Properties

Label 798.2.bo.d.757.1
Level $798$
Weight $2$
Character 798.757
Analytic conductor $6.372$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(43,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 16])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.43"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.bo (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,9,0,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 18x^{10} + 153x^{8} - 773x^{6} + 2448x^{4} - 4608x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 757.1
Root \(-1.97054 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 798.757
Dual form 798.2.bo.d.253.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.766044 - 0.642788i) q^{2} +(-0.939693 + 0.342020i) q^{3} +(0.173648 + 0.984808i) q^{4} +(-0.445049 + 2.52400i) q^{5} +(0.939693 + 0.342020i) q^{6} +(0.500000 + 0.866025i) q^{7} +(0.500000 - 0.866025i) q^{8} +(0.766044 - 0.642788i) q^{9} +(1.96332 - 1.64742i) q^{10} +(1.61870 - 2.80367i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(0.978745 + 0.356234i) q^{13} +(0.173648 - 0.984808i) q^{14} +(-0.445049 - 2.52400i) q^{15} +(-0.939693 + 0.342020i) q^{16} +(2.18496 + 1.83340i) q^{17} -1.00000 q^{18} +(3.33675 + 2.80465i) q^{19} -2.56293 q^{20} +(-0.766044 - 0.642788i) q^{21} +(-3.04216 + 1.10725i) q^{22} +(-0.790485 - 4.48306i) q^{23} +(-0.173648 + 0.984808i) q^{24} +(-1.47403 - 0.536505i) q^{25} +(-0.520779 - 0.902016i) q^{26} +(-0.500000 + 0.866025i) q^{27} +(-0.766044 + 0.642788i) q^{28} +(-5.24556 + 4.40154i) q^{29} +(-1.28147 + 2.21957i) q^{30} +(3.84254 + 6.65548i) q^{31} +(0.939693 + 0.342020i) q^{32} +(-0.562168 + 3.18821i) q^{33} +(-0.495290 - 2.80893i) q^{34} +(-2.40837 + 0.876575i) q^{35} +(0.766044 + 0.642788i) q^{36} -4.63444 q^{37} +(-0.753306 - 4.29331i) q^{38} -1.04156 q^{39} +(1.96332 + 1.64742i) q^{40} +(-11.4218 + 4.15721i) q^{41} +(0.173648 + 0.984808i) q^{42} +(-1.84905 + 10.4865i) q^{43} +(3.04216 + 1.10725i) q^{44} +(1.28147 + 2.21957i) q^{45} +(-2.27611 + 3.94234i) q^{46} +(3.25325 - 2.72980i) q^{47} +(0.766044 - 0.642788i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(0.784317 + 1.35848i) q^{50} +(-2.68025 - 0.975530i) q^{51} +(-0.180865 + 1.02574i) q^{52} +(0.0500955 + 0.284105i) q^{53} +(0.939693 - 0.342020i) q^{54} +(6.35605 + 5.33336i) q^{55} +1.00000 q^{56} +(-4.09477 - 1.49427i) q^{57} +6.84759 q^{58} +(0.251567 + 0.211090i) q^{59} +(2.40837 - 0.876575i) q^{60} +(0.222796 + 1.26354i) q^{61} +(1.33450 - 7.56833i) q^{62} +(0.939693 + 0.342020i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-1.33472 + 2.31181i) q^{65} +(2.47999 - 2.08096i) q^{66} +(0.0419464 - 0.0351972i) q^{67} +(-1.42613 + 2.47013i) q^{68} +(2.27611 + 3.94234i) q^{69} +(2.40837 + 0.876575i) q^{70} +(-2.56814 + 14.5647i) q^{71} +(-0.173648 - 0.984808i) q^{72} +(13.8228 - 5.03110i) q^{73} +(3.55018 + 2.97896i) q^{74} +1.56863 q^{75} +(-2.18262 + 3.77308i) q^{76} +3.23739 q^{77} +(0.797880 + 0.669501i) q^{78} +(9.01160 - 3.27995i) q^{79} +(-0.445049 - 2.52400i) q^{80} +(0.173648 - 0.984808i) q^{81} +(11.4218 + 4.15721i) q^{82} +(-4.21663 - 7.30341i) q^{83} +(0.500000 - 0.866025i) q^{84} +(-5.59990 + 4.69888i) q^{85} +(8.15705 - 6.84458i) q^{86} +(3.42379 - 5.93019i) q^{87} +(-1.61870 - 2.80367i) q^{88} +(7.75125 + 2.82122i) q^{89} +(0.445049 - 2.52400i) q^{90} +(0.180865 + 1.02574i) q^{91} +(4.27769 - 1.55695i) q^{92} +(-5.88712 - 4.93988i) q^{93} -4.24681 q^{94} +(-8.56396 + 7.17375i) q^{95} -1.00000 q^{96} +(-0.638906 - 0.536106i) q^{97} +(0.939693 - 0.342020i) q^{98} +(-0.562168 - 3.18821i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 9 q^{5} + 6 q^{7} + 6 q^{8} + 9 q^{10} + 3 q^{11} - 6 q^{12} - 9 q^{13} + 9 q^{15} + 15 q^{17} - 12 q^{18} + 9 q^{19} - 15 q^{22} + 3 q^{23} + 3 q^{25} + 3 q^{26} - 6 q^{27} + 3 q^{29} + 6 q^{31}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.766044 0.642788i −0.541675 0.454519i
\(3\) −0.939693 + 0.342020i −0.542532 + 0.197465i
\(4\) 0.173648 + 0.984808i 0.0868241 + 0.492404i
\(5\) −0.445049 + 2.52400i −0.199032 + 1.12877i 0.707527 + 0.706687i \(0.249811\pi\)
−0.906559 + 0.422080i \(0.861300\pi\)
\(6\) 0.939693 + 0.342020i 0.383628 + 0.139629i
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 0.500000 0.866025i 0.176777 0.306186i
\(9\) 0.766044 0.642788i 0.255348 0.214263i
\(10\) 1.96332 1.64742i 0.620857 0.520961i
\(11\) 1.61870 2.80367i 0.488056 0.845337i −0.511850 0.859075i \(-0.671040\pi\)
0.999906 + 0.0137378i \(0.00437301\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 0.978745 + 0.356234i 0.271455 + 0.0988015i 0.474161 0.880438i \(-0.342751\pi\)
−0.202706 + 0.979240i \(0.564974\pi\)
\(14\) 0.173648 0.984808i 0.0464094 0.263201i
\(15\) −0.445049 2.52400i −0.114911 0.651694i
\(16\) −0.939693 + 0.342020i −0.234923 + 0.0855050i
\(17\) 2.18496 + 1.83340i 0.529930 + 0.444664i 0.868077 0.496429i \(-0.165356\pi\)
−0.338147 + 0.941093i \(0.609800\pi\)
\(18\) −1.00000 −0.235702
\(19\) 3.33675 + 2.80465i 0.765504 + 0.643431i
\(20\) −2.56293 −0.573090
\(21\) −0.766044 0.642788i −0.167165 0.140268i
\(22\) −3.04216 + 1.10725i −0.648590 + 0.236067i
\(23\) −0.790485 4.48306i −0.164828 0.934783i −0.949242 0.314546i \(-0.898148\pi\)
