Newspace parameters
Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 80.r (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.17984211488\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −1.99970 | + | 0.0345663i | −0.374900 | − | 0.374900i | 3.99761 | − | 0.138245i | −1.58114 | − | 1.58114i | 0.762647 | + | 0.736729i | 2.42442 | −7.98925 | + | 0.414630i | − | 8.71890i | 3.21646 | + | 3.10715i | |||
11.2 | −1.96150 | − | 0.390534i | 3.81615 | + | 3.81615i | 3.69497 | + | 1.53206i | 1.58114 | + | 1.58114i | −5.99504 | − | 8.97572i | −7.06228 | −6.64935 | − | 4.44816i | 20.1260i | −2.48392 | − | 3.71889i | ||||
11.3 | −1.96125 | + | 0.391780i | −2.56741 | − | 2.56741i | 3.69302 | − | 1.53676i | 1.58114 | + | 1.58114i | 6.04119 | + | 4.02947i | −8.10325 | −6.64087 | + | 4.46082i | 4.18314i | −3.72047 | − | 2.48155i | ||||
11.4 | −1.58308 | − | 1.22223i | −0.313290 | − | 0.313290i | 1.01229 | + | 3.86979i | 1.58114 | + | 1.58114i | 0.113050 | + | 0.878878i | 10.1627 | 3.12725 | − | 7.36344i | − | 8.80370i | −0.570549 | − | 4.43559i | |||
11.5 | −1.35625 | − | 1.46989i | −3.96156 | − | 3.96156i | −0.321158 | + | 3.98709i | −1.58114 | − | 1.58114i | −0.450185 | + | 11.1959i | 0.171519 | 6.29615 | − | 4.93543i | 22.3880i | −0.179678 | + | 4.46853i | ||||
11.6 | −0.945244 | + | 1.76253i | −2.05924 | − | 2.05924i | −2.21303 | − | 3.33204i | 1.58114 | + | 1.58114i | 5.57595 | − | 1.68299i | 10.3931 | 7.96468 | − | 0.750937i | − | 0.519079i | −4.28137 | + | 1.29224i | |||
11.7 | −0.522340 | − | 1.93059i | 3.58499 | + | 3.58499i | −3.45432 | + | 2.01684i | −1.58114 | − | 1.58114i | 5.04854 | − | 8.79371i | 10.0090 | 5.69802 | + | 5.61539i | 16.7043i | −2.22663 | + | 3.87842i | ||||
11.8 | −0.403471 | + | 1.95888i | −1.45771 | − | 1.45771i | −3.67442 | − | 1.58070i | −1.58114 | − | 1.58114i | 3.44363 | − | 2.26734i | −11.3889 | 4.57893 | − | 6.55999i | − | 4.75014i | 3.73520 | − | 2.45932i | |||
11.9 | 0.0515452 | + | 1.99934i | 2.58103 | + | 2.58103i | −3.99469 | + | 0.206112i | 1.58114 | + | 1.58114i | −5.02730 | + | 5.29338i | 0.523915 | −0.617995 | − | 7.97609i | 4.32341i | −3.07973 | + | 3.24273i | ||||
11.10 | 0.724117 | − | 1.86431i | −1.40411 | − | 1.40411i | −2.95131 | − | 2.69996i | −1.58114 | − | 1.58114i | −3.63445 | + | 1.60096i | 0.552025 | −7.17066 | + | 3.54707i | − | 5.05693i | −4.09266 | + | 1.80280i | |||
11.11 | 1.21377 | − | 1.58958i | 1.92589 | + | 1.92589i | −1.05352 | − | 3.85877i | 1.58114 | + | 1.58114i | 5.39895 | − | 0.723763i | 4.10918 | −7.41254 | − | 3.00902i | − | 1.58188i | 4.43249 | − | 0.594202i | |||
11.12 | 1.25514 | + | 1.55712i | 1.91324 | + | 1.91324i | −0.849242 | + | 3.90881i | −1.58114 | − | 1.58114i | −0.577758 | + | 5.38054i | 1.82022 | −7.15240 | + | 3.58374i | − | 1.67900i | 0.477470 | − | 4.44657i | |||
11.13 | 1.71579 | − | 1.02766i | −3.48227 | − | 3.48227i | 1.88784 | − | 3.52648i | 1.58114 | + | 1.58114i | −9.55341 | − | 2.39625i | −6.27123 | −0.384885 | − | 7.99074i | 15.2524i | 4.33776 | + | 1.08803i | ||||
