Properties

Label 798.2.k.l.505.1
Level $798$
Weight $2$
Character 798.505
Analytic conductor $6.372$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(463,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.463"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,2,-2,-6,-2,-4,-4,-2,6,6,-4,1,-2,6,-2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{73})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 19x^{2} + 18x + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 505.1
Root \(2.38600 - 4.13267i\) of defining polynomial
Character \(\chi\) \(=\) 798.505
Dual form 798.2.k.l.463.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.50000 + 2.59808i) q^{5} +(-0.500000 - 0.866025i) q^{6} -1.00000 q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(1.50000 + 2.59808i) q^{10} -2.77200 q^{11} -1.00000 q^{12} +(-1.88600 - 3.26665i) q^{13} +(-0.500000 + 0.866025i) q^{14} +(1.50000 + 2.59808i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.38600 + 4.13267i) q^{17} -1.00000 q^{18} +(-4.27200 - 0.866025i) q^{19} +3.00000 q^{20} +(-0.500000 + 0.866025i) q^{21} +(-1.38600 + 2.40062i) q^{22} +(2.88600 + 4.99870i) q^{23} +(-0.500000 + 0.866025i) q^{24} +(-2.00000 - 3.46410i) q^{25} -3.77200 q^{26} -1.00000 q^{27} +(0.500000 + 0.866025i) q^{28} +3.00000 q^{30} -7.54400 q^{31} +(0.500000 + 0.866025i) q^{32} +(-1.38600 + 2.40062i) q^{33} +(2.38600 + 4.13267i) q^{34} +(1.50000 - 2.59808i) q^{35} +(-0.500000 + 0.866025i) q^{36} -1.22800 q^{37} +(-2.88600 + 3.26665i) q^{38} -3.77200 q^{39} +(1.50000 - 2.59808i) q^{40} +(0.613999 - 1.06348i) q^{41} +(0.500000 + 0.866025i) q^{42} +(-3.00000 + 5.19615i) q^{43} +(1.38600 + 2.40062i) q^{44} +3.00000 q^{45} +5.77200 q^{46} +(-5.77200 - 9.99740i) q^{47} +(0.500000 + 0.866025i) q^{48} +1.00000 q^{49} -4.00000 q^{50} +(2.38600 + 4.13267i) q^{51} +(-1.88600 + 3.26665i) q^{52} +(2.00000 + 3.46410i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(4.15800 - 7.20187i) q^{55} +1.00000 q^{56} +(-2.88600 + 3.26665i) q^{57} +(-0.113999 + 0.197452i) q^{59} +(1.50000 - 2.59808i) q^{60} +(3.11400 + 5.39360i) q^{61} +(-3.77200 + 6.53330i) q^{62} +(0.500000 + 0.866025i) q^{63} +1.00000 q^{64} +11.3160 q^{65} +(1.38600 + 2.40062i) q^{66} +4.77200 q^{68} +5.77200 q^{69} +(-1.50000 - 2.59808i) q^{70} +(6.88600 - 11.9269i) q^{71} +(0.500000 + 0.866025i) q^{72} +(1.00000 - 1.73205i) q^{73} +(-0.613999 + 1.06348i) q^{74} -4.00000 q^{75} +(1.38600 + 4.13267i) q^{76} +2.77200 q^{77} +(-1.88600 + 3.26665i) q^{78} +(4.00000 - 6.92820i) q^{79} +(-1.50000 - 2.59808i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-0.613999 - 1.06348i) q^{82} -6.22800 q^{83} +1.00000 q^{84} +(-7.15800 - 12.3980i) q^{85} +(3.00000 + 5.19615i) q^{86} +2.77200 q^{88} +(8.15800 + 14.1301i) q^{89} +(1.50000 - 2.59808i) q^{90} +(1.88600 + 3.26665i) q^{91} +(2.88600 - 4.99870i) q^{92} +(-3.77200 + 6.53330i) q^{93} -11.5440 q^{94} +(8.65800 - 9.79995i) q^{95} +1.00000 q^{96} +(5.77200 - 9.99740i) q^{97} +(0.500000 - 0.866025i) q^{98} +(1.38600 + 2.40062i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} - 6 q^{5} - 2 q^{6} - 4 q^{7} - 4 q^{8} - 2 q^{9} + 6 q^{10} + 6 q^{11} - 4 q^{12} + q^{13} - 2 q^{14} + 6 q^{15} - 2 q^{16} - q^{17} - 4 q^{18} + 12 q^{20} - 2 q^{21}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.50000 + 2.59808i −0.670820 + 1.16190i 0.306851 + 0.951757i \(0.400725\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 1.50000 + 2.59808i 0.474342 + 0.821584i
\(11\) −2.77200 −0.835790 −0.417895 0.908495i \(-0.637232\pi\)
−0.417895 + 0.908495i \(0.637232\pi\)
\(12\) −1.00000 −0.288675
\(13\) −1.88600 3.26665i −0.523083 0.906006i −0.999639 0.0268618i \(-0.991449\pi\)
0.476557 0.879144i \(-0.341885\pi\)
\(14\) −0.500000 + 0.866025i −0.133631 + 0.231455i
\(15\) 1.50000 + 2.59808i 0.387298 + 0.670820i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.38600 + 4.13267i −0.578690 + 1.00232i 0.416940 + 0.908934i \(0.363103\pi\)
−0.995630 + 0.0933867i \(0.970231\pi\)
\(18\) −1.00000 −0.235702
\(19\) −4.27200 0.866025i −0.980064 0.198680i
\(20\) 3.00000 0.670820
\(21\) −0.500000 + 0.866025i −0.109109 + 0.188982i
\(22\) −1.38600 + 2.40062i −0.295496 + 0.511815i
\(23\) 2.88600 + 4.99870i 0.601773 + 1.04230i 0.992553 + 0.121817i \(0.0388721\pi\)
−0.390780 + 0.920484i \(0.627795\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) −3.77200 −0.739750
\(27\) −1.00000 −0.192450
\(28\) 0.500000 + 0.866025i 0.0944911 + 0.163663i
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 3.00000 0.547723
\(31\) −7.54400 −1.35494 −0.677472 0.735549i \(-0.736924\pi\)
−0.677472 + 0.735549i \(0.736924\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −1.38600 + 2.40062i −0.241272 + 0.417895i
\(34\) 2.38600 + 4.13267i 0.409196 + 0.708748i
\(35\) 1.50000 2.59808i 0.253546 0.439155i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) −1.22800 −0.201882 −0.100941 0.994892i \(-0.532185\pi\)
−0.100941 + 0.994892i \(0.532185\pi\)
\(38\) −2.88600 + 3.26665i −0.468171 + 0.529921i
\(39\) −3.77200 −0.604004
\(40\) 1.50000 2.59808i 0.237171 0.410792i
\(41\) 0.613999 1.06348i 0.0958905 0.166087i −0.814089 0.580740i \(-0.802763\pi\)
0.909980 + 0.414652i \(0.136097\pi\)
\(42\) 0.500000 + 0.866025i 0.0771517 + 0.133631i
\(43\) −3.00000 + 5.19615i −0.457496 + 0.792406i −0.998828 0.0484030i \(-0.984587\pi\)
0.541332 + 0.840809i \(0.317920\pi\)
\(44\) 1.38600 + 2.40062i 0.208948 + 0.361908i
\(45\) 3.00000 0.447214
\(46\) 5.77200 0.851035
\(47\) −5.77200 9.99740i −0.841933 1.45827i −0.888258 0.459344i \(-0.848084\pi\)
0.0463253 0.998926i \(-0.485249\pi\)
\(48\) 0.500000 + 0.866025i 0.0721688 + 0.125000i
\(49\) 1.00000 0.142857
\(50\) −4.00000 −0.565685
\(51\) 2.38600 + 4.13267i 0.334107 + 0.578690i
\(52\) −1.88600 + 3.26665i −0.261541 + 0.453003i
\(53\) 2.00000 + 3.46410i 0.274721 + 0.475831i 0.970065 0.242846i \(-0.0780811\pi\)
−0.695344 + 0.718677i \(0.744748\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) 4.15800 7.20187i 0.560665 0.971100i
\(56\) 1.00000 0.133631
\(57\) −2.88600 + 3.26665i −0.382260 + 0.432678i
\(58\) 0 0
\(59\) −0.113999 + 0.197452i −0.0148414 + 0.0257061i −0.873351 0.487092i \(-0.838058\pi\)
0.858509 + 0.512798i \(0.171391\pi\)
\(60\) 1.50000 2.59808i 0.193649 0.335410i
\(61\) 3.11400 + 5.39360i 0.398707 + 0.690580i 0.993567 0.113249i \(-0.0361258\pi\)
−0.594860 + 0.803829i \(0.702792\pi\)
\(62\) −3.77200 + 6.53330i −0.479045 + 0.829730i
\(63\) 0.500000 + 0.866025i 0.0629941 + 0.109109i
\(64\) 1.00000 0.125000
\(65\) 11.3160 1.40358
\(66\) 1.38600 + 2.40062i 0.170605 + 0.295496i
\(67\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(68\) 4.77200 0.578690
\(69\) 5.77200 0.694867
\(70\) −1.50000 2.59808i −0.179284 0.310530i
\(71\) 6.88600 11.9269i 0.817218 1.41546i −0.0905063 0.995896i \(-0.528849\pi\)
