Properties

Label 80.3.r.a.11.2
Level $80$
Weight $3$
Character 80.11
Analytic conductor $2.180$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,3,Mod(11,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.11"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 80.r (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17984211488\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 11.2
Character \(\chi\) \(=\) 80.11
Dual form 80.3.r.a.51.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.96150 - 0.390534i) q^{2} +(3.81615 + 3.81615i) q^{3} +(3.69497 + 1.53206i) q^{4} +(1.58114 + 1.58114i) q^{5} +(-5.99504 - 8.97572i) q^{6} -7.06228 q^{7} +(-6.64935 - 4.44816i) q^{8} +20.1260i q^{9} +(-2.48392 - 3.71889i) q^{10} +(10.3638 - 10.3638i) q^{11} +(8.25396 + 19.9471i) q^{12} +(-5.72609 + 5.72609i) q^{13} +(13.8527 + 2.75806i) q^{14} +12.0677i q^{15} +(11.3056 + 11.3219i) q^{16} +20.9484 q^{17} +(7.85989 - 39.4772i) q^{18} +(-7.58079 - 7.58079i) q^{19} +(3.41985 + 8.26466i) q^{20} +(-26.9507 - 26.9507i) q^{21} +(-24.3759 + 16.2811i) q^{22} -13.7305 q^{23} +(-8.40010 - 42.3498i) q^{24} +5.00000i q^{25} +(13.4680 - 8.99549i) q^{26} +(-42.4585 + 42.4585i) q^{27} +(-26.0949 - 10.8199i) q^{28} +(32.5485 - 32.5485i) q^{29} +(4.71286 - 23.6709i) q^{30} -26.0923i q^{31} +(-17.7543 - 26.6230i) q^{32} +79.0994 q^{33} +(-41.0902 - 8.18104i) q^{34} +(-11.1664 - 11.1664i) q^{35} +(-30.8344 + 74.3649i) q^{36} +(19.6248 + 19.6248i) q^{37} +(11.9092 + 17.8303i) q^{38} -43.7032 q^{39} +(-3.48040 - 17.5467i) q^{40} -28.8892i q^{41} +(42.3387 + 63.3890i) q^{42} +(1.30688 - 1.30688i) q^{43} +(54.1717 - 22.4158i) q^{44} +(-31.8220 + 31.8220i) q^{45} +(26.9324 + 5.36222i) q^{46} -25.9157i q^{47} +(-0.0622149 + 86.3496i) q^{48} +0.875810 q^{49} +(1.95267 - 9.80750i) q^{50} +(79.9421 + 79.9421i) q^{51} +(-29.9304 + 12.3850i) q^{52} +(-8.62769 - 8.62769i) q^{53} +(99.8639 - 66.7009i) q^{54} +32.7731 q^{55} +(46.9596 + 31.4141i) q^{56} -57.8589i q^{57} +(-76.5552 + 51.1326i) q^{58} +(-43.8075 + 43.8075i) q^{59} +(-18.4885 + 44.5898i) q^{60} +(-26.3726 + 26.3726i) q^{61} +(-10.1899 + 51.1800i) q^{62} -142.136i q^{63} +(24.4278 + 59.1547i) q^{64} -18.1075 q^{65} +(-155.153 - 30.8910i) q^{66} +(-62.9542 - 62.9542i) q^{67} +(77.4035 + 32.0942i) q^{68} +(-52.3976 - 52.3976i) q^{69} +(17.5421 + 26.2639i) q^{70} +67.9581 q^{71} +(89.5236 - 133.825i) q^{72} +14.0243i q^{73} +(-30.8300 - 46.1583i) q^{74} +(-19.0808 + 19.0808i) q^{75} +(-16.3965 - 39.6251i) q^{76} +(-73.1918 + 73.1918i) q^{77} +(85.7239 + 17.0676i) q^{78} -11.0029i q^{79} +(-0.0257774 + 35.7771i) q^{80} -142.922 q^{81} +(-11.2822 + 56.6662i) q^{82} +(-70.2950 - 70.2950i) q^{83} +(-58.2918 - 140.872i) q^{84} +(33.1223 + 33.1223i) q^{85} +(-3.07383 + 2.05307i) q^{86} +248.420 q^{87} +(-115.012 + 22.8127i) q^{88} +161.754i q^{89} +(74.8465 - 49.9913i) q^{90} +(40.4393 - 40.4393i) q^{91} +(-50.7337 - 21.0360i) q^{92} +(99.5721 - 99.5721i) q^{93} +(-10.1210 + 50.8337i) q^{94} -23.9726i q^{95} +(33.8445 - 169.350i) q^{96} +125.858 q^{97} +(-1.71790 - 0.342034i) q^{98} +(208.581 + 208.581i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 12 q^{4} + 12 q^{6} - 20 q^{10} + 32 q^{11} - 60 q^{12} - 36 q^{14} + 48 q^{16} + 160 q^{18} - 32 q^{19} + 40 q^{20} - 12 q^{22} - 128 q^{23} - 120 q^{24} - 48 q^{26} - 96 q^{27} - 180 q^{28} + 32 q^{29}+ \cdots + 608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.96150 0.390534i −0.980750 0.195267i
\(3\) 3.81615 + 3.81615i 1.27205 + 1.27205i 0.945011 + 0.327039i \(0.106051\pi\)
0.327039 + 0.945011i \(0.393949\pi\)
\(4\) 3.69497 + 1.53206i 0.923742 + 0.383016i
\(5\) 1.58114 + 1.58114i 0.316228 + 0.316228i
\(6\) −5.99504 8.97572i −0.999174 1.49595i
\(7\) −7.06228 −1.00890 −0.504449 0.863442i \(-0.668304\pi\)
−0.504449 + 0.863442i \(0.668304\pi\)
\(8\) −6.64935 4.44816i −0.831169 0.556019i
\(9\) 20.1260i 2.23622i
\(10\) −2.48392 3.71889i −0.248392 0.371889i
\(11\) 10.3638 10.3638i 0.942161 0.942161i −0.0562558 0.998416i \(-0.517916\pi\)
0.998416 + 0.0562558i \(0.0179162\pi\)
\(12\) 8.25396 + 19.9471i 0.687830 + 1.66226i
\(13\) −5.72609 + 5.72609i −0.440468 + 0.440468i −0.892169 0.451701i \(-0.850817\pi\)
0.451701 + 0.892169i \(0.350817\pi\)
\(14\) 13.8527 + 2.75806i 0.989476 + 0.197004i
\(15\) 12.0677i 0.804515i
\(16\) 11.3056 + 11.3219i 0.706597 + 0.707616i
\(17\) 20.9484 1.23226 0.616128 0.787646i \(-0.288700\pi\)
0.616128 + 0.787646i \(0.288700\pi\)
\(18\) 7.85989 39.4772i 0.436661 2.19318i
\(19\) −7.58079 7.58079i −0.398989 0.398989i 0.478887 0.877876i \(-0.341040\pi\)
−0.877876 + 0.478887i \(0.841040\pi\)
\(20\) 3.41985 + 8.26466i 0.170992 + 0.413233i
\(21\) −26.9507 26.9507i −1.28337 1.28337i
\(22\) −24.3759 + 16.2811i −1.10800 + 0.740051i
\(23\) −13.7305 −0.596978 −0.298489 0.954413i \(-0.596483\pi\)
−0.298489 + 0.954413i \(0.596483\pi\)
\(24\) −8.40010 42.3498i −0.350004 1.76457i
\(25\) 5.00000i 0.200000i
\(26\) 13.4680 8.99549i 0.517998 0.345981i
\(27\) −42.4585 + 42.4585i −1.57254 + 1.57254i
\(28\) −26.0949 10.8199i −0.931960 0.386424i
\(29\) 32.5485 32.5485i 1.12236 1.12236i 0.130976 0.991386i \(-0.458189\pi\)
0.991386 0.130976i \(-0.0418111\pi\)
\(30\) 4.71286 23.6709i 0.157095 0.789028i
\(31\) 26.0923i 0.841687i −0.907133 0.420843i \(-0.861734\pi\)
0.907133 0.420843i \(-0.138266\pi\)
\(32\) −17.7543 26.6230i −0.554821 0.831970i
\(33\) 79.0994 2.39695
\(34\) −41.0902 8.18104i −1.20854 0.240619i
\(35\) −11.1664 11.1664i −0.319041 0.319041i
\(36\) −30.8344 + 74.3649i −0.856510 + 2.06569i
\(37\) 19.6248 + 19.6248i 0.530401 + 0.530401i 0.920692 0.390290i \(-0.127625\pi\)
−0.390290 + 0.920692i \(0.627625\pi\)
\(38\) 11.9092 + 17.8303i 0.313399 + 0.469218i
\(39\) −43.7032 −1.12060
\(40\) −3.48040 17.5467i −0.0870100 0.438668i
\(41\) 28.8892i 0.704614i −0.935884 0.352307i \(-0.885397\pi\)
0.935884 0.352307i \(-0.114603\pi\)
\(42\) 42.3387 + 63.3890i 1.00806 + 1.50926i
\(43\) 1.30688 1.30688i 0.0303926 0.0303926i −0.691747 0.722140i \(-0.743159\pi\)
0.722140 + 0.691747i \(0.243159\pi\)
\(44\) 54.1717 22.4158i 1.23118 0.509450i
\(45\) −31.8220 + 31.8220i −0.707156 + 0.707156i
\(46\) 26.9324 + 5.36222i 0.585486 + 0.116570i
\(47\) 25.9157i 0.551398i −0.961244 0.275699i \(-0.911091\pi\)
0.961244 0.275699i \(-0.0889093\pi\)
\(48\) −0.0622149 + 86.3496i −0.00129614 + 1.79895i
\(49\) 0.875810 0.0178737
\(50\) 1.95267 9.80750i 0.0390534 0.196150i
\(51\) 79.9421 + 79.9421i 1.56749 + 1.56749i
\(52\) −29.9304 + 12.3850i −0.575586 + 0.238172i
\(53\) −8.62769 8.62769i −0.162787 0.162787i 0.621013 0.783800i \(-0.286721\pi\)
−0.783800 + 0.621013i \(0.786721\pi\)
\(54\) 99.8639 66.7009i 1.84933 1.23520i
\(55\) 32.7731 0.595875
\(56\) 46.9596 + 31.4141i 0.838564 + 0.560967i
\(57\) 57.8589i 1.01507i
\(58\) −76.5552 + 51.1326i −1.31992 + 0.881596i
\(59\) −43.8075 + 43.8075i −0.742500 + 0.742500i −0.973058 0.230558i \(-0.925945\pi\)
0.230558 + 0.973058i \(0.425945\pi\)
\(60\) −18.4885 + 44.5898i −0.308142 + 0.743164i
\(61\) −26.3726 + 26.3726i −0.432338 + 0.432338i −0.889423 0.457085i \(-0.848894\pi\)
0.457085 + 0.889423i \(0.348894\pi\)
\(62\) −10.1899 + 51.1800i −0.164354 + 0.825484i
\(63\) 142.136i 2.25612i
\(64\) 24.4278 + 59.1547i 0.381685 + 0.924293i
\(65\) −18.1075 −0.278577
\(66\) −155.153 30.8910i −2.35081 0.468045i
\(67\) −62.9542 62.9542i −0.939615 0.939615i 0.0586632 0.998278i \(-0.481316\pi\)
