# Properties

 Label 2667.2.a.j Level 2667 Weight 2 Character orbit 2667.a Self dual yes Analytic conductor 21.296 Analytic rank 1 Dimension 7 CM no Inner twists 1

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2667 = 3 \cdot 7 \cdot 127$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2667.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$21.2961022191$$ Analytic rank: $$1$$ Dimension: $$7$$ Coefficient field: 7.7.118870813.1 Defining polynomial: $$x^{7} - 9 x^{5} - 3 x^{4} + 20 x^{3} + 7 x^{2} - 13 x - 4$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{6}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{4} q^{2} + q^{3} + ( \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} + \beta_{6} ) q^{4} + ( -1 - \beta_{3} + \beta_{5} ) q^{5} + \beta_{4} q^{6} + q^{7} + ( -1 - \beta_{5} - \beta_{6} ) q^{8} + q^{9} +O(q^{10})$$ $$q + \beta_{4} q^{2} + q^{3} + ( \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} + \beta_{6} ) q^{4} + ( -1 - \beta_{3} + \beta_{5} ) q^{5} + \beta_{4} q^{6} + q^{7} + ( -1 - \beta_{5} - \beta_{6} ) q^{8} + q^{9} + ( -\beta_{2} - \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} ) q^{10} + ( -1 - \beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} ) q^{11} + ( \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} + \beta_{6} ) q^{12} + ( -3 - \beta_{2} + \beta_{4} - \beta_{5} + \beta_{6} ) q^{13} + \beta_{4} q^{14} + ( -1 - \beta_{3} + \beta_{5} ) q^{15} + ( -\beta_{1} + 2 \beta_{5} ) q^{16} + ( -\beta_{1} + \beta_{3} - \beta_{5} + 2 \beta_{6} ) q^{17} + \beta_{4} q^{18} + ( -1 - 2 \beta_{1} - \beta_{2} - \beta_{3} + 2 \beta_{5} - 2 \beta_{6} ) q^{19} + ( -1 - 2 \beta_{1} - 2 \beta_{2} - \beta_{3} + \beta_{5} - \beta_{6} ) q^{20} + q^{21} + ( -2 - 3 \beta_{1} - \beta_{2} - 3 \beta_{3} - \beta_{4} - \beta_{6} ) q^{22} + ( 1 + 3 \beta_{1} + \beta_{2} + \beta_{3} - 2 \beta_{4} - 2 \beta_{5} + \beta_{6} ) q^{23} + ( -1 - \beta_{5} - \beta_{6} ) q^{24} + ( 1 + 2 \beta_{1} - \beta_{2} + \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{25} + ( 1 + \beta_{1} + 2 \beta_{3} - 3 \beta_{4} + \beta_{6} ) q^{26} + q^{27} + ( \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} + \beta_{6} ) q^{28} + ( -1 + \beta_{2} - \beta_{3} - 2 \beta_{4} - 3 \beta_{5} - \beta_{6} ) q^{29} + ( -\beta_{2} - \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} ) q^{30} + ( -5 + \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} - \beta_{6} ) q^{31} + ( 2 - 2 \beta_{1} - 2 \beta_{2} - 3 \beta_{3} + 2 \beta_{5} ) q^{32} + ( -1 - \beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} ) q^{33} + ( -\beta_{2} + 2 \beta_{3} + 2 \beta_{4} - \beta_{5} - \beta_{6} ) q^{34} + ( -1 - \beta_{3} + \beta_{5} ) q^{35} + ( \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} + \beta_{6} ) q^{36} + ( -5 - 3 \beta_{1} - \beta_{3} - \beta_{4} + 2 \beta_{5} ) q^{37} + ( -1 - 2 \beta_{1} - \beta_{2} - 2 \beta_{3} - 3 \beta_{4} + 2 \beta_{5} ) q^{38} + ( -3 - \beta_{2} + \beta_{4} - \beta_{5} + \beta_{6} ) q^{39} + ( -2 - 2 \beta_{1} + \beta_{3} + \beta_{5} + 2 \beta_{6} ) q^{40} + ( -2 \beta_{2} + \beta_{3} + \beta_{4} - \beta_{5} - 2 \beta_{6} ) q^{41} + \beta_{4} q^{42} + ( -1 - \beta_{1} + 2 \beta_{2} + \beta_{5} - 3 \beta_{6} ) q^{43} + ( -1 + 3 \beta_{1} - \beta_{2} + 2 \beta_{3} + 3 \beta_{5} + 2 \beta_{6} ) q^{44} + ( -1 - \beta_{3} + \beta_{5} ) q^{45} + ( -3 - \beta_{3} + 4 \beta_{4} - \beta_{6} ) q^{46} + ( 3 + \beta_{1} - 5 \beta_{2} - 3 \beta_{3} + 2 \beta_{4} ) q^{47} + ( -\beta_{1} + 2 \beta_{5} ) q^{48} + q^{49} + ( 3 + 2 \beta_{1} + 3 \beta_{2} + 2 \beta_{3} - \beta_{4} - 2 \beta_{5} + 4 \beta_{6} ) q^{50} + ( -\beta_{1} + \beta_{3} - \beta_{5} + 2 \beta_{6} ) q^{51} + ( -5 \beta_{1} - 2 \beta_{2} - 6 \beta_{3} + 3 \beta_{4} + 3 \beta_{5} - 6 \beta_{6} ) q^{52} + ( -\beta_{1} + 3 \beta_{2} - \beta_{3} + 3 \beta_{5} ) q^{53} + \beta_{4} q^{54} + ( -3 - \beta_{1} + 3 \beta_{2} + 3 \beta_{3} - 3 \beta_{5} + 2 \beta_{6} ) q^{55} + ( -1 - \beta_{5} - \beta_{6} ) q^{56} + ( -1 - 2 \beta_{1} - \beta_{2} - \beta_{3} + 2 \beta_{5} - 2 \beta_{6} ) q^{57} + ( -3 + 3 \beta_{1} + 3 \beta_{2} + 6 \beta_{3} + 2 \beta_{5} + 2 \beta_{6} ) q^{58} + ( -6 + \beta_{1} + 2 \beta_{2} + 4 \beta_{3} + \beta_{5} + 3 \beta_{6} ) q^{59} + ( -1 - 2 \beta_{1} - 2 \beta_{2} - \beta_{3} + \beta_{5} - \beta_{6} ) q^{60} + ( -3 + \beta_{1} - \beta_{2} - \beta_{3} - \beta_{4} + 3 \beta_{5} - \beta_{6} ) q^{61} + ( -1 + 2 \beta_{2} - 5 \beta_{4} - \beta_{5} + \beta_{6} ) q^{62} + q^{63} + ( -2 + \beta_{1} - 4 \beta_{2} - \beta_{3} + 2 \beta_{4} + \beta_{5} - 2 \beta_{6} ) q^{64} + ( 1 + \beta_{1} + 2 \beta_{2} + 3 \beta_{3} - 3 \beta_{4} - 3 \beta_{5} - 2 \beta_{6} ) q^{65} + ( -2 - 3 \beta_{1} - \beta_{2} - 3 \beta_{3} - \beta_{4} - \beta_{6} ) q^{66} + ( -3 - \beta_{1} + \beta_{2} - 3 \beta_{3} + 2 \beta_{4} + \beta_{5} ) q^{67} + ( 3 + 2 \beta_{1} + 3 \beta_{2} - \beta_{3} - 3 \beta_{4} - \beta_{5} ) q^{68} + ( 1 + 3 \beta_{1} + \beta_{2} + \beta_{3} - 2 \beta_{4} - 2 \beta_{5} + \beta_{6} ) q^{69} + ( -\beta_{2} - \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} ) q^{70} + ( 2 + \beta_{1} - 5 \beta_{2} - \beta_{3} + \beta_{4} - 3 \beta_{5} + \beta_{6} ) q^{71} + ( -1 - \beta_{5} - \beta_{6} ) q^{72} + ( -3 + 5 \beta_{1} - \beta_{5} + 2 \beta_{6} ) q^{73} + ( -2 - 2 \beta_{1} - 3 \beta_{2} - \beta_{3} - 4 \beta_{4} + 2 \beta_{5} - 3 \beta_{6} ) q^{74} + ( 1 + 2 \beta_{1} - \beta_{2} + \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{75} + ( -5 - 4 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} - \beta_{6} ) q^{76} + ( -1 - \beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} ) q^{77} + ( 1 + \beta_{1} + 2 \beta_{3} - 3 \beta_{4} + \beta_{6} ) q^{78} + ( 1 + \beta_{2} - 4 \beta_{4} - 5 \beta_{5} - 2 \beta_{6} ) q^{79} + ( 2 + 2 \beta_{1} + \beta_{2} + \beta_{3} - 3 \beta_{5} - \beta_{6} ) q^{80} + q^{81} + ( -\beta_{1} + 2 \beta_{2} - 3 \beta_{4} + 4 \beta_{6} ) q^{82} + ( -5 + 3 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} + \beta_{4} - 3 \beta_{5} + 2 \beta_{6} ) q^{83} + ( \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} + \beta_{6} ) q^{84} + ( -5 + 2 \beta_{2} + \beta_{3} - 6 \beta_{4} - 2 \beta_{5} - 5 \beta_{6} ) q^{85} + ( 2 + \beta_{1} + 4 \beta_{2} + \beta_{3} - 4 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} ) q^{86} + ( -1 + \beta_{2} - \beta_{3} - 2 \beta_{4} - 3 \beta_{5} - \beta_{6} ) q^{87} + ( 3 - 4 \beta_{2} - 6 \beta_{3} + 3 \beta_{4} - \beta_{5} - 3 \beta_{6} ) q^{88} + ( -\beta_{1} + 2 \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{5} - 7 \beta_{6} ) q^{89} + ( -\beta_{2} - \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} ) q^{90} + ( -3 - \beta_{2} + \beta_{4} - \beta_{5} + \beta_{6} ) q^{91} + ( 6 - \beta_{1} + 3 \beta_{2} + 3 \beta_{3} - 4 \beta_{4} + \beta_{5} + 3 \beta_{6} ) q^{92} + ( -5 + \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} - \beta_{6} ) q^{93} + ( -1 - 3 \beta_{2} - \beta_{3} + \beta_{4} + 6 \beta_{5} + 2 \beta_{6} ) q^{94} + ( 1 + 2 \beta_{1} + 4 \beta_{2} + 4 \beta_{3} + \beta_{4} - 4 \beta_{5} + 3 \beta_{6} ) q^{95} + ( 2 - 2 \beta_{1} - 2 \beta_{2} - 3 \beta_{3} + 2 \beta_{5} ) q^{96} + ( 4 \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} + 2 \beta_{5} + 5 \beta_{6} ) q^{97} + \beta_{4} q^{98} + ( -1 - \beta_{1} + \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$7q - 2q^{2} + 7q^{3} + 4q^{4} - 8q^{5} - 2q^{6} + 7q^{7} - 9q^{8} + 7q^{9} + O(q^{10})$$ $$7q - 2q^{2} + 7q^{3} + 4q^{4} - 8q^{5} - 2q^{6} + 7q^{7} - 9q^{8} + 7q^{9} - 3q^{11} + 4q^{12} - 23q^{13} - 2q^{14} - 8q^{15} + 2q^{16} + 3q^{17} - 2q^{18} - 9q^{19} - 9q^{20} + 7q^{21} - 19q^{22} + 12q^{23} - 9q^{24} + 3q^{25} + 18q^{26} + 7q^{27} + 4q^{28} - 9q^{29} - 33q^{31} + 10q^{32} - 3q^{33} - 2q^{34} - 8q^{35} + 4q^{36} - 33q^{37} - 3q^{38} - 23q^{39} - 9q^{40} - 3q^{41} - 2q^{42} - 9q^{43} + 2q^{44} - 8q^{45} - 32q^{46} + 11q^{47} + 2q^{48} + 7q^{49} + 29q^{50} + 3q^{51} - 21q^{52} + q^{53} - 2q^{54} - 16q^{55} - 9q^{56} - 9q^{57} - 5q^{58} - 30q^{59} - 9q^{60} - 19q^{61} + 3q^{62} + 7q^{63} - 21q^{64} + 14q^{65} - 19q^{66} - 30q^{67} + 24q^{68} + 12q^{69} + 