0.907724 0.419567i \(-0.137818\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 1.00000 1.73205i 0.117041 0.202721i −0.801553 0.597924i \(-0.795992\pi\)
0.918594 + 0.395203i \(0.129326\pi\)
\(74\) −0.613999 + 1.06348i −0.0713759 + 0.123627i
\(75\) −4.00000 −0.461880
\(76\) 1.38600 + 4.13267i 0.158985 + 0.474050i
\(77\) 2.77200 0.315899
\(78\) −1.88600 + 3.26665i −0.213548 + 0.369875i
\(79\) 4.00000 6.92820i 0.450035 0.779484i −0.548352 0.836247i \(-0.684745\pi\)
0.998388 + 0.0567635i \(0.0180781\pi\)
\(80\) −1.50000 2.59808i −0.167705 0.290474i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −0.613999 1.06348i −0.0678049 0.117441i
\(83\) −6.22800 −0.683612 −0.341806 0.939771i \(-0.611039\pi\)
−0.341806 + 0.939771i \(0.611039\pi\)
\(84\) 1.00000 0.109109
\(85\) −7.15800 12.3980i −0.776394 1.34475i
\(86\) 3.00000 + 5.19615i 0.323498 + 0.560316i
\(87\) 0 0
\(88\) 2.77200 0.295496
\(89\) 8.15800 + 14.1301i 0.864747 + 1.49778i 0.867299 + 0.497788i \(0.165854\pi\)
−0.00255203 + 0.999997i \(0.500812\pi\)
\(90\) 1.50000 2.59808i 0.158114 0.273861i
\(91\) 1.88600 + 3.26665i 0.197707 + 0.342438i
\(92\) 2.88600 4.99870i 0.300886 0.521151i
\(93\) −3.77200 + 6.53330i −0.391138 + 0.677472i
\(94\) −11.5440 −1.19067
\(95\) 8.65800 9.79995i 0.888292 1.00545i
\(96\) 1.00000 0.102062
\(97\) 5.77200 9.99740i 0.586058 1.01508i −0.408685 0.912676i \(-0.634012\pi\)
0.994743 0.102407i \(-0.0326543\pi\)
\(98\) 0.500000 0.866025i 0.0505076 0.0874818i
\(99\) 1.38600 + 2.40062i 0.139298 + 0.241272i
\(100\) −2.00000 + 3.46410i −0.200000 + 0.346410i
\(101\) −3.61400 6.25963i −0.359606 0.622856i 0.628289 0.777980i \(-0.283756\pi\)
−0.987895 + 0.155124i \(0.950422\pi\)
\(102\) 4.77200 0.472499
\(103\) −8.31601 −0.819400 −0.409700 0.912220i \(-0.634367\pi\)
−0.409700 + 0.912220i \(0.634367\pi\)
\(104\) 1.88600 + 3.26665i 0.184938 + 0.320321i
\(105\) −1.50000 2.59808i −0.146385 0.253546i
\(106\) 4.00000 0.388514
\(107\) 15.5440 1.50270 0.751348 0.659906i \(-0.229404\pi\)
0.751348 + 0.659906i \(0.229404\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) −0.613999 + 1.06348i −0.0588104 + 0.101863i −0.893932 0.448203i \(-0.852064\pi\)
0.835121 + 0.550066i \(0.185397\pi\)
\(110\) −4.15800 7.20187i −0.396450 0.686672i
\(111\) −0.613999 + 1.06348i −0.0582782 + 0.100941i
\(112\) 0.500000 0.866025i 0.0472456 0.0818317i
\(113\) 1.77200 0.166696 0.0833480 0.996521i \(-0.473439\pi\)
0.0833480 + 0.996521i \(0.473439\pi\)
\(114\) 1.38600 + 4.13267i 0.129811 + 0.387060i
\(115\) −17.3160 −1.61473
\(116\) 0 0
\(117\) −1.88600 + 3.26665i −0.174361 + 0.302002i
\(118\) 0.113999 + 0.197452i 0.0104945 + 0.0181769i
\(119\) 2.38600 4.13267i 0.218724 0.378842i
\(120\) −1.50000 2.59808i −0.136931 0.237171i
\(121\) −3.31601 −0.301455
\(122\) 6.22800 0.563856
\(123\) −0.613999 1.06348i −0.0553624 0.0958905i
\(124\) 3.77200 + 6.53330i 0.338736 + 0.586708i
\(125\) −3.00000 −0.268328
\(126\) 1.00000 0.0890871
\(127\) −3.88600 6.73075i −0.344827 0.597258i 0.640495 0.767962i \(-0.278729\pi\)
−0.985322 + 0.170704i \(0.945396\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 3.00000 + 5.19615i 0.264135 + 0.457496i
\(130\) 5.65800 9.79995i 0.496240 0.859512i
\(131\) −8.65800 + 14.9961i −0.756453 + 1.31022i 0.188195 + 0.982132i \(0.439736\pi\)
−0.944649 + 0.328084i \(0.893597\pi\)
\(132\) 2.77200 0.241272
\(133\) 4.27200 + 0.866025i 0.370430 + 0.0750939i
\(134\) 0 0
\(135\) 1.50000 2.59808i 0.129099 0.223607i
\(136\) 2.38600 4.13267i 0.204598 0.354374i
\(137\) 1.88600 + 3.26665i 0.161132 + 0.279089i 0.935275 0.353922i \(-0.115152\pi\)
−0.774143 + 0.633011i \(0.781819\pi\)
\(138\) 2.88600 4.99870i 0.245673 0.425518i
\(139\) −8.15800 14.1301i −0.691953 1.19850i −0.971197 0.238277i \(-0.923417\pi\)
0.279244 0.960220i \(-0.409916\pi\)
\(140\) −3.00000 −0.253546
\(141\) −11.5440 −0.972180
\(142\) −6.88600 11.9269i −0.577860 1.00088i
\(143\) 5.22800 + 9.05516i 0.437187 + 0.757230i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −1.00000 1.73205i −0.0827606 0.143346i
\(147\) 0.500000 0.866025i 0.0412393 0.0714286i
\(148\) 0.613999 + 1.06348i 0.0504704 + 0.0874173i
\(149\) 1.22800 2.12696i 0.100602 0.174247i −0.811331 0.584587i \(-0.801257\pi\)
0.911933 + 0.410340i \(0.134590\pi\)
\(150\) −2.00000 + 3.46410i −0.163299 + 0.282843i
\(151\) −10.2280 −0.832343 −0.416171 0.909286i \(-0.636628\pi\)
−0.416171 + 0.909286i \(0.636628\pi\)
\(152\) 4.27200 + 0.866025i 0.346505 + 0.0702439i
\(153\) 4.77200 0.385793
\(154\) 1.38600 2.40062i 0.111687 0.193448i
\(155\) 11.3160 19.5999i 0.908923 1.57430i
\(156\) 1.88600 + 3.26665i 0.151001 + 0.261541i
\(157\) −7.88600 + 13.6590i −0.629371 + 1.09010i 0.358307 + 0.933604i \(0.383354\pi\)
−0.987678 + 0.156499i \(0.949979\pi\)
\(158\) −4.00000 6.92820i −0.318223 0.551178i
\(159\) 4.00000 0.317221
\(160\) −3.00000 −0.237171
\(161\) −2.88600 4.99870i −0.227449 0.393953i
\(162\) 0.500000 + 0.866025i 0.0392837 + 0.0680414i
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) −1.22800 −0.0958905
\(165\) −4.15800 7.20187i −0.323700 0.560665i
\(166\) −3.11400 + 5.39360i −0.241693 + 0.418625i
\(167\) 3.00000 + 5.19615i 0.232147 + 0.402090i 0.958440 0.285295i \(-0.0920916\pi\)
−0.726293 + 0.687386i \(0.758758\pi\)
\(168\) 0.500000 0.866025i 0.0385758 0.0668153i
\(169\) −0.613999 + 1.06348i −0.0472307 + 0.0818060i
\(170\) −14.3160 −1.09799
\(171\) 1.38600 + 4.13267i 0.105990 + 0.316034i
\(172\) 6.00000 0.457496
\(173\) −1.88600 + 3.26665i −0.143390 + 0.248359i −0.928771 0.370654i \(-0.879134\pi\)
0.785381 + 0.619013i \(0.212467\pi\)
\(174\) 0 0
\(175\) 2.00000 + 3.46410i 0.151186 + 0.261861i
\(176\) 1.38600 2.40062i 0.104474 0.180954i
\(177\) 0.113999 + 0.197452i 0.00856869 + 0.0148414i
\(178\) 16.3160 1.22294
\(179\) −7.22800 −0.540246 −0.270123 0.962826i \(-0.587064\pi\)
−0.270123 + 0.962826i \(0.587064\pi\)
\(180\) −1.50000 2.59808i −0.111803 0.193649i
\(181\) −8.65800 14.9961i −0.643544 1.11465i −0.984636 0.174621i \(-0.944130\pi\)
0.341091 0.940030i \(-0.389203\pi\)
\(182\) 3.77200 0.279599
\(183\) 6.22800 0.460387
\(184\) −2.88600 4.99870i −0.212759 0.368509i
\(185\) 1.84200 3.19043i 0.135426 0.234565i
\(186\) 3.77200 + 6.53330i 0.276577 + 0.479045i
\(187\) 6.61400 11.4558i 0.483664 0.837730i
\(188\) −5.77200 + 9.99740i −0.420967 + 0.729135i
\(189\) 1.00000 0.0727393
\(190\) −4.15800 12.3980i −0.301653 0.899447i
\(191\) −17.7720 −1.28594 −0.642968 0.765893i \(-0.722297\pi\)
−0.642968 + 0.765893i \(0.722297\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) 2.72800 4.72503i 0.196366 0.340115i −0.750982 0.660323i \(-0.770419\pi\)
0.947347 + 0.320208i \(0.103753\pi\)
\(194\) −5.77200 9.99740i −0.414406 0.717772i
\(195\) 5.65800 9.79995i 0.405178 0.701789i
\(196\) −0.500000 0.866025i −0.0357143 0.0618590i
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 2.77200 0.196998