0.784415 0.620237i \(-0.212964\pi\)
\(24\) −0.173648 + 0.984808i −0.0354458 + 0.201023i
\(25\) −1.47403 0.536505i −0.294807 0.107301i
\(26\) −0.520779 0.902016i −0.102133 0.176900i
\(27\) −0.500000 + 0.866025i −0.0962250 + 0.166667i
\(28\) −0.766044 + 0.642788i −0.144769 + 0.121475i
\(29\) −5.24556 + 4.40154i −0.974075 + 0.817346i −0.983185 0.182612i \(-0.941545\pi\)
0.00910961 + 0.999959i \(0.497100\pi\)
\(30\) −1.28147 + 2.21957i −0.233963 + 0.405236i
\(31\) 3.84254 + 6.65548i 0.690141 + 1.19536i 0.971791 + 0.235842i \(0.0757848\pi\)
−0.281650 + 0.959517i \(0.590882\pi\)
\(32\) 0.939693 + 0.342020i 0.166116 + 0.0604612i
\(33\) −0.562168 + 3.18821i −0.0978608 + 0.554996i
\(34\) −0.495290 2.80893i −0.0849415 0.481727i
\(35\) −2.40837 + 0.876575i −0.407089 + 0.148168i
\(36\) 0.766044 + 0.642788i 0.127674 + 0.107131i
\(37\) −4.63444 −0.761896 −0.380948 0.924596i \(-0.624402\pi\)
−0.380948 + 0.924596i \(0.624402\pi\)
\(38\) −0.753306 4.29331i −0.122202 0.696467i
\(39\) −1.04156 −0.166783
\(40\) 1.96332 + 1.64742i 0.310428 + 0.260480i
\(41\) −11.4218 + 4.15721i −1.78379 + 0.649247i −0.784204 + 0.620503i \(0.786928\pi\)
−0.999587 + 0.0287431i \(0.990850\pi\)
\(42\) 0.173648 + 0.984808i 0.0267945 + 0.151959i
\(43\) −1.84905 + 10.4865i −0.281978 + 1.59918i 0.433906 + 0.900958i \(0.357135\pi\)
−0.715884 + 0.698219i \(0.753976\pi\)
\(44\) 3.04216 + 1.10725i 0.458622 + 0.166925i
\(45\) 1.28147 + 2.21957i 0.191030 + 0.330873i
\(46\) −2.27611 + 3.94234i −0.335594 + 0.581266i
\(47\) 3.25325 2.72980i 0.474535 0.398182i −0.373911 0.927465i \(-0.621983\pi\)
0.848446 + 0.529283i \(0.177539\pi\)
\(48\) 0.766044 0.642788i 0.110569 0.0927784i
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0.784317 + 1.35848i 0.110919 + 0.192118i
\(51\) −2.68025 0.975530i −0.375310 0.136602i
\(52\) −0.180865 + 1.02574i −0.0250814 + 0.142244i
\(53\) 0.0500955 + 0.284105i 0.00688114 + 0.0390249i 0.988055 0.154102i \(-0.0492483\pi\)
−0.981174 + 0.193127i \(0.938137\pi\)
\(54\) 0.939693 0.342020i 0.127876 0.0465430i
\(55\) 6.35605 + 5.33336i 0.857049 + 0.719150i
\(56\) 1.00000 0.133631
\(57\) −4.09477 1.49427i −0.542366 0.197921i
\(58\) 6.84759 0.899132
\(59\) 0.251567 + 0.211090i 0.0327513 + 0.0274816i 0.659016 0.752129i \(-0.270973\pi\)
−0.626265 + 0.779610i \(0.715417\pi\)
\(60\) 2.40837 0.876575i 0.310919 0.113165i
\(61\) 0.222796 + 1.26354i 0.0285261 + 0.161780i 0.995743 0.0921717i \(-0.0293809\pi\)
−0.967217 + 0.253951i \(0.918270\pi\)
\(62\) 1.33450 7.56833i 0.169482 0.961179i