8q^{71} - 9q^{72} - 20q^{73} - 9q^{74} + 3q^{75} - 42q^{76} - 3q^{77} + 18q^{78} + 8q^{79} + 12q^{80} + 7q^{81} + 10q^{82} - 34q^{83} + 4q^{84} - 28q^{85} + 24q^{86} - 9q^{87} - q^{88} - 12q^{89} - 23q^{91} + 60q^{92} - 33q^{93} - 3q^{94} + 12q^{95} + 10q^{96} + 7q^{97} - 2q^{98} - 3q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{7} - 9 x^{5} - 3 x^{4} + 20 x^{3} + 7 x^{2} - 13 x - 4$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{5} - 7 \nu^{3} - 4 \nu^{2} + 7 \nu + 5$$ $$\beta_{3}$$ $$=$$ $$\nu^{5} - 8 \nu^{3} - 3 \nu^{2} + 11 \nu + 4$$ $$\beta_{4}$$ $$=$$ $$-\nu^{6} + 8 \nu^{4} + 3 \nu^{3} - 12 \nu^{2} - 4 \nu + 2$$ $$\beta_{5}$$ $$=$$ $$\nu^{6} + 2 \nu^{5} - 8 \nu^{4} - 18 \nu^{3} + 6 \nu^{2} + 22 \nu + 4$$ $$\beta_{6}$$ $$=$$ $$2 \nu^{6} + \nu^{5} - 15 \nu^{4} - 14 \nu^{3} + 15 \nu^{2} + 16 \nu + 3$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} + 3$$ $$\nu^{3}$$ $$=$$ $$\beta_{5} + \beta_{4} - 2 \beta_{3} + 4 \beta_{1} + 2$$ $$\nu^{4}$$ $$=$$ $$\beta_{6} + 6 \beta_{5} + 8 \beta_{4} - 7 \beta_{3} - 6 \beta_{2} + 3 \beta_{1} + 15$$ $$\nu^{5}$$ $$=$$ $$11 \beta_{5} + 11 \beta_{4} - 18 \beta_{3} - 3 \beta_{2} + 21 \beta_{1} + 21$$ $$\nu^{6}$$ $$=$$ $$8 \beta_{6} + 39 \beta_{5} + 54 \beta_{4} - 50 \beta_{3} - 36 \beta_{2} + 32 \beta_{1} + 92$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 1.13462 −1.14753 1.20244 −1.52532 −2.06168 2.69855 −0.301070
−2.48001 1.00000 4.15043 −0.783950 −2.48001 1.00000 −5.33307 1.00000 1.94420
1.2 −2.15625 1.00000 2.64943 −0.239094 −2.15625 1.00000 −1.40032 1.00000 0.515547
1.3 −1.24280 1.00000 −0.455452 −3.33400 −1.24280 1.00000 3.05163 1.00000 4.14349
1.4 0.246202 1.00000 −1.93938 −0.318209 0.246202 1.00000 −0.969884 1.00000 −0.0783436
1.5 0.692358 1.00000 −1.52064 −2.78145 0.692358 1.00000 −2.43754 1.00000 −1.92576
1.6 0.840819 1.00000 −1.29302 2.74724 0.840819 1.00000 −2.76884 1.00000 2.30993
1.7 2.09968 1.00000 2.40865 −3.29054 2.09968 1.00000 0.858029 1.00000 −6.90907
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1.7 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2667.2.a.j 7
3.b odd 2 1 8001.2.a.l 7

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2667.2.a.j 7 1.a even 1 1 trivial
8001.2.a.l 7 3.b odd 2 1

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$7$$ $$-1$$
$$127$$ $$1$$

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2667))$$:

 $$T_{2}^{7} + 2 T_{2}^{6} - 7 T_{2}^{5} - 11 T_{2}^{4} + 14 T_{2}^{3} + 9 T_{2}^{2} - 11 T_{2} + 2$$ $$T_{5}^{7} + 8 T_{5}^{6} + 13 T_{5}^{5} - 42 T_{5}^{4} - 149 T_{5}^{3} - 138 T_{5}^{2} - 46 T_{5} - 5$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + 2 T + 7 T^{2} + 13 T^{3} + 28 T^{4} + 41 T^{5} + 73 T^{6} + 94 T^{7} + 146 T^{8} + 164 T^{9} + 224 T^{10} + 208 T^{11} + 224 T^{12} + 128 T^{13} + 128 T^{14}$$