\(199\) 13.3160 + 23.0640i 0.943947 + 1.63496i 0.757847 + 0.652433i \(0.226251\pi\)
0.186100 + 0.982531i \(0.440415\pi\)
\(200\) 2.00000 + 3.46410i 0.141421 + 0.244949i
\(201\) 0 0
\(202\) −7.22800 −0.508560
\(203\) 0 0
\(204\) 2.38600 4.13267i 0.167053 0.289345i
\(205\) 1.84200 + 3.19043i 0.128651 + 0.222829i
\(206\) −4.15800 + 7.20187i −0.289702 + 0.501778i
\(207\) 2.88600 4.99870i 0.200591 0.347434i
\(208\) 3.77200 0.261541
\(209\) 11.8420 + 2.40062i 0.819128 + 0.166055i
\(210\) −3.00000 −0.207020
\(211\) −2.00000 + 3.46410i −0.137686 + 0.238479i −0.926620 0.375999i \(-0.877300\pi\)
0.788935 + 0.614477i \(0.210633\pi\)
\(212\) 2.00000 3.46410i 0.137361 0.237915i
\(213\) −6.88600 11.9269i −0.471821 0.817218i
\(214\) 7.77200 13.4615i 0.531283 0.920209i
\(215\) −9.00000 15.5885i −0.613795 1.06312i
\(216\) 1.00000 0.0680414
\(217\) 7.54400 0.512120
\(218\) 0.613999 + 1.06348i 0.0415853 + 0.0720278i
\(219\) −1.00000 1.73205i −0.0675737 0.117041i
\(220\) −8.31601 −0.560665
\(221\) 18.0000 1.21081
\(222\) 0.613999 + 1.06348i 0.0412089 + 0.0713759i
\(223\) 13.9300 24.1275i 0.932822 1.61570i 0.154350 0.988016i \(-0.450672\pi\)
0.778472 0.627679i \(-0.215995\pi\)
\(224\) −0.500000 0.866025i −0.0334077 0.0578638i
\(225\) −2.00000 + 3.46410i −0.133333 + 0.230940i
\(226\) 0.886001 1.53460i 0.0589359 0.102080i
\(227\) 5.77200 0.383101 0.191551 0.981483i \(-0.438648\pi\)
0.191551 + 0.981483i \(0.438648\pi\)
\(228\) 4.27200 + 0.866025i 0.282920 + 0.0573539i
\(229\) −2.68399 −0.177363 −0.0886817 0.996060i \(-0.528265\pi\)
−0.0886817 + 0.996060i \(0.528265\pi\)
\(230\) −8.65800 + 14.9961i −0.570892 + 0.988814i
\(231\) 1.38600 2.40062i 0.0911922 0.157949i
\(232\) 0 0
\(233\) −14.6580 + 25.3884i −0.960278 + 1.66325i −0.238478 + 0.971148i \(0.576648\pi\)
−0.721800 + 0.692102i \(0.756685\pi\)
\(234\) 1.88600 + 3.26665i 0.123292 + 0.213548i
\(235\) 34.6320 2.25914
\(236\) 0.227998 0.0148414
\(237\) −4.00000 6.92820i −0.259828 0.450035i
\(238\) −2.38600 4.13267i −0.154661 0.267882i
\(239\) 18.0880 1.17002 0.585008 0.811028i \(-0.301091\pi\)
0.585008 + 0.811028i \(0.301091\pi\)
\(240\) −3.00000 −0.193649
\(241\) 7.77200 + 13.4615i 0.500639 + 0.867132i 1.00000 0.000737607i \(0.000234788\pi\)
−0.499361 + 0.866394i \(0.666432\pi\)
\(242\) −1.65800 + 2.87175i −0.106580 + 0.184603i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 3.11400 5.39360i 0.199353 0.345290i
\(245\) −1.50000 + 2.59808i −0.0958315 + 0.165985i
\(246\) −1.22800 −0.0782943
\(247\) 5.22800 + 15.5885i 0.332650 + 0.991870i
\(248\) 7.54400 0.479045
\(249\) −3.11400 + 5.39360i −0.197342 + 0.341806i
\(250\) −1.50000 + 2.59808i −0.0948683 + 0.164317i
\(251\) 7.88600 + 13.6590i 0.497760 + 0.862146i 0.999997 0.00258464i \(-0.000822718\pi\)
−0.502237 + 0.864730i \(0.667489\pi\)
\(252\) 0.500000 0.866025i 0.0314970 0.0545545i
\(253\) −8.00000 13.8564i −0.502956 0.871145i
\(254\) −7.77200 −0.487659
\(255\) −14.3160 −0.896503
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 10.1580 + 17.5942i 0.633639 + 1.09749i 0.986802 + 0.161933i \(0.0517728\pi\)
−0.353163 + 0.935562i \(0.614894\pi\)
\(258\) 6.00000 0.373544
\(259\) 1.22800 0.0763041
\(260\) −5.65800 9.79995i −0.350894 0.607767i
\(261\) 0 0
\(262\) 8.65800 + 14.9961i 0.534893 + 0.926462i
\(263\) 7.50000 12.9904i 0.462470 0.801021i −0.536614 0.843828i \(-0.680297\pi\)
0.999083 + 0.0428069i \(0.0136300\pi\)
\(264\) 1.38600 2.40062i 0.0853025 0.147748i
\(265\) −12.0000 −0.737154
\(266\) 2.88600 3.26665i 0.176952 0.200291i
\(267\) 16.3160 0.998523
\(268\) 0 0
\(269\) −10.3860 + 17.9891i −0.633246 + 1.09681i 0.353638 + 0.935382i \(0.384944\pi\)
−0.986884 + 0.161431i \(0.948389\pi\)
\(270\) −1.50000 2.59808i −0.0912871 0.158114i
\(271\) −9.61400 + 16.6519i −0.584009 + 1.01153i 0.410989 + 0.911640i \(0.365183\pi\)
−0.994998 + 0.0998929i \(0.968150\pi\)
\(272\) −2.38600 4.13267i −0.144673 0.250580i
\(273\) 3.77200 0.228292
\(274\) 3.77200 0.227875
\(275\) 5.54400 + 9.60250i 0.334316 + 0.579052i
\(276\) −2.88600 4.99870i −0.173717 0.300886i
\(277\) 18.3160 1.10050 0.550251 0.834999i \(-0.314532\pi\)
0.550251 + 0.834999i \(0.314532\pi\)
\(278\) −16.3160 −0.978569
\(279\) 3.77200 + 6.53330i 0.225824 + 0.391138i
\(280\) −1.50000 + 2.59808i −0.0896421 + 0.155265i
\(281\) 7.77200 + 13.4615i 0.463639 + 0.803046i 0.999139 0.0414892i \(-0.0132102\pi\)
−0.535500 + 0.844535i \(0.679877\pi\)
\(282\) −5.77200 + 9.99740i −0.343718 + 0.595337i
\(283\) 14.5000 25.1147i 0.861936 1.49292i −0.00812260 0.999967i \(-0.502586\pi\)
0.870058 0.492949i \(-0.164081\pi\)
\(284\) −13.7720 −0.817218
\(285\) −4.15800 12.3980i −0.246299 0.734396i
\(286\) 10.4560 0.618276
\(287\) −0.613999 + 1.06348i −0.0362432 + 0.0627751i
\(288\) 0.500000 0.866025i 0.0294628 0.0510310i
\(289\) −2.88600 4.99870i −0.169765 0.294041i
\(290\) 0 0
\(291\) −5.77200 9.99740i −0.338361 0.586058i
\(292\) −2.00000 −0.117041
\(293\) −29.6320 −1.73112 −0.865560 0.500805i \(-0.833037\pi\)
−0.865560 + 0.500805i \(0.833037\pi\)
\(294\) −0.500000 0.866025i −0.0291606 0.0505076i
\(295\) −0.341997 0.592357i −0.0199118 0.0344883i
\(296\) 1.22800 0.0713759
\(297\) 2.77200 0.160848
\(298\) −1.22800 2.12696i −0.0711360 0.123211i
\(299\) 10.8860 18.8551i 0.629554 1.09042i
\(300\) 2.00000 + 3.46410i 0.115470 + 0.200000i
\(301\) 3.00000 5.19615i 0.172917 0.299501i
\(302\) −5.11400 + 8.85771i −0.294278 + 0.509704i
\(303\) −7.22800 −0.415238
\(304\) 2.88600 3.26665i 0.165524 0.187355i
\(305\) −18.6840 −1.06984
\(306\) 2.38600 4.13267i 0.136399 0.236249i
\(307\) −1.11400 + 1.92950i −0.0635793 + 0.110123i −0.896063 0.443927i \(-0.853585\pi\)
0.832484 + 0.554050i \(0.186918\pi\)
\(308\) −1.38600 2.40062i −0.0789747 0.136788i
\(309\) −4.15800 + 7.20187i −0.236541 + 0.409700i
\(310\) −11.3160 19.5999i −0.642706 1.11320i
\(311\) −29.0880 −1.64943 −0.824715 0.565549i \(-0.808664\pi\)
−0.824715 + 0.565549i \(0.808664\pi\)
\(312\) 3.77200 0.213548
\(313\) −12.0000 20.7846i −0.678280 1.17482i −0.975499 0.220006i \(-0.929392\pi\)
0.297218 0.954810i \(-0.403941\pi\)
\(314\) 7.88600 + 13.6590i 0.445033 + 0.770819i
\(315\) −3.00000 −0.169031
\(316\) −8.00000 −0.450035
\(317\) −11.3160 19.5999i −0.635570 1.10084i −0.986394 0.164398i \(-0.947432\pi\)
0.350824 0.936441i \(-0.385902\pi\)
\(318\) 2.00000 3.46410i 0.112154 0.194257i
\(319\) 0 0
\(320\) −1.50000 + 2.59808i −0.0838525 + 0.145237i
\(321\) 7.77200 13.4615i 0.433791 0.751348i
\(322\) −5.77200 −0.321661
\(323\) 13.7720 15.5885i 0.766295 0.867365i
\(324\) 1.00000 0.0555556
\(325\) −7.54400 + 13.0666i −0.418466 + 0.724804i
\(326\) −5.00000 + 8.66025i −0.276924 + 0.479647i
\(327\) 0.613999 + 1.06348i 0.0339542 + 0.0588104i
\(328\) −0.613999 + 1.06348i −0.0339024 + 0.0587207i
\(329\) 5.77200 + 9.99740i 0.318221 + 0.551175i
\(330\) −8.31601 −0.457781
\(331\) 15.0880 0.829312 0.414656 0.909978i \(-0.363902\pi\)
0.414656 + 0.909978i \(0.363902\pi\)