\(63\) 0.939693 + 0.342020i 0.118390 + 0.0430905i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) −1.33472 + 2.31181i −0.165552 + 0.286745i
\(66\) 2.47999 2.08096i 0.305265 0.256148i
\(67\) 0.0419464 0.0351972i 0.00512457 0.00430003i −0.640222 0.768190i \(-0.721158\pi\)
0.645346 + 0.763890i \(0.276713\pi\)
\(68\) −1.42613 + 2.47013i −0.172944 + 0.299547i
\(69\) 2.27611 + 3.94234i 0.274012 + 0.474602i
\(70\) 2.40837 + 0.876575i 0.287855 + 0.104771i
\(71\) −2.56814 + 14.5647i −0.304782 + 1.72851i 0.319745 + 0.947504i \(0.396403\pi\)
−0.624528 + 0.781003i \(0.714708\pi\)
\(72\) −0.173648 0.984808i −0.0204646 0.116061i
\(73\) 13.8228 5.03110i 1.61784 0.588845i 0.634870 0.772619i \(-0.281054\pi\)
0.982969 + 0.183774i \(0.0588313\pi\)
\(74\) 3.55018 + 2.97896i 0.412700 + 0.346297i
\(75\) 1.56863 0.181130
\(76\) −2.18262 + 3.77308i −0.250364 + 0.432802i
\(77\) 3.23739 0.368935
\(78\) 0.797880 + 0.669501i 0.0903421 + 0.0758061i
\(79\) 9.01160 3.27995i 1.01388 0.369024i 0.218961 0.975734i \(-0.429733\pi\)
0.794923 + 0.606710i \(0.207511\pi\)
\(80\) −0.445049 2.52400i −0.0497580 0.282192i
\(81\) 0.173648 0.984808i 0.0192942 0.109423i
\(82\) 11.4218 + 4.15721i 1.26133 + 0.459087i
\(83\) −4.21663 7.30341i −0.462835 0.801654i 0.536266 0.844049i \(-0.319834\pi\)
−0.999101 + 0.0423953i \(0.986501\pi\)
\(84\) 0.500000 0.866025i 0.0545545 0.0944911i
\(85\) −5.59990 + 4.69888i −0.607395 + 0.509665i
\(86\) 8.15705 6.84458i 0.879597 0.738070i
\(87\) 3.42379 5.93019i 0.367069 0.635783i
\(88\) −1.61870 2.80367i −0.172554 0.298872i
\(89\) 7.75125 + 2.82122i 0.821631 + 0.299049i 0.718419 0.695610i \(-0.244866\pi\)
0.103211 + 0.994659i \(0.467088\pi\)
\(90\) 0.445049 2.52400i 0.0469123 0.266053i
\(91\) 0.180865 + 1.02574i 0.0189598 + 0.107526i
\(92\) 4.27769 1.55695i 0.445980 0.162323i
\(93\) −5.88712 4.93988i −0.610465 0.512241i
\(94\) −4.24681 −0.438026
\(95\) −8.56396 + 7.17375i −0.878643 + 0.736012i
\(96\) −1.00000 −0.102062
\(97\) −0.638906 0.536106i −0.0648710 0.0544333i 0.609776 0.792574i \(-0.291260\pi\)
−0.674647 + 0.738141i \(0.735704\pi\)
\(98\) 0.939693 0.342020i 0.0949233 0.0345493i
\(99\) −0.562168 3.18821i −0.0565000 0.320427i
\(100\) 0.272391 1.54480i 0.0272391 0.154480i
\(101\) −17.0526 6.20663i −1.69679 0.617583i −0.701341 0.712826i \(-0.747415\pi\)
−0.995454 + 0.0952433i \(0.969637\pi\)
\(102\) 1.42613 + 2.47013i 0.141208 + 0.244579i
\(103\) −7.20969 + 12.4875i −0.710392 + 1.23043i 0.254318 + 0.967121i \(0.418149\pi\)
−0.964710 + 0.263314i \(0.915184\pi\)
\(104\) 0.797880 0.669501i 0.0782386 0.0656500i
\(105\) 1.96332 1.64742i 0.191601 0.160772i
