Properties

Label 798.2.k.l
Level $798$
Weight $2$
Character orbit 798.k
Analytic conductor $6.372$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(463,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.463"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,2,-2,-6,-2,-4,-4,-2,6,6,-4,1,-2,6,-2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{73})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 19x^{2} + 18x + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + \beta_{2} q^{3} + (\beta_{2} - 1) q^{4} - 3 \beta_{2} q^{5} + (\beta_{2} - 1) q^{6} - q^{7} - q^{8} + (\beta_{2} - 1) q^{9} + ( - 3 \beta_{2} + 3) q^{10} + (\beta_{3} + 1) q^{11}+ \cdots + ( - \beta_{3} + 2 \beta_{2} - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} - 6 q^{5} - 2 q^{6} - 4 q^{7} - 4 q^{8} - 2 q^{9} + 6 q^{10} + 6 q^{11} - 4 q^{12} + q^{13} - 2 q^{14} + 6 q^{15} - 2 q^{16} - q^{17} - 4 q^{18} + 12 q^{20} - 2 q^{21}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 19x^{2} + 18x + 324 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 19\nu^{2} - 19\nu + 324 ) / 342 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 37 ) / 19 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 18\beta_{2} + \beta _1 - 19 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 19\beta_{3} - 37 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(1\) \(-1 + \beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
463.1
2.38600 + 4.13267i
−1.88600 3.26665i
2.38600 4.13267i
−1.88600 + 3.26665i
0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i −1.50000 2.59808i −0.500000 + 0.866025i −1.00000 −1.00000 −0.500000 + 0.866025i 1.50000 2.59808i
463.2 0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i −1.50000 2.59808i −0.500000 + 0.866025i −1.00000 −1.00000 −0.500000 + 0.866025i 1.50000 2.59808i
505.1 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i −1.50000 + 2.59808i −0.500000 0.866025i −1.00000 −1.00000 −0.500000 0.866025i 1.50000 + 2.59808i
505.2 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i −1.50000 + 2.59808i −0.500000 0.866025i −1.00000 −1.00000 −0.500000 0.866025i 1.50000 + 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 798.2.k.l 4
3.b odd 2 1 2394.2.o.m 4
19.c even 3 1 inner 798.2.k.l 4
57.h odd 6 1 2394.2.o.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
798.2.k.l 4 1.a even 1 1 trivial
798.2.k.l 4 19.c even 3 1 inner
2394.2.o.m 4 3.b odd 2 1
2394.2.o.m 4 57.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(798, [\chi])\):

\( T_{5}^{2} + 3T_{5} + 9 \) Copy content Toggle raw display
\( T_{11}^{2} - 3T_{11} - 16 \) Copy content Toggle raw display
\( T_{13}^{4} - T_{13}^{3} + 19T_{13}^{2} + 18T_{13} + 324 \) Copy content Toggle raw display
\( T_{17}^{4} + T_{17}^{3} + 19T_{17}^{2} - 18T_{17} + 324 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 3 T - 16)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - T^{3} + \cdots + 324 \) Copy content Toggle raw display
$17$ \( T^{4} + T^{3} + \cdots + 324 \) Copy content Toggle raw display
$19$ \( T^{4} - 35T^{2} + 361 \) Copy content Toggle raw display
$23$ \( T^{4} - 3 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T - 72)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 11 T + 12)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 11 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$43$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 6 T^{3} + \cdots + 4096 \) Copy content Toggle raw display
$53$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 9 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$61$ \( T^{4} - 21 T^{3} + \cdots + 8464 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} - 19 T^{3} + \cdots + 5184 \) Copy content Toggle raw display
$73$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 21 T + 92)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 7 T^{3} + \cdots + 23104 \) Copy content Toggle raw display
$97$ \( T^{4} - 6 T^{3} + \cdots + 4096 \) Copy content Toggle raw display
show more
show less