\(332\) 3.11400 + 5.39360i 0.170903 + 0.296013i
\(333\) 0.613999 + 1.06348i 0.0336469 + 0.0582782i
\(334\) 6.00000 0.328305
\(335\) 0 0
\(336\) −0.500000 0.866025i −0.0272772 0.0472456i
\(337\) −5.88600 + 10.1949i −0.320631 + 0.555349i −0.980618 0.195928i \(-0.937228\pi\)
0.659987 + 0.751277i \(0.270562\pi\)
\(338\) 0.613999 + 1.06348i 0.0333971 + 0.0578456i
\(339\) 0.886001 1.53460i 0.0481210 0.0833480i
\(340\) −7.15800 + 12.3980i −0.388197 + 0.672377i
\(341\) 20.9120 1.13245
\(342\) 4.27200 + 0.866025i 0.231003 + 0.0468293i
\(343\) −1.00000 −0.0539949
\(344\) 3.00000 5.19615i 0.161749 0.280158i
\(345\) −8.65800 + 14.9961i −0.466131 + 0.807363i
\(346\) 1.88600 + 3.26665i 0.101392 + 0.175616i
\(347\) 7.77200 13.4615i 0.417223 0.722651i −0.578436 0.815728i \(-0.696337\pi\)
0.995659 + 0.0930764i \(0.0296701\pi\)
\(348\) 0 0
\(349\) −18.6320 −0.997349 −0.498674 0.866789i \(-0.666180\pi\)
−0.498674 + 0.866789i \(0.666180\pi\)
\(350\) 4.00000 0.213809
\(351\) 1.88600 + 3.26665i 0.100667 + 0.174361i
\(352\) −1.38600 2.40062i −0.0738741 0.127954i
\(353\) 5.22800 0.278258 0.139129 0.990274i \(-0.455570\pi\)
0.139129 + 0.990274i \(0.455570\pi\)
\(354\) 0.227998 0.0121180
\(355\) 20.6580 + 35.7807i 1.09641 + 1.89904i
\(356\) 8.15800 14.1301i 0.432373 0.748892i
\(357\) −2.38600 4.13267i −0.126281 0.218724i
\(358\) −3.61400 + 6.25963i −0.191006 + 0.330832i
\(359\) 12.0000 20.7846i 0.633336 1.09697i −0.353529 0.935423i \(-0.615019\pi\)
0.986865 0.161546i \(-0.0516481\pi\)
\(360\) −3.00000 −0.158114
\(361\) 17.5000 + 7.39932i 0.921053 + 0.389438i
\(362\) −17.3160 −0.910109
\(363\) −1.65800 + 2.87175i −0.0870226 + 0.150728i
\(364\) 1.88600 3.26665i 0.0988533 0.171219i
\(365\) 3.00000 + 5.19615i 0.157027 + 0.271979i
\(366\) 3.11400 5.39360i 0.162771 0.281928i
\(367\) 12.1580 + 21.0583i 0.634643 + 1.09923i 0.986591 + 0.163214i \(0.0521860\pi\)
−0.351948 + 0.936019i \(0.614481\pi\)
\(368\) −5.77200 −0.300886
\(369\) −1.22800 −0.0639270
\(370\) −1.84200 3.19043i −0.0957609 0.165863i
\(371\) −2.00000 3.46410i −0.103835 0.179847i
\(372\) 7.54400 0.391138
\(373\) −30.3160 −1.56970 −0.784852 0.619684i \(-0.787261\pi\)
−0.784852 + 0.619684i \(0.787261\pi\)
\(374\) −6.61400 11.4558i −0.342002 0.592364i
\(375\) −1.50000 + 2.59808i −0.0774597 + 0.134164i
\(376\) 5.77200 + 9.99740i 0.297668 + 0.515577i
\(377\) 0 0
\(378\) 0.500000 0.866025i 0.0257172 0.0445435i
\(379\) 0.455996 0.0234230 0.0117115 0.999931i \(-0.496272\pi\)
0.0117115 + 0.999931i \(0.496272\pi\)
\(380\) −12.8160 2.59808i −0.657447 0.133278i
\(381\) −7.77200 −0.398172
\(382\) −8.88600 + 15.3910i −0.454647 + 0.787472i
\(383\) −16.0000 + 27.7128i −0.817562 + 1.41606i 0.0899119 + 0.995950i \(0.471341\pi\)
−0.907474 + 0.420109i \(0.861992\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) −4.15800 + 7.20187i −0.211911 + 0.367041i
\(386\) −2.72800 4.72503i −0.138851 0.240498i
\(387\) 6.00000 0.304997
\(388\) −11.5440 −0.586058
\(389\) 9.54400 + 16.5307i 0.483900 + 0.838140i 0.999829 0.0184917i \(-0.00588644\pi\)
−0.515929 + 0.856631i \(0.672553\pi\)
\(390\) −5.65800 9.79995i −0.286504 0.496240i
\(391\) −27.5440 −1.39296
\(392\) −1.00000 −0.0505076
\(393\) 8.65800 + 14.9961i 0.436738 + 0.756453i
\(394\) −4.00000 + 6.92820i −0.201517 + 0.349038i
\(395\) 12.0000 + 20.7846i 0.603786 + 1.04579i
\(396\) 1.38600 2.40062i 0.0696492 0.120636i
\(397\) −4.54400 + 7.87045i −0.228057 + 0.395006i −0.957232 0.289321i \(-0.906571\pi\)
0.729175 + 0.684327i \(0.239904\pi\)
\(398\) 26.6320 1.33494
\(399\) 2.88600 3.26665i 0.144481 0.163537i
\(400\) 4.00000 0.200000
\(401\) −19.9740 + 34.5960i −0.997454 + 1.72764i −0.436973 + 0.899475i \(0.643950\pi\)
−0.560481 + 0.828167i \(0.689384\pi\)
\(402\) 0 0
\(403\) 14.2280 + 24.6436i 0.708747 + 1.22759i
\(404\) −3.61400 + 6.25963i −0.179803 + 0.311428i
\(405\) −1.50000 2.59808i −0.0745356 0.129099i
\(406\) 0 0
\(407\) 3.40401 0.168731
\(408\) −2.38600 4.13267i −0.118125 0.204598i
\(409\) 13.5440 + 23.4589i 0.669708 + 1.15997i 0.977986 + 0.208672i \(0.0669140\pi\)
−0.308278 + 0.951296i \(0.599753\pi\)
\(410\) 3.68399 0.181940
\(411\) 3.77200 0.186059
\(412\) 4.15800 + 7.20187i 0.204850 + 0.354811i
\(413\) 0.113999 0.197452i 0.00560953 0.00971599i
\(414\) −2.88600 4.99870i −0.141839 0.245673i
\(415\) 9.34200 16.1808i 0.458581 0.794285i
\(416\) 1.88600 3.26665i 0.0924688 0.160161i
\(417\) −16.3160 −0.798998
\(418\) 8.00000 9.05516i 0.391293 0.442902i
\(419\) 1.54400 0.0754295 0.0377148 0.999289i \(-0.487992\pi\)
0.0377148 + 0.999289i \(0.487992\pi\)
\(420\) −1.50000 + 2.59808i −0.0731925 + 0.126773i
\(421\) −11.3860 + 19.7211i −0.554920 + 0.961149i 0.442990 + 0.896527i \(0.353918\pi\)
−0.997910 + 0.0646226i \(0.979416\pi\)
\(422\) 2.00000 + 3.46410i 0.0973585 + 0.168630i
\(423\) −5.77200 + 9.99740i −0.280644 + 0.486090i
\(424\) −2.00000 3.46410i −0.0971286 0.168232i
\(425\) 19.0880 0.925904
\(426\) −13.7720 −0.667256
\(427\) −3.11400 5.39360i −0.150697 0.261015i
\(428\) −7.77200 13.4615i −0.375674 0.650686i
\(429\) 10.4560 0.504820
\(430\) −18.0000 −0.868037
\(431\) −13.3860 23.1852i −0.644781 1.11679i −0.984352 0.176213i \(-0.943615\pi\)
0.339571 0.940580i \(-0.389718\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) 6.00000 + 10.3923i 0.288342 + 0.499422i 0.973414 0.229053i \(-0.0735628\pi\)
−0.685072 + 0.728475i \(0.740229\pi\)
\(434\) 3.77200 6.53330i 0.181062 0.313608i
\(435\) 0 0
\(436\) 1.22800 0.0588104
\(437\) −8.00000 23.8538i −0.382692 1.14108i
\(438\) −2.00000 −0.0955637
\(439\) 10.3860 17.9891i 0.495697 0.858572i −0.504291 0.863534i \(-0.668246\pi\)
0.999988 + 0.00496182i \(0.00157940\pi\)
\(440\) −4.15800 + 7.20187i −0.198225 + 0.343336i
\(441\) −0.500000 0.866025i −0.0238095 0.0412393i
\(442\) 9.00000 15.5885i 0.428086 0.741467i
\(443\) 15.7720 + 27.3179i 0.749350 + 1.29791i 0.948134 + 0.317870i \(0.102967\pi\)
−0.198784 + 0.980043i \(0.563699\pi\)
\(444\) 1.22800 0.0582782
\(445\) −48.9480 −2.32036
\(446\) −13.9300 24.1275i −0.659605 1.14247i
\(447\) −1.22800 2.12696i −0.0580823 0.100602i
\(448\) −1.00000 −0.0472456
\(449\) 15.7720 0.744327 0.372163 0.928167i \(-0.378616\pi\)
0.372163 + 0.928167i \(0.378616\pi\)
\(450\) 2.00000 + 3.46410i 0.0942809 + 0.163299i
\(451\) −1.70201 + 2.94796i −0.0801444 + 0.138814i
\(452\) −0.886001 1.53460i −0.0416740 0.0721814i
\(453\) −5.11400 + 8.85771i −0.240277 + 0.416171i
\(454\) 2.88600 4.99870i 0.135447 0.234601i
\(455\) −11.3160 −0.530503
\(456\) 2.88600 3.26665i 0.135149 0.152975i
\(457\) −3.91199 −0.182995 −0.0914976 0.995805i \(-0.529165\pi\)
−0.0914976 + 0.995805i \(0.529165\pi\)
\(458\) −1.34200 + 2.32441i −0.0627074 + 0.108612i
\(459\) 2.38600 4.13267i 0.111369 0.192897i
\(460\) 8.65800 + 14.9961i 0.403681 + 0.699197i
\(461\) −4.50000 + 7.79423i −0.209586 + 0.363013i −0.951584 0.307388i \(-0.900545\pi\)
0.741998 + 0.670402i \(0.233878\pi\)