−0.998278 + 0.0586632i \(0.981316\pi\)
\(68\) 77.4035 + 32.0942i 1.13829 + 0.471974i
\(69\) −52.3976 52.3976i −0.759386 0.759386i
\(70\) 17.5421 + 26.2639i 0.250602 + 0.375198i
\(71\) 67.9581 0.957156 0.478578 0.878045i \(-0.341152\pi\)
0.478578 + 0.878045i \(0.341152\pi\)
\(72\) 89.5236 133.825i 1.24338 1.85868i
\(73\) 14.0243i 0.192113i 0.995376 + 0.0960566i \(0.0306230\pi\)
−0.995376 + 0.0960566i \(0.969377\pi\)
\(74\) −30.8300 46.1583i −0.416621 0.623761i
\(75\) −19.0808 + 19.0808i −0.254410 + 0.254410i
\(76\) −16.3965 39.6251i −0.215744 0.521382i
\(77\) −73.1918 + 73.1918i −0.950543 + 0.950543i
\(78\) 85.7239 + 17.0676i 1.09902 + 0.218815i
\(79\) 11.0029i 0.139277i −0.997572 0.0696384i \(-0.977815\pi\)
0.997572 0.0696384i \(-0.0221845\pi\)
\(80\) −0.0257774 + 35.7771i −0.000322218 + 0.447213i
\(81\) −142.922 −1.76447
\(82\) −11.2822 + 56.6662i −0.137588 + 0.691051i
\(83\) −70.2950 70.2950i −0.846928 0.846928i 0.142821 0.989749i \(-0.454383\pi\)
−0.989749 + 0.142821i \(0.954383\pi\)
\(84\) −58.2918 140.872i −0.693950 1.67705i
\(85\) 33.1223 + 33.1223i 0.389674 + 0.389674i
\(86\) −3.07383 + 2.05307i −0.0357422 + 0.0238729i
\(87\) 248.420 2.85540
\(88\) −115.012 + 22.8127i −1.30695 + 0.259235i
\(89\) 161.754i 1.81746i 0.417388 + 0.908728i \(0.362946\pi\)
−0.417388 + 0.908728i \(0.637054\pi\)
\(90\) 74.8465 49.9913i 0.831627 0.555459i
\(91\) 40.4393 40.4393i 0.444387 0.444387i
\(92\) −50.7337 21.0360i −0.551453 0.228652i
\(93\) 99.5721 99.5721i 1.07067 1.07067i
\(94\) −10.1210 + 50.8337i −0.107670 + 0.540784i
\(95\) 23.9726i 0.252343i
\(96\) 33.8445 169.350i 0.352547 1.76407i
\(97\) 125.858 1.29750 0.648752 0.761000i \(-0.275291\pi\)
0.648752 + 0.761000i \(0.275291\pi\)
\(98\) −1.71790 0.342034i −0.0175296 0.00349014i
\(99\) 208.581 + 208.581i 2.10688 + 2.10688i
\(100\) −7.66032 + 18.4748i −0.0766032 + 0.184748i
\(101\) 35.9589 + 35.9589i 0.356029 + 0.356029i 0.862347 0.506318i \(-0.168994\pi\)
−0.506318 + 0.862347i \(0.668994\pi\)
\(102\) −125.586 188.026i −1.23124 1.84340i
\(103\) −52.9240 −0.513826 −0.256913 0.966435i \(-0.582705\pi\)
−0.256913 + 0.966435i \(0.582705\pi\)
\(104\) 63.5453 12.6043i 0.611013 0.121195i
\(105\) 85.2257i 0.811673i
\(106\) 13.5538 + 20.2926i 0.127866 + 0.191440i
\(107\) −105.376 + 105.376i −0.984824 + 0.984824i −0.999887 0.0150622i \(-0.995205\pi\)
0.0150622 + 0.999887i \(0.495205\pi\)
\(108\) −221.932 + 91.8336i −2.05493 + 0.850311i
\(109\) −126.083 + 126.083i −1.15672 + 1.15672i −0.171548 + 0.985176i \(0.554877\pi\)
−0.985176 + 0.171548i \(0.945123\pi\)
\(110\) −64.2845 12.7990i −0.584404 0.116355i
\(111\) 149.783i 1.34939i
\(112\) −79.8430 79.9581i −0.712884 0.713912i
\(113\) −63.3329 −0.560468 −0.280234 0.959932i \(-0.590412\pi\)
−0.280234 + 0.959932i \(0.590412\pi\)
\(114\) −22.5959 + 113.490i −0.198209 + 0.995529i
\(115\) −21.7098 21.7098i −0.188781 0.188781i
\(116\) 170.132 70.3992i 1.46665 0.606889i
\(117\) −115.243 115.243i −0.984986 0.984986i
\(118\) 103.037 68.8201i 0.873193 0.583221i
\(119\) −147.943 −1.24322
\(120\) 53.6791 80.2426i 0.447326 0.668688i
\(121\) 93.8153i 0.775333i
\(122\) 62.0293 41.4305i 0.508437 0.339594i
\(123\) 110.245 110.245i 0.896305 0.896305i
\(124\) 39.9751 96.4101i 0.322380 0.777501i
\(125\) −7.90569 + 7.90569i −0.0632456 + 0.0632456i
\(126\) −55.5088 + 278.799i −0.440546 + 2.21269i
\(127\) 108.702i 0.855922i 0.903797 + 0.427961i \(0.140768\pi\)
−0.903797 + 0.427961i \(0.859232\pi\)
\(128\) −24.8133 125.572i −0.193854 0.981030i
\(129\) 9.97452 0.0773219
\(130\) 35.5178 + 7.07159i 0.273214 + 0.0543968i
\(131\) −0.204051 0.204051i −0.00155764 0.00155764i 0.706328 0.707885i \(-0.250351\pi\)
−0.707885 + 0.706328i \(0.750351\pi\)
\(132\) 292.270 + 121.185i 2.21416 + 0.918071i
\(133\) 53.5377 + 53.5377i 0.402539 + 0.402539i
\(134\) 98.8989 + 148.070i 0.738051 + 1.10500i
\(135\) −134.266 −0.994560
\(136\) −139.293 93.1815i −1.02421 0.685158i
\(137\) 131.227i 0.957862i −0.877853 0.478931i \(-0.841024\pi\)
0.877853 0.478931i \(-0.158976\pi\)
\(138\) 82.3149 + 123.241i 0.596485 + 0.893050i
\(139\) 74.4886 74.4886i 0.535889 0.535889i −0.386429 0.922319i \(-0.626292\pi\)
0.922319 + 0.386429i \(0.126292\pi\)
\(140\) −24.1519 58.3674i −0.172514 0.416910i
\(141\) 98.8982 98.8982i 0.701406 0.701406i
\(142\) −133.300 26.5399i −0.938731 0.186901i
\(143\) 118.688i 0.829984i
\(144\) −227.864 + 227.536i −1.58239 + 1.58011i
\(145\) 102.927 0.709844
\(146\) 5.47695 27.5086i 0.0375134 0.188415i
\(147\) 3.34222 + 3.34222i 0.0227362 + 0.0227362i
\(148\) 42.4466 + 102.580i 0.286801 + 0.693106i
\(149\) −139.785 139.785i −0.938157 0.938157i 0.0600393 0.998196i \(-0.480877\pi\)
−0.998196 + 0.0600393i \(0.980877\pi\)
\(150\) 44.8786 29.9752i 0.299191 0.199835i
\(151\) −176.707 −1.17024 −0.585121 0.810946i \(-0.698953\pi\)
−0.585121 + 0.810946i \(0.698953\pi\)
\(152\) 16.6868 + 84.1279i 0.109782 + 0.553473i
\(153\) 421.607i 2.75560i
\(154\) 172.150 114.982i 1.11786 0.746636i
\(155\) 41.2555 41.2555i 0.266165 0.266165i
\(156\) −161.482 66.9562i −1.03514 0.429206i
\(157\) −9.60929 + 9.60929i −0.0612057 + 0.0612057i −0.737047 0.675841i \(-0.763780\pi\)
0.675841 + 0.737047i \(0.263780\pi\)
\(158\) −4.29699 + 21.5821i −0.0271962 + 0.136596i
\(159\) 65.8491i 0.414145i
\(160\) 14.0227 70.1667i 0.0876420 0.438542i
\(161\) 96.9686 0.602289
\(162\) 280.342 + 55.8160i 1.73051 + 0.344543i
\(163\) 51.3986 + 51.3986i 0.315329 + 0.315329i 0.846970 0.531641i \(-0.178424\pi\)
−0.531641 + 0.846970i \(0.678424\pi\)
\(164\) 44.2601 106.745i 0.269879 0.650882i
\(165\) 125.067 + 125.067i 0.757982 + 0.757982i
\(166\) 110.431 + 165.336i 0.665248 + 0.996002i
\(167\) 209.405 1.25392 0.626961 0.779050i \(-0.284298\pi\)
0.626961 + 0.779050i \(0.284298\pi\)
\(168\) 59.3239 + 299.086i 0.353118 + 1.78027i
\(169\) 103.424i 0.611975i
\(170\) −52.0339 77.9047i −0.306082 0.458263i
\(171\) 152.571 152.571i 0.892229 0.892229i
\(172\) 6.83112 2.82666i 0.0397158 0.0164341i
\(173\) −10.8022 + 10.8022i −0.0624404 + 0.0624404i −0.737637 0.675197i \(-0.764059\pi\)
0.675197 + 0.737637i \(0.264059\pi\)
\(174\) −487.276 97.0164i −2.80043 0.557565i
\(175\) 35.3114i 0.201779i
\(176\) 234.505 + 0.168961i 1.33242 + 0.000960006i
\(177\) −334.352 −1.88899
\(178\) 63.1703 317.280i 0.354889 1.78247i
\(179\) −213.052 213.052i −1.19024 1.19024i −0.977001 0.213234i \(-0.931600\pi\)
−0.213234 0.977001i \(-0.568400\pi\)
\(180\) −166.335 + 68.8279i −0.924081 + 0.382377i
\(181\) −27.5517 27.5517i −0.152219 0.152219i 0.626889 0.779108i \(-0.284328\pi\)
−0.779108 + 0.626889i \(0.784328\pi\)
\(182\) −95.1145 + 63.5287i −0.522607 + 0.349059i
\(183\) −201.284 −1.09991
\(184\) 91.2989 + 61.0753i 0.496190 + 0.331931i
\(185\) 62.0592i 0.335455i
\(186\) −234.197 + 156.424i −1.25912 + 0.840991i
\(187\) 217.104 217.104i 1.16098 1.16098i
\(188\) 39.7045 95.7576i 0.211194 0.509349i
\(189\) 299.854 299.854i 1.58653 1.58653i
\(190\) −9.36211 + 47.0222i −0.0492742 + 0.247485i
\(191\) 285.029i 1.49230i 0.665778 + 0.746150i \(0.268100\pi\)
−0.665778 + 0.746150i \(0.731900\pi\)
\(192\) −132.523 + 318.964i −0.690224 + 1.66127i
\(193\) 17.4519 0.0904245 0.0452123 0.998977i \(-0.485604\pi\)
0.0452123 + 0.998977i \(0.485604\pi\)
\(194\) −246.870 49.1518i −1.27253 0.253360i
\(195\) −69.1009 69.1009i −0.354364 0.354364i
\(196\) 3.23609 + 1.34180i 0.0165107 + 0.00684591i