$3$ $$( 1 - T )^{7}$$
$5$ $$1 + 8 T + 48 T^{2} + 198 T^{3} + 701 T^{4} + 2022 T^{5} + 5344 T^{6} + 12315 T^{7} + 26720 T^{8} + 50550 T^{9} + 87625 T^{10} + 123750 T^{11} + 150000 T^{12} + 125000 T^{13} + 78125 T^{14}$$
$7$ $$( 1 - T )^{7}$$
$11$ $$1 + 3 T + 31 T^{2} + 93 T^{3} + 656 T^{4} + 1715 T^{5} + 9199 T^{6} + 22080 T^{7} + 101189 T^{8} + 207515 T^{9} + 873136 T^{10} + 1361613 T^{11} + 4992581 T^{12} + 5314683 T^{13} + 19487171 T^{14}$$
$13$ $$1 + 23 T + 289 T^{2} + 2532 T^{3} + 17108 T^{4} + 93828 T^{5} + 430561 T^{6} + 1679255 T^{7} + 5597293 T^{8} + 15856932 T^{9} + 37586276 T^{10} + 72316452 T^{11} + 107303677 T^{12} + 111016607 T^{13} + 62748517 T^{14}$$
$17$ $$1 - 3 T + 50 T^{2} - 146 T^{3} + 1373 T^{4} - 4645 T^{5} + 30241 T^{6} - 99122 T^{7} + 514097 T^{8} - 1342405 T^{9} + 6745549 T^{10} - 12194066 T^{11} + 70992850 T^{12} - 72412707 T^{13} + 410338673 T^{14}$$
$19$ $$1 + 9 T + 127 T^{2} + 828 T^{3} + 6701 T^{4} + 34195 T^{5} + 201852 T^{6} + 825304 T^{7} + 3835188 T^{8} + 12344395 T^{9} + 45962159 T^{10} + 107905788 T^{11} + 314464573 T^{12} + 423412929 T^{13} + 893871739 T^{14}$$
$23$ $$1 - 12 T + 150 T^{2} - 1067 T^{3} + 8328 T^{4} - 46995 T^{5} + 292164 T^{6} - 1356265 T^{7} + 6719772 T^{8} - 24860355 T^{9} + 101326776 T^{10} - 298590347 T^{11} + 965451450 T^{12} - 1776430668 T^{13} + 3404825447 T^{14}$$
$29$ $$1 + 9 T + 107 T^{2} + 652 T^{3} + 4764 T^{4} + 22810 T^{5} + 134487 T^{6} + 612145 T^{7} + 3900123 T^{8} + 19183210 T^{9} + 116189196 T^{10} + 461147212 T^{11} + 2194692943 T^{12} + 5353409889 T^{13} + 17249876309 T^{14}$$
$31$ $$1 + 33 T + 645 T^{2} + 8883 T^{3} + 95284 T^{4} + 826887 T^{5} + 5965621 T^{6} + 36144101 T^{7} + 184934251 T^{8} + 794638407 T^{9} + 2838605644 T^{10} + 8203637043 T^{11} + 18465802395 T^{12} + 29287621473 T^{13} + 27512614111 T^{14}$$
$37$ $$1 + 33 T + 653 T^{2} + 9315 T^{3} + 105122 T^{4} + 971473 T^{5} + 7548399 T^{6} + 49726081 T^{7} + 279290763 T^{8} + 1329946537 T^{9} + 5324744666 T^{10} + 17457809715 T^{11} + 45281603921 T^{12} + 84668971497 T^{13} + 94931877133 T^{14}$$
$41$ $$1 + 3 T + 170 T^{2} + 50 T^{3} + 11626 T^{4} - 29278 T^{5} + 496448 T^{6} - 2150172 T^{7} + 20354368 T^{8} - 49216318 T^{9} + 801275546 T^{10} + 141288050 T^{11} + 19695554170 T^{12} + 14250312723 T^{13} + 194754273881 T^{14}$$
$43$ $$1 + 9 T + 217 T^{2} + 1559 T^{3} + 22058 T^{4} + 131173 T^{5} + 1390533 T^{6} + 6894030 T^{7} + 59792919 T^{8} + 242538877 T^{9} + 1753765406 T^{10} + 5329910759 T^{11} + 31900832131 T^{12} + 56892267441 T^{13} + 271818611107 T^{14}$$