\(106\) 0.144244 0.249838i 0.0140102 0.0242664i
\(107\) −2.83282 4.90659i −0.273859 0.474338i 0.695988 0.718054i \(-0.254967\pi\)
−0.969847 + 0.243716i \(0.921633\pi\)
\(108\) −0.939693 0.342020i −0.0904220 0.0329109i
\(109\) −0.321734 + 1.82464i −0.0308165 + 0.174769i −0.996331 0.0855786i \(-0.972726\pi\)
0.965515 + 0.260348i \(0.0838372\pi\)
\(110\) −1.44080 8.17118i −0.137375 0.779091i
\(111\) 4.35494 1.58507i 0.413353 0.150448i
\(112\) −0.766044 0.642788i −0.0723844 0.0607377i
\(113\) 1.34627 0.126646 0.0633231 0.997993i \(-0.479830\pi\)
0.0633231 + 0.997993i \(0.479830\pi\)
\(114\) 2.17628 + 3.77675i 0.203827 + 0.353725i
\(115\) 11.6670 1.08796
\(116\) −5.24556 4.40154i −0.487038 0.408673i
\(117\) 0.978745 0.356234i 0.0904850 0.0329338i
\(118\) −0.0570257 0.323409i −0.00524964 0.0297722i
\(119\) −0.495290 + 2.80893i −0.0454031 + 0.257494i
\(120\) −2.40837 0.876575i −0.219853 0.0800200i
\(121\) 0.259639 + 0.449708i 0.0236036 + 0.0408826i
\(122\) 0.641515 1.11114i 0.0580801 0.100598i
\(123\) 9.31116 7.81299i 0.839559 0.704474i
\(124\) −5.88712 + 4.93988i −0.528679 + 0.443614i
\(125\) −4.39718 + 7.61614i −0.393296 + 0.681209i
\(126\) −0.500000 0.866025i −0.0445435 0.0771517i
\(127\) −6.10598 2.22240i −0.541819 0.197206i 0.0565892 0.998398i \(-0.481977\pi\)
−0.598408 + 0.801192i \(0.704200\pi\)
\(128\) −0.173648 + 0.984808i −0.0153485 + 0.0870455i
\(129\) −1.84905 10.4865i −0.162800 0.923285i
\(130\) 2.50846 0.913005i 0.220006 0.0800758i
\(131\) 14.3796 + 12.0660i 1.25636 + 1.05421i 0.996060 + 0.0886780i \(0.0282642\pi\)
0.260295 + 0.965529i \(0.416180\pi\)
\(132\) −3.23739 −0.281779
\(133\) −0.760523 + 4.29204i −0.0659457 + 0.372167i
\(134\) −0.0547572 −0.00473030
\(135\) −1.96332 1.64742i −0.168976 0.141788i
\(136\) 2.68025 0.975530i 0.229829 0.0836510i
\(137\) −1.70121 9.64801i −0.145344 0.824286i −0.967091 0.254433i \(-0.918111\pi\)
0.821747 0.569853i \(-0.193000\pi\)
\(138\) 0.790485 4.48306i 0.0672906 0.381624i
\(139\) 9.73237 + 3.54229i 0.825489 + 0.300453i 0.720006 0.693968i \(-0.244139\pi\)
0.105483 + 0.994421i \(0.466361\pi\)
\(140\) −1.28147 2.21957i −0.108304 0.187588i
\(141\) −2.12341 + 3.67785i −0.178823 + 0.309731i
\(142\) 11.3293 9.50640i 0.950733 0.797760i
\(143\) 2.58305 2.16744i 0.216006 0.181250i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −8.77496 15.1987i −0.728721 1.26218i
\(146\) −13.8228 5.03110i −1.14398 0.416376i
\(147\) 0.173648 0.984808i 0.0143223 0.0812256i
\(148\) −0.804761 4.56403i −0.0661510 0.375161i
\(149\) 4.37389 1.59197i 0.358323 0.130419i −0.156585 0.987665i \(-0.550048\pi\)
0.514908 + 0.857246i \(0.327826\pi\)
