# Stored data for newform 798.2.k.l, downloaded from the LMFDB on 22 September 2025. {"Nk2": 3192, "analytic_conductor": 6.372062081298175, "analytic_rank": 0, "analytic_rank_proved": true, "char_conductor": 19, "char_degree": 2, "char_is_minimal": true, "char_is_real": false, "char_orbit_index": 11, "char_orbit_label": "k", "char_order": 3, "char_parity": 1, "char_values": [798, 3, [533, 115, 211], [3, 3, 1]], "cm_discs": [], "conrey_index": 463, "dim": 4, "field_disc": 47961, "field_disc_factorization": [[3, 2], [73, 2]], "field_poly": [324, 18, 19, -1, 1], "field_poly_is_cyclotomic": false, "field_poly_is_real_cyclotomic": false, "field_poly_root_of_unity": 0, "has_non_self_twist": 1, "hecke_cutters": [[5, [9, 3, 1]], [11, [-16, -3, 1]], [13, [324, 18, 19, -1, 1]], [17, [324, -18, 19, 1, 1]]], "hecke_orbit": 12, "hecke_orbit_code": 49540283129398046, "hecke_ring_generator_nbound": 11, "hecke_ring_index": 1, "hecke_ring_index_factorization": [], "hecke_ring_index_proved": true, "inner_twist_count": 2, "inner_twists": [[1, 1, 1, 1, 1, 1, 1], [1, 1, 19, 3, 1, 3, 0]], "is_cm": false, "is_largest": false, "is_maximal": false, "is_polredabs": true, "is_rm": false, "is_self_dual": false, "is_self_twist": false, "is_twist_minimal": true, "label": "798.2.k.l", "level": 798, "level_is_powerful": false, "level_is_prime": false, "level_is_prime_power": false, "level_is_prime_square": false, "level_is_square": false, "level_is_squarefree": true, "level_primes": [2, 3, 7, 19], "level_radical": 798, "minimal_twist": "798.2.k.l", "nf_label": "4.0.47961.2", "prim_orbit_index": 3, "qexp_display": "q+\\beta _{2}q^{2}+\\beta _{2}q^{3}+(-1+\\beta _{2})q^{4}-3\\beta _{2}q^{5}+\\cdots", "related_objects": [], "relative_dim": 2, "rm_discs": [], "sato_tate_group": "1.2.3.c3", "self_twist_discs": [], "self_twist_type": 0, "space_label": "798.2.k", "trace_display": [2, 2, -6, -4], "trace_hash": 1086316274019613690, "trace_moments": [{"__RealLiteral__": 0, "data": "0.000", "prec": 17}, {"__RealLiteral__": 0, "data": "4.045", "prec": 17}, {"__RealLiteral__": 0, "data": "0.217", "prec": 17}, {"__RealLiteral__": 0, "data": "61.893", "prec": 20}, {"__RealLiteral__": 0, "data": "28.191", "prec": 20}, {"__RealLiteral__": 0, "data": "1590.692", "prec": 27}], "trace_zratio": {"__RealLiteral__": 0, "data": "0.013", "prec": 17}, "traces": [0, 4, 2, 2, -2, -6, -2, -4, -4, -2, 6, 6, -4, 1, -2, 6, -2, -1, -4, 0, 12, -2, 3, 3, -2, -8, 2, -4, 2, 0, 12, 4, 2, 3, 1, 6, -2, -22, -3, 2, 6, 11, 2, -12, -3, 12, 6, -6, 2, 4, -16, 1, 1, 8, -2, -9, 4, -3, 0, -9, 6, 21, 2, 2, 4, -6, -3, 0, 2, 6, -6, 19, 2, 4, -11, -16, -3, -6, 1, 16, -6, -2, -11, -42, 4, -3, 12, 0, -6, 7, 6, -1, 3, 2, -12, 9, 4, 6, 2, -3, -8, -23, 2, 18, -1, -6, 16, 28, 2, -11, 9, -11, 