\(462\) −1.38600 2.40062i −0.0644826 0.111687i
\(463\) 36.8600 1.71303 0.856515 0.516122i \(-0.172625\pi\)
0.856515 + 0.516122i \(0.172625\pi\)
\(464\) 0 0
\(465\) −11.3160 19.5999i −0.524767 0.908923i
\(466\) 14.6580 + 25.3884i 0.679019 + 1.17610i
\(467\) −31.0880 −1.43858 −0.719291 0.694709i \(-0.755533\pi\)
−0.719291 + 0.694709i \(0.755533\pi\)
\(468\) 3.77200 0.174361
\(469\) 0 0
\(470\) 17.3160 29.9922i 0.798728 1.38344i
\(471\) 7.88600 + 13.6590i 0.363368 + 0.629371i
\(472\) 0.113999 0.197452i 0.00524723 0.00908847i
\(473\) 8.31601 14.4037i 0.382370 0.662285i
\(474\) −8.00000 −0.367452
\(475\) 5.54400 + 16.5307i 0.254376 + 0.758481i
\(476\) −4.77200 −0.218724
\(477\) 2.00000 3.46410i 0.0915737 0.158610i
\(478\) 9.04400 15.6647i 0.413663 0.716486i
\(479\) −9.00000 15.5885i −0.411220 0.712255i 0.583803 0.811895i \(-0.301564\pi\)
−0.995023 + 0.0996406i \(0.968231\pi\)
\(480\) −1.50000 + 2.59808i −0.0684653 + 0.118585i
\(481\) 2.31601 + 4.01144i 0.105601 + 0.182906i
\(482\) 15.5440 0.708010
\(483\) −5.77200 −0.262635
\(484\) 1.65800 + 2.87175i 0.0753638 + 0.130534i
\(485\) 17.3160 + 29.9922i 0.786279 + 1.36188i
\(486\) 1.00000 0.0453609
\(487\) −0.911993 −0.0413263 −0.0206632 0.999786i \(-0.506578\pi\)
−0.0206632 + 0.999786i \(0.506578\pi\)
\(488\) −3.11400 5.39360i −0.140964 0.244157i
\(489\) −5.00000 + 8.66025i −0.226108 + 0.391630i
\(490\) 1.50000 + 2.59808i 0.0677631 + 0.117369i
\(491\) −3.38600 + 5.86473i −0.152808 + 0.264671i −0.932259 0.361792i \(-0.882165\pi\)
0.779451 + 0.626464i \(0.215498\pi\)
\(492\) −0.613999 + 1.06348i −0.0276812 + 0.0479453i
\(493\) 0 0
\(494\) 16.1140 + 3.26665i 0.725003 + 0.146974i
\(495\) −8.31601 −0.373777
\(496\) 3.77200 6.53330i 0.169368 0.293354i
\(497\) −6.88600 + 11.9269i −0.308879 + 0.534995i
\(498\) 3.11400 + 5.39360i 0.139542 + 0.241693i
\(499\) −13.7720 + 23.8538i −0.616519 + 1.06784i 0.373596 + 0.927591i \(0.378125\pi\)
−0.990116 + 0.140252i \(0.955209\pi\)
\(500\) 1.50000 + 2.59808i 0.0670820 + 0.116190i
\(501\) 6.00000 0.268060
\(502\) 15.7720 0.703939
\(503\) −12.5440 21.7269i −0.559309 0.968752i −0.997554 0.0698968i \(-0.977733\pi\)
0.438245 0.898856i \(-0.355600\pi\)
\(504\) −0.500000 0.866025i −0.0222718 0.0385758i
\(505\) 21.6840 0.964925
\(506\) −16.0000 −0.711287
\(507\) 0.613999 + 1.06348i 0.0272687 + 0.0472307i
\(508\) −3.88600 + 6.73075i −0.172413 + 0.298629i
\(509\) 5.81601 + 10.0736i 0.257790 + 0.446505i 0.965650 0.259848i \(-0.0836724\pi\)
−0.707860 + 0.706353i \(0.750339\pi\)
\(510\) −7.15800 + 12.3980i −0.316962 + 0.548994i
\(511\) −1.00000 + 1.73205i −0.0442374 + 0.0766214i
\(512\) −1.00000 −0.0441942
\(513\) 4.27200 + 0.866025i 0.188613 + 0.0382360i
\(514\) 20.3160 0.896101
\(515\) 12.4740 21.6056i 0.549670 0.952057i
\(516\) 3.00000 5.19615i 0.132068 0.228748i
\(517\) 16.0000 + 27.7128i 0.703679 + 1.21881i
\(518\) 0.613999 1.06348i 0.0269776 0.0467265i
\(519\) 1.88600 + 3.26665i 0.0827863 + 0.143390i
\(520\) −11.3160 −0.496240
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) −0.158003 0.273669i −0.00690898 0.0119667i 0.862550 0.505971i \(-0.168866\pi\)
−0.869459 + 0.494005i \(0.835533\pi\)
\(524\) 17.3160 0.756453
\(525\) 4.00000 0.174574
\(526\) −7.50000 12.9904i −0.327016 0.566408i
\(527\) 18.0000 31.1769i 0.784092 1.35809i
\(528\) −1.38600 2.40062i −0.0603179 0.104474i
\(529\) −5.15800 + 8.93392i −0.224261 + 0.388431i
\(530\) −6.00000 + 10.3923i −0.260623 + 0.451413i
\(531\) 0.227998 0.00989428
\(532\) −1.38600 4.13267i −0.0600908 0.179174i
\(533\) −4.63201 −0.200635
\(534\) 8.15800 14.1301i 0.353031 0.611468i
\(535\) −23.3160 + 40.3845i −1.00804 + 1.74597i
\(536\) 0 0
\(537\) −3.61400 + 6.25963i −0.155956 + 0.270123i
\(538\) 10.3860 + 17.9891i 0.447772 + 0.775564i
\(539\) −2.77200 −0.119399
\(540\) −3.00000 −0.129099
\(541\) −13.3860 23.1852i −0.575509 0.996811i −0.995986 0.0895079i \(-0.971471\pi\)
0.420477 0.907303i \(-0.361863\pi\)
\(542\) 9.61400 + 16.6519i 0.412957 + 0.715262i
\(543\) −17.3160 −0.743101
\(544\) −4.77200 −0.204598
\(545\) −1.84200 3.19043i −0.0789025 0.136663i
\(546\) 1.88600 3.26665i 0.0807134 0.139800i
\(547\) −14.5440 25.1910i −0.621857 1.07709i −0.989140 0.146978i \(-0.953045\pi\)
0.367283 0.930109i \(-0.380288\pi\)
\(548\) 1.88600 3.26665i 0.0805660 0.139544i
\(549\) 3.11400 5.39360i 0.132902 0.230193i
\(550\) 11.0880 0.472794
\(551\) 0 0
\(552\) −5.77200 −0.245673
\(553\) −4.00000 + 6.92820i −0.170097 + 0.294617i
\(554\) 9.15800 15.8621i 0.389086 0.673917i
\(555\) −1.84200 3.19043i −0.0781884 0.135426i
\(556\) −8.15800 + 14.1301i −0.345976 + 0.599249i
\(557\) −17.7720 30.7820i −0.753024 1.30428i −0.946351 0.323141i \(-0.895261\pi\)
0.193327 0.981134i \(-0.438072\pi\)
\(558\) 7.54400 0.319363
\(559\) 22.6320 0.957232
\(560\) 1.50000 + 2.59808i 0.0633866 + 0.109789i
\(561\) −6.61400 11.4558i −0.279243 0.483664i
\(562\) 15.5440 0.655684
\(563\) −44.4040 −1.87141 −0.935703 0.352789i \(-0.885233\pi\)
−0.935703 + 0.352789i \(0.885233\pi\)
\(564\) 5.77200 + 9.99740i 0.243045 + 0.420967i
\(565\) −2.65800 + 4.60380i −0.111823 + 0.193683i
\(566\) −14.5000 25.1147i −0.609480 1.05565i
\(567\) 0.500000 0.866025i 0.0209980 0.0363696i
\(568\) −6.88600 + 11.9269i −0.288930 + 0.500442i
\(569\) 8.22800 0.344936 0.172468 0.985015i \(-0.444826\pi\)
0.172468 + 0.985015i \(0.444826\pi\)
\(570\) −12.8160 2.59808i −0.536803 0.108821i
\(571\) −38.6320 −1.61670 −0.808350 0.588703i \(-0.799639\pi\)
−0.808350 + 0.588703i \(0.799639\pi\)
\(572\) 5.22800 9.05516i 0.218594 0.378615i
\(573\) −8.88600 + 15.3910i −0.371218 + 0.642968i
\(574\) 0.613999 + 1.06348i 0.0256278 + 0.0443887i
\(575\) 11.5440 19.9948i 0.481418 0.833841i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 41.5440 1.72950 0.864750 0.502203i \(-0.167477\pi\)
0.864750 + 0.502203i \(0.167477\pi\)
\(578\) −5.77200 −0.240084
\(579\) −2.72800 4.72503i −0.113372 0.196366i
\(580\) 0 0
\(581\) 6.22800 0.258381
\(582\) −11.5440 −0.478514
\(583\) −5.54400 9.60250i −0.229609 0.397695i
\(584\) −1.00000 + 1.73205i −0.0413803 + 0.0716728i
\(585\) −5.65800 9.79995i −0.233930 0.405178i
\(586\) −14.8160 + 25.6621i −0.612044 + 1.06009i
\(587\) 4.77200 8.26535i 0.196962 0.341147i −0.750580 0.660779i \(-0.770226\pi\)
0.947542 + 0.319632i \(0.103559\pi\)
\(588\) −1.00000 −0.0412393
\(589\) 32.2280 + 6.53330i 1.32793 + 0.269200i
\(590\) −0.683994 −0.0281596
\(591\) −4.00000 + 6.92820i −0.164538 + 0.284988i
\(592\) 0.613999 1.06348i 0.0252352 0.0437087i
\(593\) −6.15800 10.6660i −0.252879 0.437999i 0.711438 0.702748i \(-0.248044\pi\)
−0.964317 + 0.264749i \(0.914711\pi\)
\(594\) 1.38600 2.40062i 0.0568683 0.0984988i
\(595\) 7.15800 + 12.3980i 0.293450 + 0.508269i
\(596\) −2.45600 −0.100602
\(597\) 26.6320 1.08998
\(598\) −10.8860 18.8551i −0.445162 0.771043i
\(599\) −4.81601 8.34157i −0.196777 0.340827i 0.750705 0.660638i \(-0.229714\pi\)
