Properties

Label 80.10.a.g
Level $80$
Weight $10$
Character orbit 80.a
Self dual yes
Analytic conductor $41.203$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,10,Mod(1,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-108] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.2028668931\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{46}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 24\sqrt{46}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 54) q^{3} - 625 q^{5} + (13 \beta + 454) q^{7} + ( - 108 \beta + 9729) q^{9} + (134 \beta - 12560) q^{11} + ( - 548 \beta + 73474) q^{13} + ( - 625 \beta + 33750) q^{15} + ( - 44 \beta + 84634) q^{17}+ \cdots + (2660166 \beta - 505646352) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 108 q^{3} - 1250 q^{5} + 908 q^{7} + 19458 q^{9} - 25120 q^{11} + 146948 q^{13} + 67500 q^{15} + 169268 q^{17} + 25480 q^{19} + 639864 q^{21} - 1782748 q^{23} + 781250 q^{25} - 4648104 q^{27} + 7323340 q^{29}+ \cdots - 1011292704 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.78233
6.78233
0 −216.776 0 −625.000 0 −1662.09 0 27308.8 0
1.2 0 108.776 0 −625.000 0 2570.09 0 −7850.80 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.10.a.g 2
4.b odd 2 1 40.10.a.c 2
5.b even 2 1 400.10.a.r 2
5.c odd 4 2 400.10.c.m 4
8.b even 2 1 320.10.a.q 2
8.d odd 2 1 320.10.a.n 2
12.b even 2 1 360.10.a.g 2
20.d odd 2 1 200.10.a.c 2
20.e even 4 2 200.10.c.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.10.a.c 2 4.b odd 2 1
80.10.a.g 2 1.a even 1 1 trivial
200.10.a.c 2 20.d odd 2 1
200.10.c.d 4 20.e even 4 2
320.10.a.n 2 8.d odd 2 1
320.10.a.q 2 8.b even 2 1
360.10.a.g 2 12.b even 2 1
400.10.a.r 2 5.b even 2 1
400.10.c.m 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 108T_{3} - 23580 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(80))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 108T - 23580 \) Copy content Toggle raw display
$5$ \( (T + 625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 908 T - 4271708 \) Copy content Toggle raw display
$11$ \( T^{2} + 25120 T - 318008576 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 2558426108 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 7111617700 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 273876705776 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 363587809732 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 480965491876 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 20138081829520 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 155824381229436 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 149515623312732 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 69358444830148 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 11\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 31\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 58\!\cdots\!52 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 10\!\cdots\!60 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 32\!\cdots\!48 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 23\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 12\!\cdots\!12 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 36\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 33\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 11\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 98\!\cdots\!96 \) Copy content Toggle raw display
show more
show less