Properties

Label 360.10.a.g
Level $360$
Weight $10$
Character orbit 360.a
Self dual yes
Analytic conductor $185.413$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [360,10,Mod(1,360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("360.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 360.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,1250,0,-908] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(185.412901019\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{46}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 24\sqrt{46}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 625 q^{5} + (13 \beta - 454) q^{7} + ( - 134 \beta - 12560) q^{11} + (548 \beta + 73474) q^{13} + ( - 44 \beta - 84634) q^{17} + ( - 3216 \beta - 12740) q^{19} + (4033 \beta - 891374) q^{23} + 390625 q^{25}+ \cdots + (1437700 \beta + 1021529314) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 1250 q^{5} - 908 q^{7} - 25120 q^{11} + 146948 q^{13} - 169268 q^{17} - 25480 q^{19} - 1782748 q^{23} + 781250 q^{25} - 7323340 q^{29} + 10677272 q^{31} - 567500 q^{35} - 5750460 q^{37} + 7795764 q^{41}+ \cdots + 2043058628 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.78233
6.78233
0 0 0 625.000 0 −2570.09 0 0 0
1.2 0 0 0 625.000 0 1662.09 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 360.10.a.g 2
3.b odd 2 1 40.10.a.c 2
12.b even 2 1 80.10.a.g 2
15.d odd 2 1 200.10.a.c 2
15.e even 4 2 200.10.c.d 4
24.f even 2 1 320.10.a.q 2
24.h odd 2 1 320.10.a.n 2
60.h even 2 1 400.10.a.r 2
60.l odd 4 2 400.10.c.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.10.a.c 2 3.b odd 2 1
80.10.a.g 2 12.b even 2 1
200.10.a.c 2 15.d odd 2 1
200.10.c.d 4 15.e even 4 2
320.10.a.n 2 24.h odd 2 1
320.10.a.q 2 24.f even 2 1
360.10.a.g 2 1.a even 1 1 trivial
400.10.a.r 2 60.h even 2 1
400.10.c.m 4 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(360))\):

\( T_{7}^{2} + 908T_{7} - 4271708 \) Copy content Toggle raw display
\( T_{11}^{2} + 25120T_{11} - 318008576 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 908 T - 4271708 \) Copy content Toggle raw display
$11$ \( T^{2} + 25120 T - 318008576 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 2558426108 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 7111617700 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 273876705776 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 363587809732 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 480965491876 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 20138081829520 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 155824381229436 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 149515623312732 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 69358444830148 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 11\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 31\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 58\!\cdots\!52 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 10\!\cdots\!60 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 32\!\cdots\!48 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 23\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 12\!\cdots\!12 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 36\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 33\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 11\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 98\!\cdots\!96 \) Copy content Toggle raw display
show more
show less