\(197\) −92.3883 92.3883i −0.468976 0.468976i 0.432607 0.901583i \(-0.357594\pi\)
−0.901583 + 0.432607i \(0.857594\pi\)
\(198\) −327.674 490.590i −1.65492 2.47773i
\(199\) 296.441 1.48965 0.744826 0.667258i \(-0.232532\pi\)
0.744826 + 0.667258i \(0.232532\pi\)
\(200\) 22.2408 33.2468i 0.111204 0.166234i
\(201\) 480.485i 2.39047i
\(202\) −56.4902 84.5765i −0.279654 0.418696i
\(203\) −229.867 + 229.867i −1.13235 + 1.13235i
\(204\) 172.907 + 417.860i 0.847582 + 2.04833i
\(205\) 45.6778 45.6778i 0.222819 0.222819i
\(206\) 103.811 + 20.6686i 0.503935 + 0.100333i
\(207\) 276.340i 1.33498i
\(208\) −129.567 0.0933528i −0.622916 0.000448812i
\(209\) −157.131 −0.751824
\(210\) −33.2835 + 167.170i −0.158493 + 0.796049i
\(211\) −170.896 170.896i −0.809932 0.809932i 0.174692 0.984623i \(-0.444107\pi\)
−0.984623 + 0.174692i \(0.944107\pi\)
\(212\) −18.6608 45.0972i −0.0880229 0.212723i
\(213\) 259.338 + 259.338i 1.21755 + 1.21755i
\(214\) 247.848 165.542i 1.15817 0.773563i
\(215\) 4.13272 0.0192220
\(216\) 471.184 93.4596i 2.18141 0.432684i
\(217\) 184.271i 0.849175i
\(218\) 296.551 198.072i 1.36033 0.908587i
\(219\) −53.5187 + 53.5187i −0.244378 + 0.244378i
\(220\) 121.096 + 50.2105i 0.550434 + 0.228230i
\(221\) −119.952 + 119.952i −0.542770 + 0.542770i
\(222\) 58.4953 293.799i 0.263492 1.32342i
\(223\) 231.463i 1.03795i −0.854789 0.518975i \(-0.826314\pi\)
0.854789 0.518975i \(-0.173686\pi\)
\(224\) 125.386 + 188.019i 0.559758 + 0.839372i
\(225\) −100.630 −0.447245
\(226\) 124.227 + 24.7336i 0.549679 + 0.109441i
\(227\) 15.9457 + 15.9457i 0.0702453 + 0.0702453i 0.741357 0.671111i \(-0.234183\pi\)
−0.671111 + 0.741357i \(0.734183\pi\)
\(228\) 88.6436 213.787i 0.388788 0.937661i
\(229\) 245.622 + 245.622i 1.07258 + 1.07258i 0.997151 + 0.0754331i \(0.0240339\pi\)
0.0754331 + 0.997151i \(0.475966\pi\)
\(230\) 34.1054 + 51.0622i 0.148284 + 0.222010i
\(231\) −558.622 −2.41828
\(232\) −361.207 + 71.6457i −1.55693 + 0.308818i
\(233\) 343.876i 1.47586i −0.674876 0.737931i \(-0.735803\pi\)
0.674876 0.737931i \(-0.264197\pi\)
\(234\) 181.043 + 271.056i 0.773690 + 1.15836i
\(235\) 40.9763 40.9763i 0.174367 0.174367i
\(236\) −228.983 + 94.7513i −0.970268 + 0.401489i
\(237\) 41.9886 41.9886i 0.177167 0.177167i
\(238\) 290.191 + 57.7768i 1.21929 + 0.242760i
\(239\) 257.404i 1.07700i 0.842624 + 0.538502i \(0.181009\pi\)
−0.842624 + 0.538502i \(0.818991\pi\)
\(240\) −136.629 + 136.432i −0.569288 + 0.568468i
\(241\) −181.726 −0.754051 −0.377025 0.926203i \(-0.623053\pi\)
−0.377025 + 0.926203i \(0.623053\pi\)
\(242\) −36.6381 + 184.019i −0.151397 + 0.760408i
\(243\) −163.286 163.286i −0.671958 0.671958i
\(244\) −137.851 + 57.0414i −0.564961 + 0.233776i
\(245\) 1.38478 + 1.38478i 0.00565215 + 0.00565215i
\(246\) −259.301 + 173.192i −1.05407 + 0.704032i
\(247\) 86.8166 0.351484
\(248\) −116.063 + 173.497i −0.467994 + 0.699584i
\(249\) 536.513i 2.15467i
\(250\) 18.5945 12.4196i 0.0743779 0.0496783i
\(251\) 50.3743 50.3743i 0.200695 0.200695i −0.599603 0.800298i \(-0.704675\pi\)
0.800298 + 0.599603i \(0.204675\pi\)
\(252\) 217.761 525.186i 0.864130 2.08407i
\(253\) −142.300 + 142.300i −0.562449 + 0.562449i
\(254\) 42.4518 213.219i 0.167133 0.839445i
\(255\) 252.799i 0.991369i
\(256\) −0.368896 + 256.000i −0.00144100 + 0.999999i
\(257\) 196.964 0.766398 0.383199 0.923666i \(-0.374822\pi\)
0.383199 + 0.923666i \(0.374822\pi\)
\(258\) −19.5650 3.89539i −0.0758334 0.0150984i
\(259\) −138.596 138.596i −0.535120 0.535120i
\(260\) −66.9065 27.7418i −0.257333 0.106699i
\(261\) 655.071 + 655.071i 2.50985 + 2.50985i
\(262\) 0.320557 + 0.479934i 0.00122350 + 0.00183181i
\(263\) 44.0635 0.167542 0.0837709 0.996485i \(-0.473304\pi\)
0.0837709 + 0.996485i \(0.473304\pi\)
\(264\) −525.960 351.846i −1.99227 1.33275i
\(265\) 27.2832i 0.102955i
\(266\) −84.1059 125.923i −0.316188 0.473393i
\(267\) −617.276 + 617.276i −2.31190 + 2.31190i
\(268\) −136.164 329.063i −0.508073 1.22785i
\(269\) 121.781 121.781i 0.452717 0.452717i −0.443538 0.896255i \(-0.646277\pi\)
0.896255 + 0.443538i \(0.146277\pi\)
\(270\) 263.362 + 52.4353i 0.975415 + 0.194205i
\(271\) 225.635i 0.832602i 0.909227 + 0.416301i \(0.136674\pi\)
−0.909227 + 0.416301i \(0.863326\pi\)
\(272\) 236.833 + 237.174i 0.870709 + 0.871964i
\(273\) 308.645 1.13057
\(274\) −51.2486 + 257.402i −0.187039 + 0.939423i
\(275\) 51.8188 + 51.8188i 0.188432 + 0.188432i
\(276\) −113.331 273.884i −0.410619 0.992333i
\(277\) −25.3569 25.3569i −0.0915410 0.0915410i 0.659853 0.751394i \(-0.270618\pi\)
−0.751394 + 0.659853i \(0.770618\pi\)
\(278\) −175.200 + 117.019i −0.630215 + 0.420932i
\(279\) 525.134 1.88220
\(280\) 24.5796 + 123.920i 0.0877842 + 0.442571i
\(281\) 230.379i 0.819854i 0.912118 + 0.409927i \(0.134446\pi\)
−0.912118 + 0.409927i \(0.865554\pi\)
\(282\) −232.612 + 155.366i −0.824865 + 0.550942i
\(283\) −72.1310 + 72.1310i −0.254880 + 0.254880i −0.822968 0.568088i \(-0.807683\pi\)
0.568088 + 0.822968i \(0.307683\pi\)
\(284\) 251.103 + 104.116i 0.884165 + 0.366606i
\(285\) 91.4830 91.4830i 0.320993 0.320993i
\(286\) 46.3516 232.806i 0.162068 0.814007i
\(287\) 204.024i 0.710884i
\(288\) 535.815 357.323i 1.86047 1.24070i
\(289\) 149.833 0.518455
\(290\) −201.892 40.1966i −0.696179 0.138609i
\(291\) 480.293 + 480.293i 1.65049 + 1.65049i
\(292\) −21.4861 + 51.8192i −0.0735825 + 0.177463i
\(293\) −240.920 240.920i −0.822254 0.822254i 0.164177 0.986431i \(-0.447503\pi\)
−0.986431 + 0.164177i \(0.947503\pi\)
\(294\) −5.25052 7.86102i −0.0178589 0.0267382i
\(295\) −138.531 −0.469598
\(296\) −43.1982 217.787i −0.145940 0.735767i
\(297\) 880.060i 2.96317i
\(298\) 219.598 + 328.780i 0.736906 + 1.10329i
\(299\) 78.6220 78.6220i 0.262950 0.262950i
\(300\) −99.7357 + 41.2698i −0.332452 + 0.137566i
\(301\) −9.22957 + 9.22957i −0.0306630 + 0.0306630i
\(302\) 346.610 + 69.0099i 1.14772 + 0.228510i
\(303\) 274.449i 0.905772i
\(304\) 0.123590 171.534i 0.000406547 0.564256i
\(305\) −83.3976 −0.273435
\(306\) 164.652 826.982i 0.538078 2.70255i
\(307\) 270.295 + 270.295i 0.880439 + 0.880439i 0.993579 0.113140i \(-0.0360909\pi\)
−0.113140 + 0.993579i \(0.536091\pi\)
\(308\) −382.576 + 158.307i −1.24213 + 0.513983i
\(309\) −201.966 201.966i −0.653612 0.653612i
\(310\) −97.0344 + 64.8110i −0.313014 + 0.209068i
\(311\) 542.105 1.74310 0.871552 0.490303i \(-0.163114\pi\)
0.871552 + 0.490303i \(0.163114\pi\)
\(312\) 290.598 + 194.399i 0.931405 + 0.623073i
\(313\) 149.812i 0.478633i −0.970942 0.239316i \(-0.923077\pi\)
0.970942 0.239316i \(-0.0769233\pi\)
\(314\) 22.6014 15.0959i 0.0719789 0.0480760i
\(315\) 224.736 224.736i 0.713448 0.713448i
\(316\) 16.8571 40.6552i 0.0533453 0.128656i
\(317\) 419.328 419.328i 1.32280 1.32280i 0.411304 0.911498i \(-0.365073\pi\)
0.911498 0.411304i \(-0.134927\pi\)
\(318\) −25.7163 + 129.163i −0.0808689 + 0.406173i
\(319\) 674.650i 2.11489i
\(320\) −54.9081 + 132.156i −0.171588 + 0.412986i
\(321\) −804.263 −2.50549
\(322\) −190.204 37.8695i −0.590695 0.117607i
\(323\) −158.805 158.805i −0.491657 0.491657i
\(324\) −528.093 218.966i −1.62992 0.675821i
\(325\) −28.6304 28.6304i −0.0880937 0.0880937i
\(326\) −80.7455 120.891i −0.247686 0.370832i
\(327\) −962.302 −2.94282
\(328\) −128.504 + 192.094i −0.391779 + 0.585654i
\(329\) 183.024i 0.556304i
\(330\) −196.476 294.162i −0.595382 0.891400i
\(331\) 106.842 106.842i 0.322785 0.322785i −0.527050 0.849835i \(-0.676702\pi\)
