Properties

Label 80.22.a.i
Level $80$
Weight $22$
Character orbit 80.a
Self dual yes
Analytic conductor $223.582$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,22,Mod(1,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.1"); S:= CuspForms(chi, 22); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 22, names="a")
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-60022] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(223.581875430\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 135978135x^{3} - 15857319425x^{2} + 3799092634739500x - 601748185512337500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{37}\cdot 3^{2}\cdot 5^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 12004) q^{3} - 9765625 q^{5} + (\beta_{2} - 1493 \beta_1 - 41708704) q^{7} + (\beta_{4} + 5 \beta_{2} + \cdots + 3607902870) q^{9} + (4 \beta_{4} + 2 \beta_{3} + \cdots + 4550195926) q^{11}+ \cdots + (14948024388 \beta_{4} + \cdots + 37\!\cdots\!02) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 60022 q^{3} - 48828125 q^{5} - 208546506 q^{7} + 18039568021 q^{9} + 22750943632 q^{11} - 545167715334 q^{13} + 586152343750 q^{15} - 6036087913662 q^{17} + 22315605327332 q^{19} + 106422870285676 q^{21}+ \cdots + 18\!\cdots\!48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 135978135x^{3} - 15857319425x^{2} + 3799092634739500x - 601748185512337500 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 16\nu - 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 1871872 \nu^{4} - 2513071104 \nu^{3} - 172749770640000 \nu^{2} + \cdots + 12\!\cdots\!00 ) / 2600304235425 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 217088 \nu^{4} + 10775030784 \nu^{3} - 30416179824000 \nu^{2} + \cdots + 60\!\cdots\!75 ) / 66674467575 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 1871872 \nu^{4} + 2513071104 \nu^{3} + 305885347493760 \nu^{2} + \cdots - 85\!\cdots\!15 ) / 520060847085 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 6 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + 5\beta_{2} + 2839\beta _1 + 13924160093 ) / 256 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7505\beta_{4} + 12339\beta_{3} - 18284\beta_{2} + 10252877235\beta _1 + 19815552822430 ) / 2048 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2993492640 \beta_{4} + 66262617 \beta_{3} + 26047646223 \beta_{2} + 26213873076580 \beta _1 + 35\!\cdots\!15 ) / 8192 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
10015.2
6005.23
158.641
−6553.38
−9623.74
0 −172242. 0 −9.76562e6 0 3.37861e8 0 1.92069e10 0
1.2 0 −108082. 0 −9.76562e6 0 −1.05323e9 0 1.22131e9 0
1.3 0 −14536.2 0 −9.76562e6 0 4.47629e8 0 −1.02491e10 0
1.4 0 92856.1 0 −9.76562e6 0 −9.95100e8 0 −1.83810e9 0
1.5 0 141982. 0 −9.76562e6 0 1.05429e9 0 9.69849e9 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.22.a.i 5
4.b odd 2 1 40.22.a.c 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.22.a.c 5 4.b odd 2 1
80.22.a.i 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{5} + 60022 T_{3}^{4} - 33369346776 T_{3}^{3} + \cdots + 35\!\cdots\!60 \) acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(80))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + \cdots + 35\!\cdots\!60 \) Copy content Toggle raw display
$5$ \( (T + 9765625)^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots - 16\!\cdots\!36 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots + 35\!\cdots\!04 \) Copy content Toggle raw display
$13$ \( T^{5} + \cdots - 44\!\cdots\!52 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 82\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 80\!\cdots\!56 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 58\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 29\!\cdots\!08 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 83\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots + 29\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 53\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 32\!\cdots\!68 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 15\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 44\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 27\!\cdots\!76 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 29\!\cdots\!88 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 34\!\cdots\!20 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 69\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 59\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 13\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 34\!\cdots\!56 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 15\!\cdots\!64 \) Copy content Toggle raw display
show more
show less