2, -10, -3, -18, 0, 1, 9, 1, -6, 38, 42, -11, -2, -12, 4, -7, 2, 12, -3, -9, -6, 0, 0, 6, 1, -1, 3, -7, -12, -12, -19, 38, 4, 0, -4, 2, 11, 22, -8, -58, 0, 2, -3, -6, -1, -23, -16, 16, -12, -3, 2, -40, -22, 9, -21, 12, 2, -11, -6, -3, 24, 1, 0, 8, -3, 9, 14, -46, -6, -9, -2, 42, -3, 33, -2, 35, -6, 4, 9, -54, 2, 28, -6, -3, -2, -32, -6, 2, 8, 0, -46, 0, 1, 33, 9, 3, -2, 73, -12, -8, 8, -19, 14, -36, 4, -4, 11, -4, 18, 72, 11, 13, -2, -8, -5, 6, 0, -62, -9, -3, 0, -33, -1, 36, 18, -16, -1, 4, -12, 14, 19, 2, 21, -6, -22, 38, -4, -21, -6, 23, 2, -32, -14, -6, -2, 15, 24, 22, 3, 0, 9, 30, -3, -48, 3, 14, 0, -33, -6, -47, -1, -2, -2, -12, -3, 22, -14, -2, -6, 14, -6, 58, -38, 9, 76, -11, 2, -3, 0, -6, -8, -16, -2, -27, 22, -6, -22, 35, 8, 12, -29, -46, 3, -126, 1, -13, 3, 9, 6, -48, -2, -48, 23, -12, -32, 6, 8, 0, -6, 14, -6, 38, 4, 4, -20, 11, -11, 6, 18, -8, 21, 11, 24, 0, -2, -15, 11, -5, -3, 152, 0, -4, 12, -9, -1, 14, 0, 28, 16, -1, 3, 38, 18, 57, 7, -1, -23, 48, -12, 70, -18, 19, -1, 12, 21, 23, -6, -22, -33, -8, -4, -70, -35, -6, 6, 0, 2, 36, 0, -14, -27, -64, -2, 9, -28, 24, -12, 4, 3, -76, -4, 9, -16, 48, -3, 16, 4, 3, 16, -3, 0, 74, -23, -6, 0, -106, -1, 20, 66, -2, -9, 9, -3, 63, -1, -14, 32, -28, -6, -37, 8, -6, -8, 8, -38, -21, -14, 76, -72, -45, 2, 24, -2, 0, 22, -32, -8, 33, 9, -2, 36, 46, 22, -42, -13, -22, -4, 46, 8, 53, 5, -29, 3, 6, 3, -84, -31, 1, 9, -18, 3, 62, 0, 6, 33, -56, -2, 0, 18, 23, 9, -18, -32, -12, -2, 8, 2, -36, -6, -42, 28, -6, -19, 18, 4, -72, -21, -20, 6, -5, -11, 0, 73, 18, -2, -19, 21, -38, 6, 24, 46, -16, -2, 138, -64, 11, -7, -28, -3, -4, -4, 0, 30, -27, 12, 64, 11, -1, 6, 40, 0, 25, 18, 16, -30, 72, 3, 5, -24, 18, 3, 84, 7, -42, 0, -23, 33, 6, -12, -45, 47, -18, -2, -33, -1, -24, -1, 21, -24, 0, -6, -16, 11, -33, -7, -54, -4, -12, 6, -35, 28, -58, 6, 15, -58, 2, -19, 50, 0, -52, 38, -27, 11, 12, -2, 132, -6, -28, 0, 42, -12, 12, -4, 3, -8, 2, -4, 146, -54, -16, 11, 1, -3, 3, -44, 4, -35, 32, 16, -44, -12, 0, 29, -57, -23, 24, 3, 0, -63, -70, -1, 25, 13, 66, 6, 21, -9, -150, 12, -3, -24, -7, -1, 58, -96, 32, 46, -31, -6, 14, -16, 8, 12, 42, -8, 1, 0, -38, 6, 1, -14, 14, -3, -72, -35, 60, 2, -50, -4, -2, 20, -72, 22, -27, 11, -8, 12, -15, 9, -5, -4, 36, 42, -9, 22, 0, 12, -13, 0, 68, -4, -128, 15, 8, 22, 6, 5, -6, 3, 3, 76, 86, 3, 6, -2, -31, -12, -4, 9, -8, -2, 3, -14, 42, 0, -31, 14, 33, 8, -40, -2, -73, 6, 18, 19, 23, 9, -7, 114, -32, -7, -70, -2, -228, 23, 2, -48, -48, -6, -18, 35, 28, -9, 0, -19, 71, 1, 4, 24, -6, -21, 50, 46, 6, -3, 0, -11, 6, -66, 73, -16, -76, -2, 66, -35, 21, -70, -28, 6, 34, 12, 46, 0, 87, -2, 15, 18, -64, -9, 52, -7, 11, 27, -3, 64, -82, -4, -26, -9, 30, -56, -88, 12, -8, -6, 11, 8, 20, 6, -8, -38, 0, -2, -69, 18, 96, 16, -30, 96, 10, 