−0.947481 + 0.319811i \(0.896381\pi\)
\(600\) 4.00000 0.163299
\(601\) −19.5440 −0.797217 −0.398608 0.917121i \(-0.630507\pi\)
−0.398608 + 0.917121i \(0.630507\pi\)
\(602\) −3.00000 5.19615i −0.122271 0.211779i
\(603\) 0 0
\(604\) 5.11400 + 8.85771i 0.208086 + 0.360415i
\(605\) 4.97401 8.61524i 0.202222 0.350259i
\(606\) −3.61400 + 6.25963i −0.146809 + 0.254280i
\(607\) 23.0880 0.937113 0.468557 0.883433i \(-0.344774\pi\)
0.468557 + 0.883433i \(0.344774\pi\)
\(608\) −1.38600 4.13267i −0.0562098 0.167602i
\(609\) 0 0
\(610\) −9.34200 + 16.1808i −0.378246 + 0.655142i
\(611\) −21.7720 + 37.7102i −0.880801 + 1.52559i
\(612\) −2.38600 4.13267i −0.0964484 0.167053i
\(613\) 8.38600 14.5250i 0.338707 0.586658i −0.645482 0.763775i \(-0.723344\pi\)
0.984190 + 0.177117i \(0.0566770\pi\)
\(614\) 1.11400 + 1.92950i 0.0449573 + 0.0778684i
\(615\) 3.68399 0.148553
\(616\) −2.77200 −0.111687
\(617\) 11.6580 + 20.1923i 0.469334 + 0.812910i 0.999385 0.0350557i \(-0.0111609\pi\)
−0.530052 + 0.847965i \(0.677828\pi\)
\(618\) 4.15800 + 7.20187i 0.167259 + 0.289702i
\(619\) −41.7720 −1.67896 −0.839479 0.543392i \(-0.817140\pi\)
−0.839479 + 0.543392i \(0.817140\pi\)
\(620\) −22.6320 −0.908923
\(621\) −2.88600 4.99870i −0.115811 0.200591i
\(622\) −14.5440 + 25.1910i −0.583161 + 1.01007i
\(623\) −8.15800 14.1301i −0.326843 0.566110i
\(624\) 1.88600 3.26665i 0.0755005 0.130771i
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) −24.0000 −0.959233
\(627\) 8.00000 9.05516i 0.319489 0.361628i
\(628\) 15.7720 0.629371
\(629\) 2.93000 5.07492i 0.116827 0.202350i
\(630\) −1.50000 + 2.59808i −0.0597614 + 0.103510i
\(631\) 16.3160 + 28.2602i 0.649530 + 1.12502i 0.983235 + 0.182341i \(0.0583676\pi\)
−0.333705 + 0.942677i \(0.608299\pi\)
\(632\) −4.00000 + 6.92820i −0.159111 + 0.275589i
\(633\) 2.00000 + 3.46410i 0.0794929 + 0.137686i
\(634\) −22.6320 −0.898832
\(635\) 23.3160 0.925267
\(636\) −2.00000 3.46410i −0.0793052 0.137361i
\(637\) −1.88600 3.26665i −0.0747261 0.129429i
\(638\) 0 0
\(639\) −13.7720 −0.544812
\(640\) 1.50000 + 2.59808i 0.0592927 + 0.102698i
\(641\) 6.65800 11.5320i 0.262975 0.455487i −0.704056 0.710145i \(-0.748630\pi\)
0.967031 + 0.254658i \(0.0819629\pi\)
\(642\) −7.77200 13.4615i −0.306736 0.531283i
\(643\) 20.5880 35.6595i 0.811912 1.40627i −0.0996126 0.995026i \(-0.531760\pi\)
0.911524 0.411246i \(-0.134906\pi\)
\(644\) −2.88600 + 4.99870i −0.113724 + 0.196976i
\(645\) −18.0000 −0.708749
\(646\) −6.61400 19.7211i −0.260224 0.775918i
\(647\) −10.6320 −0.417987 −0.208994 0.977917i \(-0.567019\pi\)
−0.208994 + 0.977917i \(0.567019\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) 0.316006 0.547338i 0.0124043 0.0214849i
\(650\) 7.54400 + 13.0666i 0.295900 + 0.512514i
\(651\) 3.77200 6.53330i 0.147836 0.256060i
\(652\) 5.00000 + 8.66025i 0.195815 + 0.339162i
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 1.22800 0.0480185
\(655\) −25.9740 44.9883i −1.01489 1.75784i
\(656\) 0.613999 + 1.06348i 0.0239726 + 0.0415218i
\(657\) −2.00000 −0.0780274
\(658\) 11.5440 0.450032
\(659\) −1.61400 2.79553i −0.0628725 0.108898i 0.832876 0.553460i \(-0.186693\pi\)
−0.895748 + 0.444562i \(0.853359\pi\)
\(660\) −4.15800 + 7.20187i −0.161850 + 0.280332i
\(661\) −7.65800 13.2640i −0.297862 0.515912i 0.677785 0.735260i \(-0.262940\pi\)
−0.975647 + 0.219349i \(0.929607\pi\)
\(662\) 7.54400 13.0666i 0.293206 0.507848i
\(663\) 9.00000 15.5885i 0.349531 0.605406i
\(664\) 6.22800 0.241693
\(665\) −8.65800 + 9.79995i −0.335743 + 0.380026i
\(666\) 1.22800 0.0475840
\(667\) 0 0
\(668\) 3.00000 5.19615i 0.116073 0.201045i
\(669\) −13.9300 24.1275i −0.538565 0.932822i
\(670\) 0 0
\(671\) −8.63201 14.9511i −0.333235 0.577180i
\(672\) −1.00000 −0.0385758
\(673\) −23.4560 −0.904162 −0.452081 0.891977i \(-0.649318\pi\)
−0.452081 + 0.891977i \(0.649318\pi\)
\(674\) 5.88600 + 10.1949i 0.226720 + 0.392691i
\(675\) 2.00000 + 3.46410i 0.0769800 + 0.133333i
\(676\) 1.22800 0.0472307
\(677\) 14.3160 0.550209 0.275104 0.961414i \(-0.411288\pi\)
0.275104 + 0.961414i \(0.411288\pi\)
\(678\) −0.886001 1.53460i −0.0340267 0.0589359i
\(679\) −5.77200 + 9.99740i −0.221509 + 0.383665i
\(680\) 7.15800 + 12.3980i 0.274497 + 0.475443i
\(681\) 2.88600 4.99870i 0.110592 0.191551i
\(682\) 10.4560 18.1103i 0.400381 0.693480i
\(683\) 17.2280 0.659211 0.329606 0.944119i \(-0.393084\pi\)
0.329606 + 0.944119i \(0.393084\pi\)
\(684\) 2.88600 3.26665i 0.110349 0.124903i
\(685\) −11.3160 −0.432362
\(686\) −0.500000 + 0.866025i −0.0190901 + 0.0330650i
\(687\) −1.34200 + 2.32441i −0.0512004 + 0.0886817i
\(688\) −3.00000 5.19615i −0.114374 0.198101i
\(689\) 7.54400 13.0666i 0.287404 0.497798i
\(690\) 8.65800 + 14.9961i 0.329605 + 0.570892i
\(691\) −27.6320 −1.05117 −0.525586 0.850741i \(-0.676154\pi\)
−0.525586 + 0.850741i \(0.676154\pi\)
\(692\) 3.77200 0.143390
\(693\) −1.38600 2.40062i −0.0526498 0.0911922i
\(694\) −7.77200 13.4615i −0.295021 0.510992i
\(695\) 48.9480 1.85670
\(696\) 0 0
\(697\) 2.93000 + 5.07492i 0.110982 + 0.192226i
\(698\) −9.31601 + 16.1358i −0.352616 + 0.610749i
\(699\) 14.6580 + 25.3884i 0.554417 + 0.960278i
\(700\) 2.00000 3.46410i 0.0755929 0.130931i
\(701\) −18.5440 + 32.1192i −0.700397 + 1.21312i 0.267930 + 0.963438i \(0.413661\pi\)
−0.968327 + 0.249685i \(0.919673\pi\)
\(702\) 3.77200 0.142365
\(703\) 5.24601 + 1.06348i 0.197857 + 0.0401098i
\(704\) −2.77200 −0.104474
\(705\) 17.3160 29.9922i 0.652159 1.12957i
\(706\) 2.61400 4.52758i 0.0983792 0.170398i
\(707\) 3.61400 + 6.25963i 0.135918 + 0.235418i
\(708\) 0.113999 0.197452i 0.00428435 0.00742071i
\(709\) −8.15800 14.1301i −0.306380 0.530666i 0.671187 0.741288i \(-0.265785\pi\)
−0.977568 + 0.210622i \(0.932451\pi\)
\(710\) 41.3160 1.55056
\(711\) −8.00000 −0.300023
\(712\) −8.15800 14.1301i −0.305734 0.529547i
\(713\) −21.7720 37.7102i −0.815368 1.41226i
\(714\) −4.77200 −0.178588
\(715\) −31.3680 −1.17310
\(716\) 3.61400 + 6.25963i 0.135061 + 0.233933i
\(717\) 9.04400 15.6647i 0.337755 0.585008i
\(718\) −12.0000 20.7846i −0.447836 0.775675i
\(719\) −3.45600 + 5.98596i −0.128887 + 0.223239i −0.923246 0.384210i \(-0.874474\pi\)
0.794359 + 0.607449i \(0.207807\pi\)
\(720\) −1.50000 + 2.59808i −0.0559017 + 0.0968246i
\(721\) 8.31601 0.309704
\(722\) 15.1580 11.4558i 0.564122 0.426340i
\(723\) 15.5440 0.578088
\(724\) −8.65800 + 14.9961i −0.321772 + 0.557326i
\(725\) 0 0
\(726\) 1.65800 + 2.87175i 0.0615343 + 0.106580i
\(727\) 24.1580 41.8429i 0.895971 1.55187i 0.0633721 0.997990i \(-0.479814\pi\)
0.832599 0.553877i \(-0.186852\pi\)
\(728\) −1.88600 3.26665i −0.0698998 0.121070i
\(729\) 1.00000 0.0370370
\(730\) 6.00000 0.222070
\(731\) −14.3160 24.7960i −0.529497 0.917115i
\(732\) −3.11400 5.39360i −0.115097 0.199353i
\(733\) 42.4040 1.56623 0.783114 0.621878i \(-0.213630\pi\)
0.783114 + 0.621878i \(0.213630\pi\)