\(150\) −1.20164 1.00830i −0.0981138 0.0823273i
\(151\) −8.28201 −0.673981 −0.336990 0.941508i \(-0.609409\pi\)
−0.336990 + 0.941508i \(0.609409\pi\)
\(152\) 4.09728 1.48739i 0.332333 0.120643i
\(153\) 2.85226 0.230592
\(154\) −2.47999 2.08096i −0.199843 0.167688i
\(155\) −18.5085 + 6.73656i −1.48664 + 0.541093i
\(156\) −0.180865 1.02574i −0.0144808 0.0821245i
\(157\) −1.36850 + 7.76114i −0.109218 + 0.619407i 0.880233 + 0.474541i \(0.157386\pi\)
−0.989451 + 0.144865i \(0.953725\pi\)
\(158\) −9.01160 3.27995i −0.716924 0.260939i
\(159\) −0.144244 0.249838i −0.0114393 0.0198135i
\(160\) −1.28147 + 2.21957i −0.101309 + 0.175472i
\(161\) 3.48720 2.92611i 0.274830 0.230610i
\(162\) −0.766044 + 0.642788i −0.0601861 + 0.0505022i
\(163\) 2.77994 4.81500i 0.217742 0.377140i −0.736375 0.676573i \(-0.763464\pi\)
0.954117 + 0.299433i \(0.0967976\pi\)
\(164\) −6.07743 10.5264i −0.474568 0.821975i
\(165\) −7.79685 2.83782i −0.606984 0.220924i
\(166\) −1.46442 + 8.30514i −0.113661 + 0.644604i
\(167\) −2.68485 15.2266i −0.207760 1.17827i −0.893037 0.449983i \(-0.851430\pi\)
0.685277 0.728283i \(-0.259681\pi\)
\(168\) −0.939693 + 0.342020i −0.0724989 + 0.0263874i
\(169\) −9.12754 7.65891i −0.702118 0.589147i
\(170\) 7.31016 0.560663
\(171\) 4.35890 + 0.00366395i 0.333333 + 0.000280190i
\(172\) −10.6483 −0.811923
\(173\) −7.59421 6.37230i −0.577377 0.484477i 0.306707 0.951804i \(-0.400773\pi\)
−0.884085 + 0.467327i \(0.845217\pi\)
\(174\) −6.43463 + 2.34201i −0.487808 + 0.177548i
\(175\) −0.272391 1.54480i −0.0205908 0.116776i
\(176\) −0.562168 + 3.18821i −0.0423750 + 0.240320i
\(177\) −0.308593 0.112319i −0.0231953 0.00844238i
\(178\) −4.12435 7.14359i −0.309133 0.535435i
\(179\) −0.264660 + 0.458404i −0.0197816 + 0.0342628i −0.875747 0.482771i \(-0.839630\pi\)
0.855965 + 0.517034i \(0.172964\pi\)
\(180\) −1.96332 + 1.64742i −0.146337 + 0.122792i
\(181\) −1.10116 + 0.923983i −0.0818486 + 0.0686791i −0.682794 0.730611i \(-0.739235\pi\)
0.600945 + 0.799290i \(0.294791\pi\)
\(182\) 0.520779 0.902016i 0.0386027 0.0668619i
\(183\) −0.641515 1.11114i −0.0474222 0.0821376i
\(184\) −4.27769 1.55695i −0.315355 0.114780i
\(185\) 2.06255 11.6973i 0.151642 0.860003i
\(186\) 1.33450 + 7.56833i 0.0978503 + 0.554937i
\(187\) 8.67702 3.15818i 0.634526 0.230949i
\(188\) 3.25325 + 2.72980i 0.237268 + 0.199091i
\(189\) −1.00000 −0.0727393
\(190\) 11.1716 + 0.00939047i 0.810471 + 0.000681257i
\(191\) 25.7249 1.86139 0.930693 0.365801i \(-0.119205\pi\)
0.930693 + 0.365801i \(0.119205\pi\)
\(192\) 0.766044 + 0.642788i 0.0552845 + 0.0463892i