0.849835 + 0.527050i \(0.176702\pi\)
\(332\) −152.041 367.434i −0.457955 1.10673i
\(333\) −394.970 + 394.970i −1.18610 + 1.18610i
\(334\) −410.748 81.7798i −1.22978 0.244850i
\(335\) 199.079i 0.594264i
\(336\) 0.439379 609.825i 0.00130768 1.81496i
\(337\) 291.677 0.865510 0.432755 0.901512i \(-0.357542\pi\)
0.432755 + 0.901512i \(0.357542\pi\)
\(338\) 40.3905 202.866i 0.119499 0.600195i
\(339\) −241.688 241.688i −0.712943 0.712943i
\(340\) 71.6402 + 173.131i 0.210706 + 0.509209i
\(341\) −270.414 270.414i −0.793004 0.793004i
\(342\) −358.853 + 239.684i −1.04928 + 0.700831i
\(343\) 339.867 0.990865
\(344\) −14.5031 + 2.87671i −0.0421603 + 0.00836252i
\(345\) 165.696i 0.480278i
\(346\) 25.4071 16.9699i 0.0734310 0.0490459i
\(347\) 262.829 262.829i 0.757433 0.757433i −0.218422 0.975854i \(-0.570091\pi\)
0.975854 + 0.218422i \(0.0700909\pi\)
\(348\) 917.903 + 380.595i 2.63765 + 1.09366i
\(349\) −429.583 + 429.583i −1.23090 + 1.23090i −0.267277 + 0.963620i \(0.586124\pi\)
−0.963620 + 0.267277i \(0.913876\pi\)
\(350\) −13.7903 + 69.2633i −0.0394009 + 0.197895i
\(351\) 486.243i 1.38531i
\(352\) −459.916 91.9137i −1.30658 0.261118i
\(353\) −240.396 −0.681008 −0.340504 0.940243i \(-0.610598\pi\)
−0.340504 + 0.940243i \(0.610598\pi\)
\(354\) 655.832 + 130.576i 1.85263 + 0.368858i
\(355\) 107.451 + 107.451i 0.302679 + 0.302679i
\(356\) −247.817 + 597.674i −0.696115 + 1.67886i
\(357\) −564.573 564.573i −1.58144 1.58144i
\(358\) 334.698 + 501.106i 0.934910 + 1.39974i
\(359\) 57.3483 0.159744 0.0798722 0.996805i \(-0.474549\pi\)
0.0798722 + 0.996805i \(0.474549\pi\)
\(360\) 353.145 70.0466i 0.980959 0.194574i
\(361\) 246.063i 0.681615i
\(362\) 43.2828 + 64.8025i 0.119566 + 0.179013i
\(363\) 358.013 358.013i 0.986263 0.986263i
\(364\) 211.377 87.4661i 0.580707 0.240292i
\(365\) −22.1743 + 22.1743i −0.0607515 + 0.0607515i
\(366\) 394.818 + 78.6082i 1.07874 + 0.214777i
\(367\) 67.9139i 0.185052i −0.995710 0.0925258i \(-0.970506\pi\)
0.995710 0.0925258i \(-0.0294941\pi\)
\(368\) −155.231 155.455i −0.421823 0.422431i
\(369\) 581.424 1.57568
\(370\) 24.2362 121.729i 0.0655033 0.328998i
\(371\) 60.9312 + 60.9312i 0.164235 + 0.164235i
\(372\) 520.466 215.365i 1.39910 0.578937i
\(373\) 23.4566 + 23.4566i 0.0628862 + 0.0628862i 0.737850 0.674964i \(-0.235841\pi\)
−0.674964 + 0.737850i \(0.735841\pi\)
\(374\) −510.636 + 341.063i −1.36534 + 0.911933i
\(375\) −60.3386 −0.160903
\(376\) −115.277 + 172.323i −0.306588 + 0.458305i
\(377\) 372.751i 0.988730i
\(378\) −705.267 + 471.061i −1.86579 + 1.24619i
\(379\) −200.977 + 200.977i −0.530283 + 0.530283i −0.920657 0.390374i \(-0.872346\pi\)
0.390374 + 0.920657i \(0.372346\pi\)
\(380\) 36.7275 88.5779i 0.0966514 0.233100i
\(381\) −414.823 + 414.823i −1.08878 + 1.08878i
\(382\) 111.314 559.085i 0.291397 1.46357i
\(383\) 128.871i 0.336479i 0.985746 + 0.168239i \(0.0538082\pi\)
−0.985746 + 0.168239i \(0.946192\pi\)
\(384\) 384.510 573.892i 1.00133 1.49451i
\(385\) −231.453 −0.601176
\(386\) −34.2320 6.81557i −0.0886839 0.0176569i
\(387\) 26.3023 + 26.3023i 0.0679647 + 0.0679647i
\(388\) 465.041 + 192.823i 1.19856 + 0.496965i
\(389\) −104.010 104.010i −0.267379 0.267379i 0.560664 0.828043i \(-0.310546\pi\)
−0.828043 + 0.560664i \(0.810546\pi\)
\(390\) 108.555 + 162.528i 0.278347 + 0.416738i
\(391\) −287.631 −0.735629
\(392\) −5.82357 3.89574i −0.0148560 0.00993811i
\(393\) 1.55738i 0.00396279i
\(394\) 145.139 + 217.300i 0.368373 + 0.551524i
\(395\) 17.3971 17.3971i 0.0440432 0.0440432i
\(396\) 451.141 + 1090.26i 1.13924 + 2.75318i
\(397\) 87.2509 87.2509i 0.219776 0.219776i −0.588628 0.808404i \(-0.700332\pi\)
0.808404 + 0.588628i \(0.200332\pi\)
\(398\) −581.469 115.770i −1.46098 0.290880i
\(399\) 408.616i 1.02410i
\(400\) −56.6093 + 56.5278i −0.141523 + 0.141319i
\(401\) 416.906 1.03967 0.519833 0.854268i \(-0.325994\pi\)
0.519833 + 0.854268i \(0.325994\pi\)
\(402\) −187.646 + 942.472i −0.466781 + 2.34446i
\(403\) 149.407 + 149.407i 0.370736 + 0.370736i
\(404\) 77.7755 + 187.958i 0.192514 + 0.465243i
\(405\) −225.980 225.980i −0.557975 0.557975i
\(406\) 540.654 361.113i 1.33166 0.889440i
\(407\) 406.775 0.999446
\(408\) −175.968 887.158i −0.431295 2.17441i
\(409\) 364.415i 0.890990i −0.895284 0.445495i \(-0.853028\pi\)
0.895284 0.445495i \(-0.146972\pi\)
\(410\) −107.436 + 71.7583i −0.262039 + 0.175020i
\(411\) 500.782 500.782i 1.21845 1.21845i
\(412\) −195.553 81.0831i −0.474642 0.196804i
\(413\) 309.381 309.381i 0.749106 0.749106i
\(414\) −107.920 + 542.041i −0.260677 + 1.30928i
\(415\) 222.292i 0.535644i
\(416\) 254.108 + 50.7833i 0.610838 + 0.122075i
\(417\) 568.520 1.36336
\(418\) 308.213 + 61.3651i 0.737351 + 0.146806i
\(419\) 206.623 + 206.623i 0.493134 + 0.493134i 0.909292 0.416159i \(-0.136624\pi\)
−0.416159 + 0.909292i \(0.636624\pi\)
\(420\) 130.571 314.906i 0.310884 0.749776i
\(421\) −262.161 262.161i −0.622710 0.622710i 0.323513 0.946224i \(-0.395136\pi\)
−0.946224 + 0.323513i \(0.895136\pi\)
\(422\) 268.471 + 401.952i 0.636188 + 0.952493i
\(423\) 521.580 1.23305
\(424\) 18.9913 + 95.7459i 0.0447907 + 0.225816i
\(425\) 104.742i 0.246451i
\(426\) −407.412 609.973i −0.956366 1.43186i
\(427\) 186.251 186.251i 0.436185 0.436185i
\(428\) −550.805 + 227.918i −1.28693 + 0.532520i
\(429\) −452.930 + 452.930i −1.05578 + 1.05578i
\(430\) −8.10634 1.61397i −0.0188520 0.00375342i
\(431\) 272.447i 0.632128i 0.948738 + 0.316064i \(0.102361\pi\)
−0.948738 + 0.316064i \(0.897639\pi\)
\(432\) −960.726 0.692204i −2.22390 0.00160232i
\(433\) −477.786 −1.10343 −0.551716 0.834032i \(-0.686027\pi\)
−0.551716 + 0.834032i \(0.686027\pi\)
\(434\) 71.9641 361.448i 0.165816 0.832829i
\(435\) 392.786 + 392.786i 0.902957 + 0.902957i
\(436\) −659.039 + 272.705i −1.51156 + 0.625470i
\(437\) 104.088 + 104.088i 0.238188 + 0.238188i
\(438\) 125.878 84.0761i 0.287392 0.191955i
\(439\) −304.402 −0.693398 −0.346699 0.937977i \(-0.612697\pi\)
−0.346699 + 0.937977i \(0.612697\pi\)
\(440\) −217.920 145.780i −0.495273 0.331318i
\(441\) 17.6266i 0.0399695i
\(442\) 282.132 188.441i 0.638307 0.426337i
\(443\) −541.093 + 541.093i −1.22143 + 1.22143i −0.254304 + 0.967124i \(0.581846\pi\)
−0.967124 + 0.254304i \(0.918154\pi\)
\(444\) −229.477 + 553.442i −0.516840 + 1.24649i
\(445\) −255.755 + 255.755i −0.574730 + 0.574730i
\(446\) −90.3941 + 454.014i −0.202677 + 1.01797i
\(447\) 1066.88i 2.38676i
\(448\) −172.516 417.767i −0.385081 0.932516i
\(449\) 467.626 1.04148 0.520742 0.853714i \(-0.325656\pi\)
0.520742 + 0.853714i \(0.325656\pi\)
\(450\) 197.386 + 39.2995i 0.438635 + 0.0873321i
\(451\) −299.401 299.401i −0.663860 0.663860i
\(452\) −234.013 97.0301i −0.517727 0.214668i
\(453\) −674.339 674.339i −1.48861 1.48861i
\(454\) −25.0501 37.5048i −0.0551765 0.0826097i
\(455\) 127.880 0.281055
\(456\) −257.365 + 384.724i −0.564398 + 0.843694i
\(457\) 388.024i 0.849069i 0.905412 + 0.424534i \(0.139562\pi\)
−0.905412 + 0.424534i \(0.860438\pi\)
\(458\) −385.863 577.711i −0.842497 1.26138i
\(459\) −889.436 + 889.436i −1.93777 + 1.93777i
\(460\) −46.9562 113.478i −0.102079 0.246691i
\(461\) 513.706 513.706i 1.11433 1.11433i 0.121772 0.992558i \(-0.461142\pi\)
0.992558 0.121772i \(-0.0388576\pi\)
\(462\) 1095.74 + 218.161i 2.37173 + 0.472210i
\(463\) 338.087i 0.730209i 0.930967 + 0.365105i \(0.118967\pi\)
−0.930967 + 0.365105i \(0.881033\pi\)
\(464\) 736.488 + 0.530640i 1.58726 + 0.00114362i