11.14 | 1.88884 | + | 0.657496i | 0.0991349 | + | 0.0991349i | 3.13540 | + | 2.48380i | 1.58114 | + | 1.58114i | 0.122069 | + | 0.252430i | −3.75219 | 4.28916 | + | 6.75301i | − | 8.98034i | 1.94692 | + | 4.02610i | |||
11.15 | 1.89747 | − | 0.632136i | 3.09850 | + | 3.09850i | 3.20081 | − | 2.39892i | −1.58114 | − | 1.58114i | 7.83800 | + | 3.92065i | −13.0357 | 4.55701 | − | 6.57523i | 10.2014i | −3.99966 | − | 2.00067i | ||||
11.16 | 1.98617 | − | 0.234782i | −1.39844 | − | 1.39844i | 3.88975 | − | 0.932635i | −1.58114 | − | 1.58114i | −3.10588 | − | 2.44922i | 9.44746 | 7.50675 | − | 2.76562i | − | 5.08871i | −3.51164 | − | 2.76919i | |||
51.1 | −1.99970 | − | 0.0345663i | −0.374900 | + | 0.374900i | 3.99761 | + | 0.138245i | −1.58114 | + | 1.58114i | 0.762647 | − | 0.736729i | 2.42442 | −7.98925 | − | 0.414630i | 8.71890i | 3.21646 | − | 3.10715i | ||||
51.2 | −1.96150 | + | 0.390534i | 3.81615 | − | 3.81615i | 3.69497 | − | 1.53206i | 1.58114 | − | 1.58114i | −5.99504 | + | 8.97572i | −7.06228 | −6.64935 | + | 4.44816i | − | 20.1260i | −2.48392 | + | 3.71889i | |||
51.3 | −1.96125 | − | 0.391780i | −2.56741 | + | 2.56741i | 3.69302 | + | 1.53676i | 1.58114 | − | 1.58114i | 6.04119 | − | 4.02947i | −8.10325 | −6.64087 | − | 4.46082i | − | 4.18314i | −3.72047 | + | 2.48155i | |||
51.4 | −1.58308 | + | 1.22223i | −0.313290 | + | 0.313290i | 1.01229 | − | 3.86979i | 1.58114 | − | 1.58114i | 0.113050 | − | 0.878878i | 10.1627 | 3.12725 | + | 7.36344i | 8.80370i | −0.570549 | + | 4.43559i | ||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.f | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 80.3.r.a | ✓ | 32 |
4.b | odd | 2 | 1 | 320.3.r.a | 32 | ||
5.b | even | 2 | 1 | 400.3.r.f | 32 | ||
5.c | odd | 4 | 1 | 400.3.k.g | 32 | ||
5.c | odd | 4 | 1 | 400.3.k.h | 32 | ||
8.b | even | 2 | 1 | 640.3.r.a | 32 | ||
8.d | odd | 2 | 1 | 640.3.r.b | 32 | ||
16.e | even | 4 | 1 | 320.3.r.a | 32 | ||
16.e | even | 4 | 1 | 640.3.r.b | 32 | ||
16.f | odd | 4 | 1 | inner | 80.3.r.a | ✓ | 32 |
16.f | odd | 4 | 1 | 640.3.r.a | 32 | ||
80.j | even | 4 | 1 | 400.3.k.g | 32 | ||
80.k | odd | 4 | 1 | 400.3.r.f | 32 | ||
80.s | even | 4 | 1 | 400.3.k.h | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
80.3.r.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
80.3.r.a | ✓ | 32 | 16.f | odd | 4 | 1 | inner |
320.3.r.a | 32 | 4.b | odd | 2 | 1 | ||
320.3.r.a | 32 | 16.e | even | 4 | 1 | ||
400.3.k.g | 32 | 5.c | odd | 4 | 1 | ||
400.3.k.g | 32 | 80.j | even | 4 | 1 | ||
400.3.k.h | 32 | 5.c | odd | 4 | 1 | ||
400.3.k.h | 32 | 80.s | even | 4 | 1 | ||
400.3.r.f | 32 | 5.b | even | 2 | 1 | ||
400.3.r.f | 32 | 80.k | odd | 4 | 1 | ||
640.3.r.a | 32 | 8.b | even | 2 | 1 | ||
640.3.r.a | 32 | 16.f | odd | 4 | 1 | ||
640.3.r.b | 32 | 8.d | odd | 2 | 1 | ||
640.3.r.b | 32 | 16.e | even | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(80, [\chi])\).