\(193\) −9.09242 + 3.30937i −0.654486 + 0.238214i −0.647854 0.761764i \(-0.724333\pi\)
−0.00663229 + 0.999978i \(0.502111\pi\)
\(194\) 0.144828 + 0.821361i 0.0103981 + 0.0589703i
\(195\) 0.463545 2.62889i 0.0331951 0.188259i
\(196\) −0.939693 0.342020i −0.0671209 0.0244300i
\(197\) 2.61989 + 4.53778i 0.186659 + 0.323304i 0.944134 0.329560i \(-0.106901\pi\)
−0.757475 + 0.652864i \(0.773567\pi\)
\(198\) −1.61870 + 2.80367i −0.115036 + 0.199248i
\(199\) 10.0188 8.40674i 0.710211 0.595938i −0.214447 0.976736i \(-0.568795\pi\)
0.924658 + 0.380797i \(0.124350\pi\)
\(200\) −1.20164 + 1.00830i −0.0849691 + 0.0712975i
\(201\) −0.0273786 + 0.0474211i −0.00193114 + 0.00334483i
\(202\) 9.07349 + 15.7157i 0.638408 + 1.10576i
\(203\) −6.43463 2.34201i −0.451622 0.164377i
\(204\) 0.495290 2.80893i 0.0346772 0.196664i
\(205\) −5.40951 30.6788i −0.377816 2.14270i
\(206\) 13.5498 4.93172i 0.944058 0.343609i
\(207\) −3.48720 2.92611i −0.242377 0.203379i
\(208\) −1.04156 −0.0722191
\(209\) 13.2645 4.81526i 0.917525 0.333079i
\(210\) −2.56293 −0.176859
\(211\) 5.71686 + 4.79702i 0.393565 + 0.330240i 0.818000 0.575218i \(-0.195083\pi\)
−0.424435 + 0.905458i \(0.639527\pi\)
\(212\) −0.271090 + 0.0986688i −0.0186186 + 0.00677660i
\(213\) −2.56814 14.5647i −0.175966 0.997954i
\(214\) −0.983828 + 5.57956i −0.0672531 + 0.381411i
\(215\) −25.6450 9.33401i −1.74897 0.636574i
\(216\) 0.500000 + 0.866025i 0.0340207 + 0.0589256i
\(217\) −3.84254 + 6.65548i −0.260849 + 0.451803i
\(218\) 1.41932 1.19095i 0.0961286 0.0806615i
\(219\) −11.2685 + 9.45537i −0.761452 + 0.638934i
\(220\) −4.14862 + 7.18561i −0.279700 + 0.484454i
\(221\) 1.48540 + 2.57278i 0.0999187 + 0.173064i
\(222\) −4.35494 1.58507i −0.292285 0.106383i
\(223\) 0.267145 1.51506i 0.0178894 0.101456i −0.974556 0.224146i \(-0.928041\pi\)
0.992445 + 0.122690i \(0.0391520\pi\)
\(224\) 0.173648 + 0.984808i 0.0116024 + 0.0658002i
\(225\) −1.47403 + 0.536505i −0.0982690 + 0.0357670i
\(226\) −1.03130 0.865365i −0.0686011 0.0575632i
\(227\) 23.4065 1.55354 0.776772 0.629782i \(-0.216856\pi\)
0.776772 + 0.629782i \(0.216856\pi\)
\(228\) 0.760523 4.29204i 0.0503669 0.284247i
\(229\) −24.9237 −1.64701 −0.823503 0.567312i \(-0.807983\pi\)
−0.823503 + 0.567312i \(0.807983\pi\)
\(230\) −8.93748 7.49943i −0.589320 0.494498i
\(231\) −3.04216 + 1.10725i −0.200159 + 0.0728520i
\(232\) 1.18907 + 6.74356i 0.0780663 + 0.442736i
\(233\) −2.79269 + 15.8381i −0.182955 + 1.03759i 0.745599 + 0.666394i \(0.232163\pi\)
−0.928555 + 0.371196i \(0.878948\pi\)
\(234\) −0.978745 0.356234i −0.0639826 0.0232877i
\(235\) 5.44215 + 9.42609i 0.355007 + 0.614890i