\(465\) 314.875 0.677150
\(466\) −134.295 + 674.513i −0.288187 + 1.44745i
\(467\) −368.745 368.745i −0.789604 0.789604i 0.191825 0.981429i \(-0.438559\pi\)
−0.981429 + 0.191825i \(0.938559\pi\)
\(468\) −249.260 602.381i −0.532607 1.28714i
\(469\) 444.600 + 444.600i 0.947975 + 0.947975i
\(470\) −96.3777 + 64.3724i −0.205059 + 0.136963i
\(471\) −73.3410 −0.155713
\(472\) 486.154 96.4290i 1.02999 0.204299i
\(473\) 27.0884i 0.0572694i
\(474\) −98.7586 + 65.9626i −0.208351 + 0.139162i
\(475\) 37.9040 37.9040i 0.0797978 0.0797978i
\(476\) −546.645 226.658i −1.14841 0.476173i
\(477\) 173.641 173.641i 0.364027 0.364027i
\(478\) 100.525 504.898i 0.210303 1.05627i
\(479\) 448.127i 0.935547i −0.883848 0.467773i \(-0.845056\pi\)
0.883848 0.467773i \(-0.154944\pi\)
\(480\) 321.279 214.254i 0.669332 0.446362i
\(481\) −224.747 −0.467250
\(482\) 356.456 + 70.9703i 0.739536 + 0.147241i
\(483\) 370.047 + 370.047i 0.766142 + 0.766142i
\(484\) 143.731 346.644i 0.296965 0.716208i
\(485\) 198.999 + 198.999i 0.410307 + 0.410307i
\(486\) 256.516 + 384.054i 0.527811 + 0.790234i
\(487\) −333.697 −0.685210 −0.342605 0.939480i \(-0.611309\pi\)
−0.342605 + 0.939480i \(0.611309\pi\)
\(488\) 292.671 58.0514i 0.599735 0.118958i
\(489\) 392.290i 0.802229i
\(490\) −2.17544 3.25704i −0.00443967 0.00664703i
\(491\) −118.839 + 118.839i −0.242034 + 0.242034i −0.817691 0.575657i \(-0.804746\pi\)
0.575657 + 0.817691i \(0.304746\pi\)
\(492\) 576.257 238.450i 1.17125 0.484655i
\(493\) 681.837 681.837i 1.38304 1.38304i
\(494\) −170.291 33.9048i −0.344718 0.0686333i
\(495\) 659.592i 1.33251i
\(496\) 295.413 294.988i 0.595591 0.594733i
\(497\) −479.939 −0.965672
\(498\) −209.526 + 1052.37i −0.420736 + 2.11319i
\(499\) 148.915 + 148.915i 0.298427 + 0.298427i 0.840398 0.541970i \(-0.182321\pi\)
−0.541970 + 0.840398i \(0.682321\pi\)
\(500\) −41.3233 + 17.0992i −0.0826466 + 0.0341985i
\(501\) 799.121 + 799.121i 1.59505 + 1.59505i
\(502\) −118.482 + 79.1364i −0.236020 + 0.157642i
\(503\) 347.840 0.691530 0.345765 0.938321i \(-0.387619\pi\)
0.345765 + 0.938321i \(0.387619\pi\)
\(504\) −632.241 + 945.109i −1.25445 + 1.87522i
\(505\) 113.712i 0.225172i
\(506\) 334.693 223.548i 0.661449 0.441794i
\(507\) −394.681 + 394.681i −0.778463 + 0.778463i
\(508\) −166.539 + 401.650i −0.327832 + 0.790650i
\(509\) 129.882 129.882i 0.255171 0.255171i −0.567916 0.823087i \(-0.692250\pi\)
0.823087 + 0.567916i \(0.192250\pi\)
\(510\) 98.7266 495.865i 0.193582 0.972285i
\(511\) 99.0433i 0.193823i
\(512\) 100.700 501.999i 0.196680 0.980468i
\(513\) 643.739 1.25485
\(514\) −386.346 76.9213i −0.751645 0.149652i
\(515\) −83.6802 83.6802i −0.162486 0.162486i
\(516\) 36.8555 + 15.2816i 0.0714254 + 0.0296155i
\(517\) −268.584 268.584i −0.519505 0.519505i
\(518\) 217.730 + 325.983i 0.420328 + 0.629311i
\(519\) −82.4456 −0.158855
\(520\) 120.403 + 80.5449i 0.231544 + 0.154894i
\(521\) 240.395i 0.461411i −0.973024 0.230706i \(-0.925897\pi\)
0.973024 0.230706i \(-0.0741034\pi\)
\(522\) −1029.09 1540.75i −1.97145 2.95163i
\(523\) −501.537 + 501.537i −0.958962 + 0.958962i −0.999191 0.0402281i \(-0.987192\pi\)
0.0402281 + 0.999191i \(0.487192\pi\)
\(524\) −0.441342 1.06658i −0.000842255 0.00203546i
\(525\) 134.754 134.754i 0.256674 0.256674i
\(526\) −86.4305 17.2083i −0.164317 0.0327154i
\(527\) 546.590i 1.03717i
\(528\) 894.262 + 895.552i 1.69368 + 1.69612i
\(529\) −340.474 −0.643618
\(530\) −10.6550 + 53.5159i −0.0201038 + 0.100973i
\(531\) −881.670 881.670i −1.66040 1.66040i
\(532\) 115.797 + 279.843i 0.217663 + 0.526021i
\(533\) 165.422 + 165.422i 0.310360 + 0.310360i
\(534\) 1451.85 969.720i 2.71883 1.81596i
\(535\) −333.229 −0.622858
\(536\) 138.575 + 698.635i 0.258535 + 1.30342i
\(537\) 1626.08i 3.02808i
\(538\) −286.433 + 191.314i −0.532403 + 0.355602i
\(539\) 9.07669 9.07669i 0.0168399 0.0168399i
\(540\) −496.107 205.704i −0.918717 0.380933i
\(541\) −675.194 + 675.194i −1.24805 + 1.24805i −0.291467 + 0.956581i \(0.594143\pi\)
−0.956581 + 0.291467i \(0.905857\pi\)
\(542\) 88.1182 442.583i 0.162580 0.816574i
\(543\) 210.283i 0.387261i
\(544\) −371.923 557.709i −0.683682 1.02520i
\(545\) −398.709 −0.731576
\(546\) −605.406 120.536i −1.10880 0.220762i
\(547\) 324.268 + 324.268i 0.592811 + 0.592811i 0.938390 0.345579i \(-0.112317\pi\)
−0.345579 + 0.938390i \(0.612317\pi\)
\(548\) 201.048 484.880i 0.366877 0.884817i
\(549\) −530.776 530.776i −0.966805 0.966805i
\(550\) −81.4056 121.880i −0.148010 0.221599i
\(551\) −493.487 −0.895620
\(552\) 115.338 + 581.483i 0.208945 + 1.05341i
\(553\) 77.7053i 0.140516i
\(554\) 39.8348 + 59.6402i 0.0719039 + 0.107654i
\(555\) −236.827 + 236.827i −0.426716 + 0.426716i
\(556\) 389.354 161.112i 0.700278 0.289769i
\(557\) −454.039 + 454.039i −0.815151 + 0.815151i −0.985401 0.170250i \(-0.945543\pi\)
0.170250 + 0.985401i \(0.445543\pi\)
\(558\) −1030.05 205.082i −1.84597 0.367531i
\(559\) 14.9667i 0.0267740i
\(560\) 0.182047 252.668i 0.000325084 0.451192i
\(561\) 1657.00 2.95366
\(562\) 89.9708 451.888i 0.160090 0.804072i
\(563\) 530.844 + 530.844i 0.942885 + 0.942885i 0.998455 0.0555697i \(-0.0176975\pi\)
−0.0555697 + 0.998455i \(0.517698\pi\)
\(564\) 516.944 213.907i 0.916567 0.379268i
\(565\) −100.138 100.138i −0.177235 0.177235i
\(566\) 169.654 113.315i 0.299743 0.200204i
\(567\) 1009.36 1.78017
\(568\) −451.877 302.288i −0.795559 0.532197i
\(569\) 444.904i 0.781906i 0.920411 + 0.390953i \(0.127854\pi\)
−0.920411 + 0.390953i \(0.872146\pi\)
\(570\) −215.171 + 143.717i −0.377493 + 0.252134i
\(571\) −144.285 + 144.285i −0.252688 + 0.252688i −0.822072 0.569384i \(-0.807182\pi\)
0.569384 + 0.822072i \(0.307182\pi\)
\(572\) −181.837 + 438.547i −0.317897 + 0.766691i
\(573\) −1087.71 + 1087.71i −1.89828 + 1.89828i
\(574\) 79.6781 400.192i 0.138812 0.697199i
\(575\) 68.6524i 0.119396i
\(576\) −1190.55 + 491.635i −2.06692 + 0.853532i
\(577\) 572.779 0.992685 0.496343 0.868127i \(-0.334676\pi\)
0.496343 + 0.868127i \(0.334676\pi\)
\(578\) −293.898 58.5150i −0.508475 0.101237i
\(579\) 66.5992 + 66.5992i 0.115025 + 0.115025i
\(580\) 380.313 + 157.691i 0.655712 + 0.271882i
\(581\) 496.443 + 496.443i 0.854463 + 0.854463i
\(582\) −754.524 1129.67i −1.29643 1.94101i
\(583\) −178.831 −0.306742
\(584\) 62.3821 93.2523i 0.106819 0.159679i
\(585\) 364.431i 0.622960i
\(586\) 378.478 + 566.653i 0.645866 + 0.966984i
\(587\) −44.1122 + 44.1122i −0.0751486 + 0.0751486i −0.743682 0.668533i \(-0.766922\pi\)
0.668533 + 0.743682i \(0.266922\pi\)
\(588\) 7.22890 + 17.4699i 0.0122940 + 0.0297107i
\(589\) −197.800 + 197.800i −0.335824 + 0.335824i
\(590\) 271.730 + 54.1013i 0.460559 + 0.0916970i
\(591\) 705.135i 1.19312i
\(592\) −0.319945 + 444.060i −0.000540448 + 0.750101i
\(593\) −463.508 −0.781632 −0.390816 0.920469i \(-0.627807\pi\)
−0.390816 + 0.920469i \(0.627807\pi\)
\(594\) 343.694 1726.24i 0.578609 2.90613i
\(595\) −233.919 233.919i −0.393141 0.393141i
\(596\) −302.342 730.662i −0.507285 1.22594i
\(597\) 1131.26 + 1131.26i 1.89491 + 1.89491i
\(598\) −184.922 + 123.513i −0.309233 + 0.206543i
\(599\) 441.512 0.737082 0.368541 0.929612i \(-0.379857\pi\)
0.368541 + 0.929612i \(0.379857\pi\)
\(600\) 211.749 42.0005i 0.352915 0.0700009i
\(601\) 403.814i 0.671904i 0.941879 + 0.335952i \(0.109058\pi\)
−0.941879 + 0.335952i \(0.890942\pi\)
\(602\) 21.7083 14.4993i 0.0360602 0.0240853i