$47$ $$1 - 11 T + 145 T^{2} - 1339 T^{3} + 14705 T^{4} - 119758 T^{5} + 953008 T^{6} - 6346454 T^{7} + 44791376 T^{8} - 264545422 T^{9} + 1526717215 T^{10} - 6533892859 T^{11} + 33255026015 T^{12} - 118571368619 T^{13} + 506623120463 T^{14}$$
$53$ $$1 - T + 216 T^{2} + 139 T^{3} + 22869 T^{4} + 30467 T^{5} + 1664224 T^{6} + 2175415 T^{7} + 88203872 T^{8} + 85581803 T^{9} + 3404668113 T^{10} + 1096776859 T^{11} + 90330226488 T^{12} - 22164361129 T^{13} + 1174711139837 T^{14}$$
$59$ $$1 + 30 T + 570 T^{2} + 7389 T^{3} + 75460 T^{4} + 617301 T^{5} + 4593588 T^{6} + 33613111 T^{7} + 271021692 T^{8} + 2148824781 T^{9} + 15497899340 T^{10} + 89535180429 T^{11} + 407506850430 T^{12} + 1265416009230 T^{13} + 2488651484819 T^{14}$$
$61$ $$1 + 19 T + 427 T^{2} + 5649 T^{3} + 75542 T^{4} + 765723 T^{5} + 7510227 T^{6} + 59966461 T^{7} + 458123847 T^{8} + 2849255283 T^{9} + 17146598702 T^{10} + 78215155809 T^{11} + 360642620527 T^{12} + 978887112859 T^{13} + 3142742836021 T^{14}$$
$67$ $$1 + 30 T + 675 T^{2} + 11360 T^{3} + 157485 T^{4} + 1838995 T^{5} + 18608402 T^{6} + 162480644 T^{7} + 1246762934 T^{8} + 8255248555 T^{9} + 47365661055 T^{10} + 228916734560 T^{11} + 911334447225 T^{12} + 2713751465070 T^{13} + 6060711605323 T^{14}$$
$71$ $$1 - 8 T + 246 T^{2} - 1787 T^{3} + 34468 T^{4} - 225343 T^{5} + 3268094 T^{6} - 18726838 T^{7} + 232034674 T^{8} - 1135954063 T^{9} + 12336476348 T^{10} - 45410673947 T^{11} + 443840420346 T^{12} - 1024802271368 T^{13} + 9095120158391 T^{14}$$
$73$ $$1 + 20 T + 510 T^{2} + 6961 T^{3} + 102634 T^{4} + 1069123 T^{5} + 11655826 T^{6} + 97527765 T^{7} + 850875298 T^{8} + 5697356467 T^{9} + 39926370778 T^{10} + 197680155601 T^{11} + 1057266512430 T^{12} + 3026684525780 T^{13} + 11047398519097 T^{14}$$
$79$ $$1 - 8 T + 273 T^{2} - 2858 T^{3} + 45901 T^{4} - 424499 T^{5} + 5436714 T^{6} - 39832374 T^{7} + 429500406 T^{8} - 2649298259 T^{9} + 22630983139 T^{10} - 111319331498 T^{11} + 840036396927 T^{12} - 1944699644168 T^{13} + 19203908986159 T^{14}$$
$83$ $$1 + 34 T + 962 T^{2} + 18636 T^{3} + 304656 T^{4} + 4073018 T^{5} + 46715214 T^{6} + 458242049 T^{7} + 3877362762 T^{8} + 28059021002 T^{9} + 174198340272 T^{10} + 884433270156 T^{11} + 3789357098566 T^{12} + 11115972694546 T^{13} + 27136050989627 T^{14}$$
$89$ $$1 + 12 T + 151 T^{2} + 2659 T^{3} + 35240 T^{4} + 317069 T^{5} + 3805221 T^{6} + 40673821 T^{7} + 338664669 T^{8} + 2511503549 T^{9} + 24843107560 T^{10} + 166831618819 T^{11} + 843192976799 T^{12} + 5963775491532 T^{13} + 44231334895529 T^{14}$$
$97$ $$1 - 7 T + 326 T^{2} - 2842 T^{3} + 55405 T^{4} - 456619 T^{5} + 7188211 T^{6} - 47880078 T^{7} + 697256467 T^{8} - 4296328171 T^{9} + 50566647565 T^{10} - 251600216602 T^{11} + 2799472923782 T^{12} - 5830804034503 T^{13} + 80798284478113 T^{14}$$