\(734\) 24.3160 0.897520
\(735\) 1.50000 + 2.59808i 0.0553283 + 0.0958315i
\(736\) −2.88600 + 4.99870i −0.106379 + 0.184255i
\(737\) 0 0
\(738\) −0.613999 + 1.06348i −0.0226016 + 0.0391472i
\(739\) −2.77200 + 4.80125i −0.101970 + 0.176617i −0.912496 0.409085i \(-0.865848\pi\)
0.810526 + 0.585702i \(0.199181\pi\)
\(740\) −3.68399 −0.135426
\(741\) 16.1140 + 3.26665i 0.591963 + 0.120003i
\(742\) −4.00000 −0.146845
\(743\) −23.2720 + 40.3083i −0.853767 + 1.47877i 0.0240173 + 0.999712i \(0.492354\pi\)
−0.877784 + 0.479056i \(0.840979\pi\)
\(744\) 3.77200 6.53330i 0.138288 0.239522i
\(745\) 3.68399 + 6.38087i 0.134971 + 0.233777i
\(746\) −15.1580 + 26.2544i −0.554974 + 0.961243i
\(747\) 3.11400 + 5.39360i 0.113935 + 0.197342i
\(748\) −13.2280 −0.483664
\(749\) −15.5440 −0.567966
\(750\) 1.50000 + 2.59808i 0.0547723 + 0.0948683i
\(751\) −4.31601 7.47554i −0.157493 0.272786i 0.776471 0.630153i \(-0.217008\pi\)
−0.933964 + 0.357367i \(0.883675\pi\)
\(752\) 11.5440 0.420967
\(753\) 15.7720 0.574764
\(754\) 0 0
\(755\) 15.3420 26.5731i 0.558352 0.967095i
\(756\) −0.500000 0.866025i −0.0181848 0.0314970i
\(757\) 1.61400 2.79553i 0.0586618 0.101605i −0.835203 0.549942i \(-0.814650\pi\)
0.893865 + 0.448336i \(0.147983\pi\)
\(758\) 0.227998 0.394904i 0.00828126 0.0143436i
\(759\) −16.0000 −0.580763
\(760\) −8.65800 + 9.79995i −0.314059 + 0.355481i
\(761\) 21.5440 0.780970 0.390485 0.920609i \(-0.372307\pi\)
0.390485 + 0.920609i \(0.372307\pi\)
\(762\) −3.88600 + 6.73075i −0.140775 + 0.243829i
\(763\) 0.613999 1.06348i 0.0222283 0.0385005i
\(764\) 8.88600 + 15.3910i 0.321484 + 0.556827i
\(765\) −7.15800 + 12.3980i −0.258798 + 0.448252i
\(766\) 16.0000 + 27.7128i 0.578103 + 1.00130i
\(767\) 0.860009 0.0310531
\(768\) −1.00000 −0.0360844
\(769\) −2.22800 3.85901i −0.0803437 0.139159i 0.823054 0.567963i \(-0.192268\pi\)
−0.903398 + 0.428804i \(0.858935\pi\)
\(770\) 4.15800 + 7.20187i 0.149844 + 0.259537i
\(771\) 20.3160 0.731663
\(772\) −5.45600 −0.196366
\(773\) −26.2720 45.5044i −0.944938 1.63668i −0.755875 0.654716i \(-0.772788\pi\)
−0.189063 0.981965i \(-0.560545\pi\)
\(774\) 3.00000 5.19615i 0.107833 0.186772i
\(775\) 15.0880 + 26.1332i 0.541977 + 0.938732i
\(776\) −5.77200 + 9.99740i −0.207203 + 0.358886i
\(777\) 0.613999 1.06348i 0.0220271 0.0381520i
\(778\) 19.0880 0.684338
\(779\) −3.54400 + 4.01144i −0.126977 + 0.143725i
\(780\) −11.3160 −0.405178
\(781\) −19.0880 + 33.0614i −0.683023 + 1.18303i
\(782\) −13.7720 + 23.8538i −0.492486 + 0.853010i
\(783\) 0 0
\(784\) −0.500000 + 0.866025i −0.0178571 + 0.0309295i
\(785\) −23.6580 40.9769i −0.844390 1.46253i
\(786\) 17.3160 0.617641
\(787\) 32.5440 1.16007 0.580034 0.814592i \(-0.303039\pi\)
0.580034 + 0.814592i \(0.303039\pi\)
\(788\) 4.00000 + 6.92820i 0.142494 + 0.246807i
\(789\) −7.50000 12.9904i −0.267007 0.462470i
\(790\) 24.0000 0.853882
\(791\) −1.77200 −0.0630051
\(792\) −1.38600 2.40062i −0.0492494 0.0853025i
\(793\) 11.7460 20.3447i 0.417113 0.722461i
\(794\) 4.54400 + 7.87045i 0.161261 + 0.279312i
\(795\) −6.00000 + 10.3923i −0.212798 + 0.368577i
\(796\) 13.3160 23.0640i 0.471973 0.817482i
\(797\) 23.1760 0.820937 0.410468 0.911875i \(-0.365365\pi\)
0.410468 + 0.911875i \(0.365365\pi\)
\(798\) −1.38600 4.13267i −0.0490639 0.146295i
\(799\) 55.0880 1.94887
\(800\) 2.00000 3.46410i 0.0707107 0.122474i
\(801\) 8.15800 14.1301i 0.288249 0.499262i
\(802\) 19.9740 + 34.5960i 0.705307 + 1.22163i
\(803\) −2.77200 + 4.80125i −0.0978218 + 0.169432i
\(804\) 0 0
\(805\) 17.3160 0.610309
\(806\) 28.4560 1.00232
\(807\) 10.3860 + 17.9891i 0.365605 + 0.633246i
\(808\) 3.61400 + 6.25963i 0.127140 + 0.220213i
\(809\) 29.3160 1.03070 0.515348 0.856981i \(-0.327663\pi\)
0.515348 + 0.856981i \(0.327663\pi\)
\(810\) −3.00000 −0.105409
\(811\) −21.2460 36.7992i −0.746048 1.29219i −0.949703 0.313151i \(-0.898615\pi\)
0.203655 0.979043i \(-0.434718\pi\)
\(812\) 0 0
\(813\) 9.61400 + 16.6519i 0.337178 + 0.584009i
\(814\) 1.70201 2.94796i 0.0596553 0.103326i
\(815\) 15.0000 25.9808i 0.525427 0.910066i
\(816\) −4.77200 −0.167053
\(817\) 17.3160 19.5999i 0.605810 0.685714i
\(818\) 27.0880 0.947110
\(819\) 1.88600 3.26665i 0.0659022 0.114146i
\(820\) 1.84200 3.19043i 0.0643253 0.111415i
\(821\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(822\) 1.88600 3.26665i 0.0657818 0.113937i
\(823\) 23.2020 + 40.1871i 0.808771 + 1.40083i 0.913715 + 0.406355i \(0.133200\pi\)
−0.104944 + 0.994478i \(0.533466\pi\)
\(824\) 8.31601 0.289702
\(825\) 11.0880 0.386035
\(826\) −0.113999 0.197452i −0.00396653 0.00687024i
\(827\) −2.61400 4.52758i −0.0908977 0.157439i 0.816991 0.576650i \(-0.195640\pi\)
−0.907889 + 0.419210i \(0.862307\pi\)
\(828\) −5.77200 −0.200591
\(829\) −28.6840 −0.996236 −0.498118 0.867109i \(-0.665975\pi\)
−0.498118 + 0.867109i \(0.665975\pi\)
\(830\) −9.34200 16.1808i −0.324265 0.561644i
\(831\) 9.15800 15.8621i 0.317688 0.550251i
\(832\) −1.88600 3.26665i −0.0653853 0.113251i
\(833\) −2.38600 + 4.13267i −0.0826700 + 0.143189i
\(834\) −8.15800 + 14.1301i −0.282489 + 0.489284i
\(835\) −18.0000 −0.622916
\(836\) −3.84200 11.4558i −0.132878 0.396207i
\(837\) 7.54400 0.260759
\(838\) 0.772002 1.33715i 0.0266684 0.0461910i
\(839\) −9.00000 + 15.5885i −0.310715 + 0.538173i −0.978517 0.206165i \(-0.933902\pi\)
0.667803 + 0.744338i \(0.267235\pi\)
\(840\) 1.50000 + 2.59808i 0.0517549 + 0.0896421i
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) 11.3860 + 19.7211i 0.392388 + 0.679635i
\(843\) 15.5440 0.535364
\(844\) 4.00000 0.137686
\(845\) −1.84200 3.19043i −0.0633666 0.109754i
\(846\) 5.77200 + 9.99740i 0.198446 + 0.343718i
\(847\) 3.31601 0.113939
\(848\) −4.00000 −0.137361
\(849\) −14.5000 25.1147i −0.497639 0.861936i
\(850\) 9.54400 16.5307i 0.327357 0.566998i
\(851\) −3.54400 6.13839i −0.121487 0.210421i
\(852\) −6.88600 + 11.9269i −0.235911 + 0.408609i
\(853\) 3.77200 6.53330i 0.129151 0.223696i −0.794197 0.607660i \(-0.792108\pi\)
0.923348 + 0.383965i \(0.125442\pi\)
\(854\) −6.22800 −0.213118
\(855\) −12.8160 2.59808i −0.438298 0.0888523i
\(856\) −15.5440 −0.531283
\(857\) 27.4740 47.5864i 0.938494 1.62552i 0.170213 0.985407i \(-0.445554\pi\)
0.768281 0.640112i \(-0.221112\pi\)
\(858\) 5.22800 9.05516i 0.178481 0.309138i
\(859\) 22.4740 + 38.9261i 0.766803 + 1.32814i 0.939288 + 0.343130i \(0.111487\pi\)
−0.172485 + 0.985012i \(0.555180\pi\)
\(860\) −9.00000 + 15.5885i −0.306897 + 0.531562i
\(861\) 0.613999 + 1.06348i 0.0209250 + 0.0362432i
\(862\) −26.7720 −0.911858
\(863\) −42.4920 −1.44645 −0.723223 0.690615i \(-0.757340\pi\)
−0.723223 + 0.690615i \(0.757340\pi\)
\(864\) −0.500000 0.866025i −0.0170103 0.0294628i
\(865\) −5.65800 9.79995i −0.192378 0.333208i
\(866\) 12.0000 0.407777
\(867\) −5.77200 −0.196027
\(868\) −3.77200 6.53330i −0.128030 0.221755i
\(869\) −11.0880 + 19.2050i −0.376135 + 0.651485i
\(870\) 0 0