\(603\) 1267.02 1267.02i 2.10119 2.10119i
\(604\) −652.925 270.726i −1.08100 0.448222i
\(605\) 148.335 148.335i 0.245182 0.245182i
\(606\) 107.182 538.332i 0.176867 0.888336i
\(607\) 789.688i 1.30097i 0.759520 + 0.650484i \(0.225434\pi\)
−0.759520 + 0.650484i \(0.774566\pi\)
\(608\) −67.2322 + 336.415i −0.110579 + 0.553315i
\(609\) −1754.41 −2.88081
\(610\) 163.584 + 32.5696i 0.268171 + 0.0533928i
\(611\) 148.396 + 148.396i 0.242873 + 0.242873i
\(612\) −645.929 + 1557.82i −1.05544 + 2.54546i
\(613\) 664.045 + 664.045i 1.08327 + 1.08327i 0.996202 + 0.0870678i \(0.0277497\pi\)
0.0870678 + 0.996202i \(0.472250\pi\)
\(614\) −424.624 635.743i −0.691570 1.03541i
\(615\) 348.627 0.566873
\(616\) 812.247 161.110i 1.31858 0.261542i
\(617\) 934.518i 1.51462i 0.653058 + 0.757308i \(0.273486\pi\)
−0.653058 + 0.757308i \(0.726514\pi\)
\(618\) 317.282 + 475.031i 0.513401 + 0.768659i
\(619\) 496.720 496.720i 0.802455 0.802455i −0.181024 0.983479i \(-0.557941\pi\)
0.983479 + 0.181024i \(0.0579411\pi\)
\(620\) 215.644 89.2316i 0.347813 0.143922i
\(621\) 582.976 582.976i 0.938770 0.938770i
\(622\) −1063.34 211.711i −1.70955 0.340371i
\(623\) 1142.35i 1.83363i
\(624\) −494.089 494.802i −0.791810 0.792952i
\(625\) −25.0000 −0.0400000
\(626\) −58.5067 + 293.856i −0.0934612 + 0.469419i
\(627\) −599.636 599.636i −0.956358 0.956358i
\(628\) −50.2281 + 20.7840i −0.0799810 + 0.0330955i
\(629\) 411.108 + 411.108i 0.653590 + 0.653590i
\(630\) −528.587 + 353.053i −0.839027 + 0.560401i
\(631\) −767.372 −1.21612 −0.608060 0.793891i \(-0.708052\pi\)
−0.608060 + 0.793891i \(0.708052\pi\)
\(632\) −48.9424 + 73.1619i −0.0774406 + 0.115763i
\(633\) 1304.33i 2.06055i
\(634\) −986.275 + 658.751i −1.55564 + 1.03904i
\(635\) −171.873 + 171.873i −0.270666 + 0.270666i
\(636\) 100.885 243.310i 0.158624 0.382563i
\(637\) −5.01497 + 5.01497i −0.00787279 + 0.00787279i
\(638\) −263.474 + 1323.33i −0.412968 + 2.07418i
\(639\) 1367.73i 2.14041i
\(640\) 159.313 237.780i 0.248927 0.371531i
\(641\) 670.734 1.04639 0.523193 0.852214i \(-0.324741\pi\)
0.523193 + 0.852214i \(0.324741\pi\)
\(642\) 1577.56 + 314.092i 2.45726 + 0.489240i
\(643\) 329.050 + 329.050i 0.511743 + 0.511743i 0.915060 0.403317i \(-0.132143\pi\)
−0.403317 + 0.915060i \(0.632143\pi\)
\(644\) 358.296 + 148.562i 0.556360 + 0.230687i
\(645\) 15.7711 + 15.7711i 0.0244513 + 0.0244513i
\(646\) 249.478 + 373.515i 0.386188 + 0.578197i
\(647\) 576.907 0.891664 0.445832 0.895117i \(-0.352908\pi\)
0.445832 + 0.895117i \(0.352908\pi\)
\(648\) 950.340 + 635.740i 1.46657 + 0.981080i
\(649\) 908.021i 1.39911i
\(650\) 44.9775 + 67.3398i 0.0691961 + 0.103600i
\(651\) −703.206 + 703.206i −1.08019 + 1.08019i
\(652\) 111.170 + 268.662i 0.170506 + 0.412059i
\(653\) 905.010 905.010i 1.38593 1.38593i 0.552243 0.833683i \(-0.313772\pi\)
0.833683 0.552243i \(-0.186228\pi\)
\(654\) 1887.56 + 375.812i 2.88617 + 0.574636i
\(655\) 0.645265i 0.000985138i
\(656\) 327.079 326.608i 0.498596 0.497879i
\(657\) −282.253 −0.429608
\(658\) 71.4771 359.002i 0.108628 0.545595i
\(659\) −420.842 420.842i −0.638606 0.638606i 0.311605 0.950212i \(-0.399133\pi\)
−0.950212 + 0.311605i \(0.899133\pi\)
\(660\) 270.508 + 653.730i 0.409860 + 0.990500i
\(661\) −661.814 661.814i −1.00123 1.00123i −0.999999 0.00123192i \(-0.999608\pi\)
−0.00123192 0.999999i \(-0.500392\pi\)
\(662\) −251.296 + 167.845i −0.379601 + 0.253542i
\(663\) −915.511 −1.38086
\(664\) 154.733 + 780.100i 0.233032 + 1.17485i
\(665\) 169.301i 0.254588i
\(666\) 928.983 620.484i 1.39487 0.931658i
\(667\) −446.907 + 446.907i −0.670025 + 0.670025i
\(668\) 773.745 + 320.822i 1.15830 + 0.480273i
\(669\) 883.297 883.297i 1.32032 1.32032i
\(670\) −77.7470 + 390.493i −0.116040 + 0.582825i
\(671\) 546.640i 0.814664i
\(672\) −239.019 + 1196.00i −0.355683 + 1.77976i
\(673\) −469.242 −0.697240 −0.348620 0.937264i \(-0.613350\pi\)
−0.348620 + 0.937264i \(0.613350\pi\)
\(674\) −572.124 113.910i −0.848849 0.169005i
\(675\) −212.293 212.293i −0.314508 0.314508i
\(676\) −158.452 + 382.147i −0.234396 + 0.565307i
\(677\) −656.674 656.674i −0.969977 0.969977i 0.0295853 0.999562i \(-0.490581\pi\)
−0.999562 + 0.0295853i \(0.990581\pi\)
\(678\) 379.683 + 568.458i 0.560005 + 0.838433i
\(679\) −888.844 −1.30905
\(680\) −72.9087 367.575i −0.107219 0.540551i
\(681\) 121.702i 0.178711i
\(682\) 424.812 + 636.024i 0.622891 + 0.932586i
\(683\) −21.1806 + 21.1806i −0.0310111 + 0.0310111i −0.722442 0.691431i \(-0.756981\pi\)
0.691431 + 0.722442i \(0.256981\pi\)
\(684\) 797.494 329.996i 1.16593 0.482451i
\(685\) 207.488 207.488i 0.302902 0.302902i
\(686\) −666.648 132.729i −0.971791 0.193483i
\(687\) 1874.66i 2.72876i
\(688\) 29.5714 + 0.0213062i 0.0429816 + 3.09683e-5i
\(689\) 98.8059 0.143405
\(690\) −64.7098 + 325.012i −0.0937824 + 0.471032i
\(691\) −117.463 117.463i −0.169990 0.169990i 0.616985 0.786975i \(-0.288354\pi\)
−0.786975 + 0.616985i \(0.788354\pi\)
\(692\) −56.4634 + 23.3641i −0.0815945 + 0.0337631i
\(693\) −1473.06 1473.06i −2.12563 2.12563i
\(694\) −618.183 + 412.896i −0.890754 + 0.594950i
\(695\) 235.554 0.338926
\(696\) −1651.83 1105.01i −2.37332 1.58766i
\(697\) 605.181i 0.868265i
\(698\) 1010.39 674.860i 1.44756 0.966849i
\(699\) 1312.28 1312.28i 1.87737 1.87737i
\(700\) 54.0994 130.474i 0.0772848 0.186392i
\(701\) 475.012 475.012i 0.677620 0.677620i −0.281841 0.959461i \(-0.590945\pi\)
0.959461 + 0.281841i \(0.0909450\pi\)
\(702\) −189.894 + 953.765i −0.270505 + 1.35864i
\(703\) 297.544i 0.423249i
\(704\) 866.230 + 359.902i 1.23044 + 0.511224i
\(705\) 312.744 0.443608
\(706\) 471.536 + 93.8827i 0.667898 + 0.132978i
\(707\) −253.952 253.952i −0.359196 0.359196i
\(708\) −1235.42 512.249i −1.74494 0.723516i
\(709\) −459.941 459.941i −0.648718 0.648718i 0.303965 0.952683i \(-0.401689\pi\)
−0.952683 + 0.303965i \(0.901689\pi\)
\(710\) −168.802 252.729i −0.237750 0.355956i
\(711\) 221.444 0.311454
\(712\) 719.505 1075.56i 1.01054 1.51061i
\(713\) 358.260i 0.502468i
\(714\) 886.926 + 1327.90i 1.24219 + 1.85980i
\(715\) −187.662 + 187.662i −0.262464 + 0.262464i
\(716\) −460.811 1113.63i −0.643591 1.55535i
\(717\) −982.292 + 982.292i −1.37000 + 1.37000i
\(718\) −112.489 22.3964i −0.156669 0.0311928i
\(719\) 79.4499i 0.110501i 0.998473 + 0.0552503i \(0.0175957\pi\)
−0.998473 + 0.0552503i \(0.982404\pi\)
\(720\) −720.050 0.518796i −1.00007 0.000720550i
\(721\) 373.764 0.518397
\(722\) −96.0960 + 482.653i −0.133097 + 0.668494i
\(723\) −693.495 693.495i −0.959191 0.959191i
\(724\) −59.5916 144.014i −0.0823089 0.198914i
\(725\) 162.742 + 162.742i 0.224472 + 0.224472i
\(726\) −842.060 + 562.427i −1.15986 + 0.774693i
\(727\) −645.074 −0.887310 −0.443655 0.896198i \(-0.646318\pi\)
−0.443655 + 0.896198i \(0.646318\pi\)
\(728\) −448.775 + 89.0148i −0.616449 + 0.122273i
\(729\) 40.0535i 0.0549431i
\(730\) 52.1547 34.8351i 0.0714449 0.0477193i
\(731\) 27.3770 27.3770i 0.0374515 0.0374515i
\(732\) −743.737 308.380i −1.01603 0.421284i
\(733\) 673.917 673.917i 0.919396 0.919396i −0.0775895 0.996985i \(-0.524722\pi\)
0.996985 + 0.0775895i \(0.0247224\pi\)
\(734\) −26.5227 + 133.213i −0.0361345 + 0.181489i
\(735\) 10.5690i 0.0143796i
\(736\) 243.775 + 365.547i 0.331216 + 0.496667i
\(737\) −1304.88 −1.77054
\(738\) −1140.46 227.066i −1.54534 0.307677i
\(739\) 489.699 + 489.699i 0.662651 + 0.662651i 0.956004 0.293353i \(-0.0947711\pi\)
−0.293353 + 0.956004i \(0.594771\pi\)
