Properties

Label 80.3
Level 80
Weight 3
Dimension 184
Nonzero newspaces 7
Newform subspaces 11
Sturm bound 1152
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 7 \)
Newform subspaces: \( 11 \)
Sturm bound: \(1152\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(80))\).

Total New Old
Modular forms 440 212 228
Cusp forms 328 184 144
Eisenstein series 112 28 84

Trace form

\( 184 q - 4 q^{2} - 2 q^{3} + 8 q^{4} - 2 q^{5} + 2 q^{7} - 16 q^{8} - 18 q^{9} - 44 q^{10} + 24 q^{11} - 112 q^{12} - 2 q^{13} - 32 q^{14} + 42 q^{15} + 64 q^{16} + 66 q^{17} + 140 q^{18} - 68 q^{19} + 76 q^{20}+ \cdots + 1092 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(80))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
80.3.b \(\chi_{80}(31, \cdot)\) 80.3.b.a 4 1
80.3.e \(\chi_{80}(39, \cdot)\) None 0 1
80.3.g \(\chi_{80}(71, \cdot)\) None 0 1
80.3.h \(\chi_{80}(79, \cdot)\) 80.3.h.a 2 1
80.3.h.b 4
80.3.i \(\chi_{80}(13, \cdot)\) 80.3.i.a 44 2
80.3.k \(\chi_{80}(19, \cdot)\) 80.3.k.a 44 2
80.3.m \(\chi_{80}(57, \cdot)\) None 0 2
80.3.p \(\chi_{80}(17, \cdot)\) 80.3.p.a 2 2
80.3.p.b 2
80.3.p.c 2
80.3.p.d 4
80.3.r \(\chi_{80}(11, \cdot)\) 80.3.r.a 32 2
80.3.t \(\chi_{80}(53, \cdot)\) 80.3.t.a 44 2

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(80))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(80)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)