Properties

Label 80.10
Level 80
Weight 10
Dimension 878
Nonzero newspaces 7
Newform subspaces 22
Sturm bound 3840
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 7 \)
Newform subspaces: \( 22 \)
Sturm bound: \(3840\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(80))\).

Total New Old
Modular forms 1784 904 880
Cusp forms 1672 878 794
Eisenstein series 112 26 86

Trace form

\( 878 q - 4 q^{2} + 158 q^{3} - 344 q^{4} + 352 q^{5} + 4368 q^{6} - 2758 q^{7} + 1424 q^{8} - 11628 q^{9} - 4692 q^{10} - 109744 q^{11} - 434320 q^{12} + 258470 q^{13} + 267072 q^{14} - 586422 q^{15} + 1634496 q^{16}+ \cdots - 11854403736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(80))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
80.10.a \(\chi_{80}(1, \cdot)\) 80.10.a.a 1 1
80.10.a.b 1
80.10.a.c 1
80.10.a.d 1
80.10.a.e 1
80.10.a.f 2
80.10.a.g 2
80.10.a.h 2
80.10.a.i 2
80.10.a.j 2
80.10.a.k 3
80.10.c \(\chi_{80}(49, \cdot)\) 80.10.c.a 4 1
80.10.c.b 4
80.10.c.c 4
80.10.c.d 14
80.10.d \(\chi_{80}(41, \cdot)\) None 0 1
80.10.f \(\chi_{80}(9, \cdot)\) None 0 1
80.10.j \(\chi_{80}(43, \cdot)\) 80.10.j.a 212 2
80.10.l \(\chi_{80}(21, \cdot)\) 80.10.l.a 144 2
80.10.n \(\chi_{80}(47, \cdot)\) 80.10.n.a 2 2
80.10.n.b 16
80.10.n.c 36
80.10.o \(\chi_{80}(7, \cdot)\) None 0 2
80.10.q \(\chi_{80}(29, \cdot)\) 80.10.q.a 212 2
80.10.s \(\chi_{80}(3, \cdot)\) 80.10.s.a 212 2

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(80))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(80)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)