\(740\) −95.0788 + 229.307i −0.128485 + 0.309874i
\(741\) 331.305 + 331.305i 0.447106 + 0.447106i
\(742\) −95.7208 143.312i −0.129004 0.193143i
\(743\) −444.077 −0.597681 −0.298840 0.954303i \(-0.596600\pi\)
−0.298840 + 0.954303i \(0.596600\pi\)
\(744\) −1105.00 + 219.178i −1.48522 + 0.294594i
\(745\) 442.040i 0.593342i
\(746\) −36.8495 55.1706i −0.0493961 0.0739553i
\(747\) 1414.76 1414.76i 1.89392 1.89392i
\(748\) 1134.81 469.574i 1.51712 0.627773i
\(749\) 744.196 744.196i 0.993587 0.993587i
\(750\) 118.354 + 23.5643i 0.157806 + 0.0314190i
\(751\) 739.796i 0.985081i −0.870289 0.492541i \(-0.836068\pi\)
0.870289 0.492541i \(-0.163932\pi\)
\(752\) 293.414 292.991i 0.390178 0.389616i
\(753\) 384.472 0.510587
\(754\) 145.572 731.151i 0.193066 0.969697i
\(755\) −279.398 279.398i −0.370063 0.370063i
\(756\) 1567.35 648.555i 2.07321 0.857877i
\(757\) 705.538 + 705.538i 0.932019 + 0.932019i 0.997832 0.0658133i \(-0.0209642\pi\)
−0.0658133 + 0.997832i \(0.520964\pi\)
\(758\) 472.705 315.729i 0.623622 0.416528i
\(759\) −1086.07 −1.43093
\(760\) −106.634 + 159.402i −0.140308 + 0.209740i
\(761\) 1439.41i 1.89148i 0.324929 + 0.945738i \(0.394660\pi\)
−0.324929 + 0.945738i \(0.605340\pi\)
\(762\) 975.679 651.673i 1.28042 0.855215i
\(763\) 890.433 890.433i 1.16702 1.16702i
\(764\) −436.683 + 1053.17i −0.571575 + 1.37850i
\(765\) −666.619 + 666.619i −0.871397 + 0.871397i
\(766\) 50.3287 252.781i 0.0657032 0.330002i
\(767\) 501.691i 0.654096i
\(768\) −978.341 + 975.526i −1.27388 + 1.27022i
\(769\) 994.407 1.29312 0.646558 0.762865i \(-0.276208\pi\)
0.646558 + 0.762865i \(0.276208\pi\)
\(770\) 453.995 + 90.3902i 0.589604 + 0.117390i
\(771\) 751.645 + 751.645i 0.974897 + 0.974897i
\(772\) 64.4843 + 26.7375i 0.0835289 + 0.0346341i
\(773\) −506.461 506.461i −0.655188 0.655188i 0.299049 0.954238i \(-0.403331\pi\)
−0.954238 + 0.299049i \(0.903331\pi\)
\(774\) −41.3201 61.8640i −0.0533851 0.0799276i
\(775\) 130.461 0.168337
\(776\) −836.874 559.836i −1.07845 0.721438i
\(777\) 1057.81i 1.36140i
\(778\) 163.397 + 244.636i 0.210022 + 0.314442i
\(779\) −219.003 + 219.003i −0.281134 + 0.281134i
\(780\) −149.458 361.193i −0.191613 0.463067i
\(781\) 704.302 704.302i 0.901795 0.901795i
\(782\) 564.188 + 112.330i 0.721469 + 0.143644i
\(783\) 2763.92i 3.52991i
\(784\) 9.90152 + 9.91579i 0.0126295 + 0.0126477i
\(785\) −30.3873 −0.0387099
\(786\) −0.608208 + 3.05479i −0.000773802 + 0.00388651i
\(787\) −168.801 168.801i −0.214487 0.214487i 0.591684 0.806170i \(-0.298463\pi\)
−0.806170 + 0.591684i \(0.798463\pi\)
\(788\) −199.827 482.916i −0.253587 0.612838i
\(789\) 168.153 + 168.153i 0.213122 + 0.213122i
\(790\) −40.9185 + 27.3302i −0.0517955 + 0.0345952i
\(791\) 447.274 0.565454
\(792\) −459.129 2314.73i −0.579708 2.92264i
\(793\) 302.024i 0.380863i
\(794\) −205.217 + 137.068i −0.258460 + 0.172630i
\(795\) 104.117 104.117i 0.130964 0.130964i
\(796\) 1095.34 + 454.167i 1.37605 + 0.570561i
\(797\) −994.677 + 994.677i −1.24803 + 1.24803i −0.291435 + 0.956591i \(0.594133\pi\)
−0.956591 + 0.291435i \(0.905867\pi\)
\(798\) 159.578 801.500i 0.199973 1.00439i
\(799\) 542.891i 0.679463i
\(800\) 133.115 88.7714i 0.166394 0.110964i
\(801\) −3255.46 −4.06424
\(802\) −817.761 162.816i −1.01965 0.203012i
\(803\) 145.344 + 145.344i 0.181002 + 0.181002i
\(804\) 736.135 1775.38i 0.915590 2.20818i
\(805\) 153.321 + 153.321i 0.190461 + 0.190461i
\(806\) −234.713 351.410i −0.291207 0.435992i
\(807\) 929.468 1.15176
\(808\) −79.1526 399.054i −0.0979612 0.493879i
\(809\) 219.139i 0.270876i −0.990786 0.135438i \(-0.956756\pi\)
0.990786 0.135438i \(-0.0432441\pi\)
\(810\) 355.007 + 531.512i 0.438280 + 0.656188i
\(811\) 942.641 942.641i 1.16232 1.16232i 0.178352 0.983967i \(-0.442923\pi\)
0.983967 0.178352i \(-0.0570767\pi\)
\(812\) −1201.52 + 497.179i −1.47970 + 0.612289i
\(813\) −861.057 + 861.057i −1.05911 + 1.05911i
\(814\) −797.889 158.859i −0.980207 0.195159i
\(815\) 162.537i 0.199432i
\(816\) −1.30330 + 1808.88i −0.00159718 + 2.21677i
\(817\) −19.8144 −0.0242526
\(818\) −142.316 + 714.800i −0.173981 + 0.873839i
\(819\) 813.881 + 813.881i 0.993749 + 0.993749i
\(820\) 238.759 98.7966i 0.291170 0.120484i
\(821\) −476.861 476.861i −0.580830 0.580830i 0.354301 0.935131i \(-0.384719\pi\)
−0.935131 + 0.354301i \(0.884719\pi\)
\(822\) −1177.86 + 786.712i −1.43292 + 0.957070i
\(823\) 1372.74 1.66797 0.833985 0.551788i \(-0.186054\pi\)
0.833985 + 0.551788i \(0.186054\pi\)
\(824\) 351.911 + 235.414i 0.427076 + 0.285697i
\(825\) 395.497i 0.479390i
\(826\) −727.674 + 486.027i −0.880962 + 0.588410i
\(827\) 171.863 171.863i 0.207815 0.207815i −0.595523 0.803338i \(-0.703055\pi\)
0.803338 + 0.595523i \(0.203055\pi\)
\(828\) 423.371 1021.07i 0.511317 1.23317i
\(829\) 100.485 100.485i 0.121212 0.121212i −0.643899 0.765111i \(-0.722684\pi\)
0.765111 + 0.643899i \(0.222684\pi\)
\(830\) −86.8127 + 436.026i −0.104594 + 0.525333i
\(831\) 193.531i 0.232889i
\(832\) −478.601 198.849i −0.575242 0.239002i
\(833\) 18.3468 0.0220249
\(834\) −1115.15 222.026i −1.33711 0.266219i
\(835\) 331.099 + 331.099i 0.396525 + 0.396525i
\(836\) −580.594 240.735i −0.694491 0.287961i
\(837\) 1107.84 + 1107.84i 1.32358 + 1.32358i
\(838\) −324.598 485.984i −0.387348 0.579933i
\(839\) −519.265 −0.618909 −0.309455 0.950914i \(-0.600147\pi\)
−0.309455 + 0.950914i \(0.600147\pi\)
\(840\) −379.097 + 566.696i −0.451306 + 0.674638i
\(841\) 1277.81i 1.51939i
\(842\) 411.846 + 616.612i 0.489128 + 0.732318i
\(843\) −879.161 + 879.161i −1.04290 + 1.04290i
\(844\) −369.630 893.277i −0.437951 1.05838i
\(845\) −163.527 + 163.527i −0.193524 + 0.193524i
\(846\) −1023.08 203.695i −1.20931 0.240774i
\(847\) 662.550i 0.782232i
\(848\) 0.140658 195.222i 0.000165870 0.230215i
\(849\) −550.525 −0.648440
\(850\) 40.9052 205.451i 0.0481238 0.241707i
\(851\) −269.459 269.459i −0.316638 0.316638i
\(852\) 560.923 + 1355.57i 0.658361 + 1.59104i
\(853\) 989.103 + 989.103i 1.15956 + 1.15956i 0.984571 + 0.174987i \(0.0559885\pi\)
0.174987 + 0.984571i \(0.444012\pi\)
\(854\) −438.069 + 292.594i −0.512961 + 0.342616i
\(855\) 482.472 0.564295
\(856\) 1169.41 231.954i 1.36614 0.270974i
\(857\) 271.282i 0.316549i −0.987395 0.158274i \(-0.949407\pi\)
0.987395 0.158274i \(-0.0505931\pi\)
\(858\) 1065.31 711.538i 1.24162 0.829298i
\(859\) 397.195 397.195i 0.462393 0.462393i −0.437046 0.899439i \(-0.643975\pi\)
0.899439 + 0.437046i \(0.143975\pi\)
\(860\) 15.2703 + 6.33160i 0.0177561 + 0.00736233i
\(861\) −778.585 + 778.585i −0.904280 + 0.904280i
\(862\) 106.400 534.405i 0.123434 0.619960i
\(863\) 84.9753i 0.0984649i 0.998787 + 0.0492325i \(0.0156775\pi\)
−0.998787 + 0.0492325i \(0.984322\pi\)
\(864\) 1884.19 + 376.554i 2.18078 + 0.435826i
\(865\) −34.1595 −0.0394908
\(866\) 937.177 + 186.592i 1.08219 + 0.215464i
\(867\) 571.787 + 571.787i 0.659500 + 0.659500i
\(868\) −282.315 + 680.875i −0.325248 + 0.784419i
\(869\) −114.031 114.031i −0.131221 0.131221i
\(870\) −617.054 923.847i −0.709257 1.06189i
\(871\) 720.963 0.827741
\(872\) 1399.21 277.533i 1.60459 0.318272i
\(873\) 2533.02i 2.90151i
\(874\) −163.519 244.819i −0.187092 0.280113i
\(875\) 55.8322 55.8322i 0.0638083 0.0638083i
\(876\) −279.744 + 115.756i −0.319342 + 0.132141i
\(877\) 264.532 264.532i 0.301633 0.301633i −0.540020 0.841652i \(-0.681583\pi\)
0.841652 + 0.540020i \(0.181583\pi\)
\(878\) 597.084 + 118.879i 0.680050 + 0.135398i