\(871\) 0 0
\(872\) 0.613999 1.06348i 0.0207926 0.0360139i
\(873\) −11.5440 −0.390705
\(874\) −24.6580 4.99870i −0.834069 0.169084i
\(875\) 3.00000 0.101419
\(876\) −1.00000 + 1.73205i −0.0337869 + 0.0585206i
\(877\) 10.3160 17.8678i 0.348347 0.603354i −0.637609 0.770360i \(-0.720077\pi\)
0.985956 + 0.167006i \(0.0534098\pi\)
\(878\) −10.3860 17.9891i −0.350511 0.607102i
\(879\) −14.8160 + 25.6621i −0.499731 + 0.865560i
\(880\) 4.15800 + 7.20187i 0.140166 + 0.242775i
\(881\) −23.2280 −0.782571 −0.391286 0.920269i \(-0.627970\pi\)
−0.391286 + 0.920269i \(0.627970\pi\)
\(882\) −1.00000 −0.0336718
\(883\) −4.54400 7.87045i −0.152918 0.264862i 0.779381 0.626550i \(-0.215534\pi\)
−0.932299 + 0.361689i \(0.882200\pi\)
\(884\) −9.00000 15.5885i −0.302703 0.524297i
\(885\) −0.683994 −0.0229922
\(886\) 31.5440 1.05974
\(887\) −18.0880 31.3293i −0.607336 1.05194i −0.991678 0.128746i \(-0.958905\pi\)
0.384342 0.923191i \(-0.374428\pi\)
\(888\) 0.613999 1.06348i 0.0206045 0.0356880i
\(889\) 3.88600 + 6.73075i 0.130332 + 0.225742i
\(890\) −24.4740 + 42.3902i −0.820371 + 1.42092i
\(891\) 1.38600 2.40062i 0.0464328 0.0804239i
\(892\) −27.8600 −0.932822
\(893\) 16.0000 + 47.7076i 0.535420 + 1.59647i
\(894\) −2.45600 −0.0821408
\(895\) 10.8420 18.7789i 0.362408 0.627709i
\(896\) −0.500000 + 0.866025i −0.0167038 + 0.0289319i
\(897\) −10.8860 18.8551i −0.363473 0.629554i
\(898\) 7.88600 13.6590i 0.263159 0.455805i
\(899\) 0 0
\(900\) 4.00000 0.133333
\(901\) −19.0880 −0.635914
\(902\) 1.70201 + 2.94796i 0.0566706 + 0.0981564i
\(903\) −3.00000 5.19615i −0.0998337 0.172917i
\(904\) −1.77200 −0.0589359
\(905\) 51.9480 1.72681
\(906\) 5.11400 + 8.85771i 0.169901 + 0.294278i
\(907\) −5.00000 + 8.66025i −0.166022 + 0.287559i −0.937018 0.349281i \(-0.886426\pi\)
0.770996 + 0.636841i \(0.219759\pi\)
\(908\) −2.88600 4.99870i −0.0957753 0.165888i
\(909\) −3.61400 + 6.25963i −0.119869 + 0.207619i
\(910\) −5.65800 + 9.79995i −0.187561 + 0.324865i
\(911\) −16.5440 −0.548127 −0.274064 0.961712i \(-0.588368\pi\)
−0.274064 + 0.961712i \(0.588368\pi\)
\(912\) −1.38600 4.13267i −0.0458951 0.136847i
\(913\) 17.2640 0.571356
\(914\) −1.95600 + 3.38788i −0.0646986 + 0.112061i
\(915\) −9.34200 + 16.1808i −0.308837 + 0.534921i
\(916\) 1.34200 + 2.32441i 0.0443408 + 0.0768006i
\(917\) 8.65800 14.9961i 0.285912 0.495215i
\(918\) −2.38600 4.13267i −0.0787498 0.136399i
\(919\) −11.7720 −0.388323 −0.194161 0.980970i \(-0.562199\pi\)
−0.194161 + 0.980970i \(0.562199\pi\)
\(920\) 17.3160 0.570892
\(921\) 1.11400 + 1.92950i 0.0367075 + 0.0635793i
\(922\) 4.50000 + 7.79423i 0.148200 + 0.256689i
\(923\) −51.9480 −1.70989
\(924\) −2.77200 −0.0911922
\(925\) 2.45600 + 4.25391i 0.0807527 + 0.139868i
\(926\) 18.4300 31.9217i 0.605648 1.04901i
\(927\) 4.15800 + 7.20187i 0.136567 + 0.236541i
\(928\) 0 0
\(929\) 11.7020 20.2685i 0.383930 0.664987i −0.607690 0.794174i \(-0.707904\pi\)
0.991620 + 0.129188i \(0.0412369\pi\)
\(930\) −22.6320 −0.742133
\(931\) −4.27200 0.866025i −0.140009 0.0283828i
\(932\) 29.3160 0.960278
\(933\) −14.5440 + 25.1910i −0.476149 + 0.824715i
\(934\) −15.5440 + 26.9230i −0.508615 + 0.880948i
\(935\) 19.8420 + 34.3673i 0.648903 + 1.12393i
\(936\) 1.88600 3.26665i 0.0616459 0.106774i
\(937\) 18.5440 + 32.1192i 0.605806 + 1.04929i 0.991924 + 0.126837i \(0.0404827\pi\)
−0.386117 + 0.922450i \(0.626184\pi\)
\(938\) 0 0
\(939\) −24.0000 −0.783210
\(940\) −17.3160 29.9922i −0.564786 0.978238i
\(941\) 12.9560 + 22.4404i 0.422353 + 0.731538i 0.996169 0.0874468i \(-0.0278708\pi\)
−0.573816 + 0.818984i \(0.694537\pi\)
\(942\) 15.7720 0.513880
\(943\) 7.08801 0.230817
\(944\) −0.113999 0.197452i −0.00371035 0.00642652i
\(945\) −1.50000 + 2.59808i −0.0487950 + 0.0845154i
\(946\) −8.31601 14.4037i −0.270377 0.468306i
\(947\) −3.93000 + 6.80697i −0.127708 + 0.221197i −0.922788 0.385308i \(-0.874095\pi\)
0.795080 + 0.606504i \(0.207429\pi\)
\(948\) −4.00000 + 6.92820i −0.129914 + 0.225018i
\(949\) −7.54400 −0.244889
\(950\) 17.0880 + 3.46410i 0.554408 + 0.112390i
\(951\) −22.6320 −0.733893
\(952\) −2.38600 + 4.13267i −0.0773307 + 0.133941i
\(953\) −18.8600 + 32.6665i −0.610936 + 1.05817i 0.380147 + 0.924926i \(0.375873\pi\)
−0.991083 + 0.133246i \(0.957460\pi\)
\(954\) −2.00000 3.46410i −0.0647524 0.112154i
\(955\) 26.6580 46.1730i 0.862633 1.49412i
\(956\) −9.04400 15.6647i −0.292504 0.506632i
\(957\) 0 0
\(958\) −18.0000 −0.581554
\(959\) −1.88600 3.26665i −0.0609021 0.105486i
\(960\) 1.50000 + 2.59808i 0.0484123 + 0.0838525i
\(961\) 25.9120 0.835871
\(962\) 4.63201 0.149342
\(963\) −7.77200 13.4615i −0.250449 0.433791i
\(964\) 7.77200 13.4615i 0.250319 0.433566i
\(965\) 8.18399 + 14.1751i 0.263452 + 0.456312i
\(966\) −2.88600 + 4.99870i −0.0928556 + 0.160831i
\(967\) 6.34200 10.9847i 0.203945 0.353243i −0.745851 0.666113i \(-0.767957\pi\)
0.949796 + 0.312870i \(0.101290\pi\)
\(968\) 3.31601 0.106580
\(969\) −6.61400 19.7211i −0.212472 0.633534i
\(970\) 34.6320 1.11197
\(971\) 3.34200 5.78851i 0.107250 0.185762i −0.807405 0.589997i \(-0.799129\pi\)
0.914655 + 0.404235i \(0.132462\pi\)
\(972\) 0.500000 0.866025i 0.0160375 0.0277778i
\(973\) 8.15800 + 14.1301i 0.261534 + 0.452989i
\(974\) −0.455996 + 0.789809i −0.0146111 + 0.0253071i
\(975\) 7.54400 + 13.0666i 0.241601 + 0.418466i
\(976\) −6.22800 −0.199353
\(977\) −26.2280 −0.839108 −0.419554 0.907730i \(-0.637814\pi\)
−0.419554 + 0.907730i \(0.637814\pi\)
\(978\) 5.00000 + 8.66025i 0.159882 + 0.276924i
\(979\) −22.6140 39.1686i −0.722747 1.25183i
\(980\) 3.00000 0.0958315
\(981\) 1.22800 0.0392070
\(982\) 3.38600 + 5.86473i 0.108052 + 0.187151i
\(983\) 30.8600 53.4511i 0.984281 1.70483i 0.339195 0.940716i \(-0.389846\pi\)
0.645087 0.764109i \(-0.276821\pi\)
\(984\) 0.613999 + 1.06348i 0.0195736 + 0.0339024i
\(985\) 12.0000 20.7846i 0.382352 0.662253i
\(986\) 0 0
\(987\) 11.5440 0.367450
\(988\) 10.8860 12.3218i 0.346330 0.392009i
\(989\) −34.6320 −1.10123
\(990\) −4.15800 + 7.20187i −0.132150 + 0.228891i
\(991\) 14.8860 25.7833i 0.472869 0.819034i −0.526648 0.850083i \(-0.676552\pi\)
0.999518 + 0.0310493i \(0.00988490\pi\)
\(992\) −3.77200 6.53330i −0.119761 0.207432i
\(993\) 7.54400 13.0666i 0.239402 0.414656i
\(994\) 6.88600 + 11.9269i 0.218411 + 0.378298i
\(995\) −79.8960 −2.53287
\(996\) 6.22800 0.197342
\(997\) 3.11400 + 5.39360i 0.0986213 + 0.170817i 0.911114 0.412154i \(-0.135223\pi\)
−0.812493 + 0.582971i \(0.801890\pi\)
\(998\) 13.7720 + 23.8538i 0.435945 + 0.755079i
\(999\) 1.22800 0.0388521
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 798.2.k.l.505.1 yes 4
3.2 odd 2 2394.2.o.m.505.2 4
19.7 even 3 inner 798.2.k.l.463.1 4
57.26 odd 6 2394.2.o.m.1261.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
798.2.k.l.463.1 4 19.7 even 3 inner
798.2.k.l.505.1 yes 4 1.1 even 1 trivial
2394.2.o.m.505.2 4 3.2 odd 2
2394.2.o.m.1261.2 4 57.26 odd 6