3, -47, -16, -24, 2, -44, 3, 152, 8, 7, 3, 6, 0, 18, 148, 33, 23, 66, -12, 9, 0, 47, -53, 60, -2, 18, 40, -1, 33, 0, -1, 33, -18, -24, -9, -19, -6, -166, -63, 11, 1, -1, -7, -72, -41, -4, -14, -36, 6, 58, 37, 28, 16, -33, 6, -38, -16, -58, 4, 20, -19, -2, -42, 0, -28, 33, 38, 13, -36, 11, -90, 18, -2, 3, 48, -6, 2, 24, 0, 0, 11, -12, -73, 12, -4, -10, -33, -8, -9, -110, -4, 16, -36, -54, 92, -4, 11, 7, -21, -3, -26, 64, -44, 69, -2, -35, 23, 0, 16, -8, -53, -12, 10, 54, 29, -20, -3, -23, 3, -32, 3, -136, -42, -63, 31, 9, -1, -30, 18, 13, 18, -54, 6, 44, 31, -9, 0, -13, 12, 0, 66, -24, -28, 105, -1, 40, 0, -96, -18, 86, 46, -40, -9, -6, 18, 27, -16, 4, 0, 12, -1, 10, -8, 81, -2, 0, -72, 1, 6, 172, -84, -14, 14, 84, -3, 51, -38, -35, 36, 39, 2, 7, -36, -4, -42, -122, 20, -99, 12, 22, 5, 38, 11, 48, 0, 12, 35, -36, 9, 51, 2, -4, 19, -12, 42, 21, 38, 22, 12], "weight": 2, "weight_parity": 1, "id": null, "artin_degree": null, "artin_field": null, "artin_field_label": null, "artin_image": null, "atkin_lehner_eigenvals": null, "atkin_lehner_string": null, "embedded_related_objects": null, "fricke_eigenval": null, "projective_field": null, "projective_field_label": null, "projective_image": null, "projective_image_type": null, "qexp": [[0, 0, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [-1, 0, 1, 0], [0, 0, -3, 0], [-1, 0, 1, 0], [-1, 0, 0, 0], [-1, 0, 0, 0], [-1, 0, 1, 0], [3, 0, -3, 0], [1, 0, 0, 1], [-1, 0, 0, 0], [0, 1, -1, 1], [0, 0, -1, 0], [3, 0, -3, 0], [0, 0, -1, 0], [0, -1, 0, 0], [-1, 0, 0, 0], [-1, 0, 1, 1], [3, 0, 0, 0], [0, 0, -1, 0], [0, -1, 2, 0], [2, -1, -1, -1], [0, 0, -1, 0], [-4, 0, 4, 0], [0, 0, 0, 1], [-1, 0, 0, 0], [1, 0, -1, 0], [0, 0, 0, 0], [3, 0, 0, 0], [0, 0, 0, 2], [1, 0, -1, 0], [0, -1, 2, 0], [1, -1, 0, -1], [0, 0, 3, 0], [0, 0, -1, 0], [-5, 0, 0, -1], [-1, -1, 1, 0], [0, 0, 0, 1], [0, 0, 3, 0], [0, -1, 6, 0], [1, 0, -1, 0], [0, 0, -6, 0], [-1, -1, 2, -1], [3, 0, 0, 0], [2, 0, 0, -1], [-4, 2, 2, 2], [1, 0, -1, 0], [1, 0, 0, 0], [-4, 0, 0, 0], [1, -1, 0, -1], [0, -1, 1, 0], [4, 0, -4, 0], [0, 0, -1, 0], [0, 3, -6, 0], [1, 0, 0, 0], [-1, -1, 1, 0], [0, 0, 0, 0], [0, 1, -5, 0], [0, 0, 3, 0], [10, 1, -11, 1], [0, -2, 2, 0], [1, 0, -1, 0], [1, 0, 0, 0], [0, 0, 0, -3], [-1, -1, 2, -1], [0, 0, 0, 0], [1, 0, 0, -1], [2, 0, 0, -1], [-3, 0, 3, 0], [0, 1, 9, 0], [1, 0, -1, 0], [0, 0, 2, 0], [0, 1, -6, 0], [-4, 0, 0, 0], [0, -1, 0, -1], [-1, 0, 0, -1], [0, -1, 1, 0], [0, 0, 8, 0], [-3, 0, 3, 0], [0, 0, -1, 0], [-5, -1, 6, -1], [-10, 0, 0, -1], [1, 0, 0, 0], [-3, 3, 0, 3], [6, 0, -6, 0], [0, 0, 0, 0], [-1, 0, 0, -1], [5, -3, -2, -3], [0, 0, 3, 0], [0, -1, 1, -1], [0, 1, 1, 0], [0, -2, 2, 0], [-4, 0, 0, 2], [3, 3, -3, 0], [1, 0, 0, 0], [0, 2, 2, 0], [0, 0, 1, 0], [-1, -1, 2, -1], [0, 0, -4, 0]]}