) | \(34\) | \(43\) | \(10\) | \(33\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(43\) | \(22\) | \(21\) | \(42\) | \(22\) | \(20\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(164\) | \(56\) | \(108\) | \(161\) | \(56\) | \(105\) | \(3\) | \(0\) | \(3\) | |||||
Minus space | \(-\) | \(180\) | \(71\) | \(109\) | \(176\) | \(71\) | \(105\) | \(4\) | \(0\) | \(4\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2667))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2667))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2667)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(127))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(381))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(889))\)\(^{\oplus 2}\)