\(879\) 1838.78i 2.09190i
\(880\) 370.518 + 371.052i 0.421043 + 0.421651i
\(881\) −199.022 −0.225905 −0.112952 0.993600i \(-0.536031\pi\)
−0.112952 + 0.993600i \(0.536031\pi\)
\(882\) 6.88377 34.5745i 0.00780473 0.0392001i
\(883\) 403.210 + 403.210i 0.456636 + 0.456636i 0.897550 0.440913i \(-0.145345\pi\)
−0.440913 + 0.897550i \(0.645345\pi\)
\(884\) −626.994 + 259.445i −0.709269 + 0.293489i
\(885\) −528.657 528.657i −0.597353 0.597353i
\(886\) 1272.67 850.038i 1.43642 0.959411i
\(887\) −794.907 −0.896174 −0.448087 0.893990i \(-0.647895\pi\)
−0.448087 + 0.893990i \(0.647895\pi\)
\(888\) 666.257 995.959i 0.750289 1.12157i
\(889\) 767.684i 0.863537i
\(890\) 601.544 401.782i 0.675893 0.451441i
\(891\) −1481.21 + 1481.21i −1.66242 + 1.66242i
\(892\) 354.616 855.247i 0.397552 0.958798i
\(893\) −196.462 + 196.462i −0.220002 + 0.220002i
\(894\) −416.654 + 2092.69i −0.466056 + 2.34082i
\(895\) 673.730i 0.752771i
\(896\) 175.238 + 886.824i 0.195578 + 0.989759i
\(897\) 600.067 0.668971
\(898\) −917.248 182.624i −1.02143 0.203367i
\(899\) −849.264 849.264i −0.944677 0.944677i
\(900\) −371.825 154.172i −0.413138 0.171302i
\(901\) −180.736 180.736i −0.200595 0.200595i
\(902\) 470.349 + 704.201i 0.521451 + 0.780711i
\(903\) −70.4429 −0.0780098
\(904\) 421.123 + 281.714i 0.465844 + 0.311631i
\(905\) 87.1261i 0.0962720i
\(906\) 1059.36 + 1586.07i 1.16928 + 1.75063i
\(907\) −779.778 + 779.778i −0.859733 + 0.859733i −0.991306 0.131573i \(-0.957997\pi\)
0.131573 + 0.991306i \(0.457997\pi\)
\(908\) 34.4890 + 83.3486i 0.0379834 + 0.0917937i
\(909\) −723.709 + 723.709i −0.796159 + 0.796159i
\(910\) −250.837 49.9415i −0.275645 0.0548808i
\(911\) 491.368i 0.539372i 0.962948 + 0.269686i \(0.0869199\pi\)
−0.962948 + 0.269686i \(0.913080\pi\)
\(912\) 655.070 654.127i 0.718279 0.717244i
\(913\) −1457.04 −1.59588
\(914\) 151.537 761.110i 0.165795 0.832724i
\(915\) −318.258 318.258i −0.347823 0.347823i
\(916\) 531.256 + 1283.87i 0.579973 + 1.40161i
\(917\) 1.44106 + 1.44106i 0.00157150 + 0.00157150i
\(918\) 2091.98 1397.27i 2.27885 1.52209i
\(919\) 1434.03 1.56042 0.780212 0.625515i \(-0.215111\pi\)
0.780212 + 0.625515i \(0.215111\pi\)
\(920\) 47.7876 + 240.925i 0.0519430 + 0.261875i
\(921\) 2062.97i 2.23993i
\(922\) −1208.25 + 807.015i −1.31047 + 0.875287i
\(923\) −389.134 + 389.134i −0.421597 + 0.421597i
\(924\) −2064.09 855.845i −2.23386 0.926240i
\(925\) −98.1242 + 98.1242i −0.106080 + 0.106080i
\(926\) 132.034 663.157i 0.142586 0.716153i
\(927\) 1065.15i 1.14903i
\(928\) −1444.41 288.664i −1.55648 0.311061i
\(929\) 429.452 0.462273 0.231137 0.972921i \(-0.425756\pi\)
0.231137 + 0.972921i \(0.425756\pi\)
\(930\) −617.627 122.969i −0.664115 0.132225i
\(931\) −6.63934 6.63934i −0.00713140 0.00713140i
\(932\) 526.840 1270.61i 0.565279 1.36332i
\(933\) 2068.76 + 2068.76i 2.21732 + 2.21732i
\(934\) 579.286 + 867.301i 0.620221 + 0.928588i
\(935\) 686.543 0.734270
\(936\) 253.673 + 1278.91i 0.271019 + 1.36636i
\(937\) 1739.01i 1.85594i −0.372660 0.927968i \(-0.621554\pi\)
0.372660 0.927968i \(-0.378446\pi\)
\(938\) −698.452 1045.71i −0.744618 1.11483i
\(939\) 571.705 571.705i 0.608845 0.608845i
\(940\) 214.185 88.6277i 0.227856 0.0942848i
\(941\) −732.880 + 732.880i −0.778831 + 0.778831i −0.979632 0.200801i \(-0.935645\pi\)
0.200801 + 0.979632i \(0.435645\pi\)
\(942\) 143.858 + 28.6422i 0.152716 + 0.0304057i
\(943\) 396.663i 0.420639i
\(944\) −991.250 0.714196i −1.05005 0.000756564i
\(945\) 948.222 1.00341
\(946\) −10.5790 + 53.1340i −0.0111828 + 0.0561670i
\(947\) −1044.83 1044.83i −1.10330 1.10330i −0.994009 0.109296i \(-0.965140\pi\)
−0.109296 0.994009i \(-0.534860\pi\)
\(948\) 219.476 90.8172i 0.231514 0.0957987i
\(949\) −80.3042 80.3042i −0.0846198 0.0846198i
\(950\) −89.1514 + 59.5459i −0.0938436 + 0.0626799i
\(951\) 3200.44 3.36534
\(952\) 983.726 + 658.074i 1.03333 + 0.691254i
\(953\) 759.754i 0.797224i 0.917120 + 0.398612i \(0.130508\pi\)
−0.917120 + 0.398612i \(0.869492\pi\)
\(954\) −408.410 + 272.784i −0.428102 + 0.285937i
\(955\) −450.671 + 450.671i −0.471907 + 0.471907i
\(956\) −394.359 + 951.099i −0.412510 + 0.994873i
\(957\) 2574.57 2574.57i 2.69025 2.69025i
\(958\) −175.009 + 879.001i −0.182681 + 0.917538i
\(959\) 926.762i 0.966384i
\(960\) −713.863 + 294.788i −0.743607 + 0.307071i
\(961\) 280.193 0.291564
\(962\) 440.842 + 87.7714i 0.458256 + 0.0912385i
\(963\) −2120.80 2120.80i −2.20229 2.20229i
\(964\) −671.473 278.416i −0.696548 0.288814i
\(965\) 27.5939 + 27.5939i 0.0285947 + 0.0285947i
\(966\) −581.331 870.362i −0.601792 0.900996i
\(967\) −44.4105 −0.0459260 −0.0229630 0.999736i \(-0.507310\pi\)
−0.0229630 + 0.999736i \(0.507310\pi\)
\(968\) −417.305 + 623.811i −0.431100 + 0.644433i
\(969\) 1212.05i 1.25082i
\(970\) −312.621 468.052i −0.322289 0.482528i
\(971\) 519.035 519.035i 0.534537 0.534537i −0.387382 0.921919i \(-0.626621\pi\)
0.921919 + 0.387382i \(0.126621\pi\)
\(972\) −353.171 853.500i −0.363345 0.878086i
\(973\) −526.060 + 526.060i −0.540657 + 0.540657i
\(974\) 654.547 + 130.320i 0.672020 + 0.133799i
\(975\) 218.516i 0.224119i
\(976\) −596.745 0.429955i −0.611419 0.000440527i
\(977\) −797.585 −0.816361 −0.408181 0.912901i \(-0.633837\pi\)
−0.408181 + 0.912901i \(0.633837\pi\)
\(978\) 153.202 769.477i 0.156649 0.786786i
\(979\) 1676.38 + 1676.38i 1.71234 + 1.71234i
\(980\) 2.99514 + 7.23827i 0.00305626 + 0.00738599i
\(981\) −2537.55 2537.55i −2.58669 2.58669i
\(982\) 279.512 186.691i 0.284636 0.190113i
\(983\) −1432.42 −1.45720 −0.728599 0.684941i \(-0.759828\pi\)
−0.728599 + 0.684941i \(0.759828\pi\)
\(984\) −1223.45 + 242.672i −1.24334 + 0.246618i
\(985\) 292.157i 0.296606i
\(986\) −1603.70 + 1071.14i −1.62647 + 1.08635i
\(987\) −698.447 + 698.447i −0.707646 + 0.707646i
\(988\) 320.784 + 133.009i 0.324681 + 0.134624i
\(989\) −17.9441 + 17.9441i −0.0181437 + 0.0181437i
\(990\) 257.593 1293.79i 0.260195 1.30686i
\(991\) 1885.38i 1.90250i 0.308424 + 0.951249i \(0.400198\pi\)
−0.308424 + 0.951249i \(0.599802\pi\)
\(992\) −694.656 + 463.250i −0.700258 + 0.466986i
\(993\) 815.449 0.821197
\(994\) 941.401 + 187.433i 0.947083 + 0.188564i
\(995\) 468.714 + 468.714i 0.471070 + 0.471070i
\(996\) 821.972 1982.40i 0.825273 1.99036i
\(997\) 396.902 + 396.902i 0.398096 + 0.398096i 0.877561 0.479465i \(-0.159169\pi\)
−0.479465 + 0.877561i \(0.659169\pi\)
\(998\) −233.941 350.254i −0.234410 0.350956i
\(999\) −1666.48 −1.66815
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.3.r.a.11.2 32
4.3 odd 2 320.3.r.a.271.1 32
5.2 odd 4 400.3.k.h.299.9 32
5.3 odd 4 400.3.k.g.299.8 32
5.4 even 2 400.3.r.f.251.15 32
8.3 odd 2 640.3.r.b.31.16 32
8.5 even 2 640.3.r.a.31.1 32
16.3 odd 4 inner 80.3.r.a.51.2 yes 32
16.5 even 4 640.3.r.b.351.16 32
16.11 odd 4 640.3.r.a.351.1 32
16.13 even 4 320.3.r.a.111.1 32
80.3 even 4 400.3.k.h.99.9 32
80.19 odd 4 400.3.r.f.51.15 32
80.67 even 4 400.3.k.g.99.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.3.r.a.11.2 32 1.1 even 1 trivial
80.3.r.a.51.2 yes 32 16.3 odd 4 inner
320.3.r.a.111.1 32 16.13 even 4
320.3.r.a.271.1 32 4.3 odd 2
400.3.k.g.99.8 32 80.67 even 4
400.3.k.g.299.8 32 5.3 odd 4
400.3.k.h.99.9 32 80.3 even 4
400.3.k.h.299.9 32 5.2 odd 4
400.3.r.f.51.15 32 80.19 odd 4
400.3.r.f.251.15 32 5.4 even 2
640.3.r.a.31.1 32 8.5 even 2
640.3.r.a.351.1 32 16.11 odd 4
640.3.r.b.31.16 32 8.3 odd 2
640.3.r.b.351.16 32 16.5 even 4