\(236\) −0.164199 + 0.284401i −0.0106884 + 0.0185129i
\(237\) −7.34632 + 6.16430i −0.477195 + 0.400414i
\(238\) 2.18496 1.83340i 0.141630 0.118841i
\(239\) 5.78753 10.0243i 0.374364 0.648418i −0.615868 0.787850i \(-0.711194\pi\)
0.990232 + 0.139432i \(0.0445277\pi\)
\(240\) 1.28147 + 2.21957i 0.0827184 + 0.143272i
\(241\) 0.103308 + 0.0376010i 0.00665465 + 0.00242209i 0.345345 0.938476i \(-0.387762\pi\)
−0.338691 + 0.940898i \(0.609984\pi\)
\(242\) 0.0901717 0.511389i 0.00579646 0.0328733i
\(243\) 0.173648 + 0.984808i 0.0111395 + 0.0631754i
\(244\) −1.20565 + 0.438822i −0.0771841 + 0.0280927i
\(245\) −1.96332 1.64742i −0.125432 0.105250i
\(246\) −12.1549 −0.774966
\(247\) 2.26672 + 3.93370i 0.144228 + 0.250296i
\(248\) 7.68508 0.488003
\(249\) 6.46025 + 5.42079i 0.409402 + 0.343529i
\(250\) 8.26400 3.00785i 0.522661 0.190233i
\(251\) 3.53024 + 20.0210i 0.222827 + 1.26371i 0.866796 + 0.498663i \(0.166175\pi\)
−0.643969 + 0.765051i \(0.722714\pi\)
\(252\) −0.173648 + 0.984808i −0.0109388 + 0.0620371i
\(253\) −13.8486 5.04047i −0.870652 0.316891i
\(254\) 3.24893 + 5.62731i 0.203856 + 0.353089i
\(255\) 3.65508 6.33078i 0.228890 0.396449i
\(256\) 0.766044 0.642788i 0.0478778 0.0401742i
\(257\) 14.6246 12.2715i 0.912258 0.765475i −0.0602891 0.998181i \(-0.519202\pi\)
0.972547 + 0.232705i \(0.0747578\pi\)
\(258\) −5.32414 + 9.22168i −0.331466 + 0.574116i
\(259\) −2.31722 4.01354i −0.143985 0.249389i
\(260\) −2.50846 0.913005i −0.155568 0.0566221i
\(261\) −1.18907 + 6.74356i −0.0736017 + 0.417416i
\(262\) −3.25960 18.4861i −0.201379 1.14208i
\(263\) 18.2807 6.65362i 1.12724 0.410280i 0.289947 0.957043i \(-0.406362\pi\)
0.837288 + 0.546763i \(0.184140\pi\)
\(264\) 2.47999 + 2.08096i 0.152633 + 0.128074i
\(265\) −0.739377 −0.0454195
\(266\) 3.34146 2.79904i 0.204878 0.171620i
\(267\) −8.24871 −0.504813
\(268\) 0.0419464 + 0.0351972i 0.00256229 + 0.00215001i
\(269\) 18.4840 6.72762i 1.12699 0.410190i 0.289790 0.957090i \(-0.406414\pi\)
0.837198 + 0.546900i \(0.184192\pi\)
\(270\) 0.445049 + 2.52400i 0.0270848 + 0.153606i
\(271\) 0.112587 0.638512i 0.00683917 0.0387868i −0.981197 0.193008i \(-0.938176\pi\)
0.988036 + 0.154221i \(0.0492868\pi\)
\(272\) −2.68025 0.975530i −0.162514 0.0591502i
\(273\) −0.520779 0.902016i −0.0315190 0.0545925i
\(274\) −4.89843 + 8.48432i −0.295925 + 0.512557i
\(275\) −3.89020 + 3.26426i −0.234588 + 0.196842i
\(276\) −3.48720 + 2.92611i −0.209905 + 0.176131i
\(277\) 12.4861 21.6266i 0.750217 1.29941i −0.197500 0.980303i \(-0.563282\pi\)
0.947717 0.319111i \(-0.103384\pi\)
\(278\) −5.17848 8.96940i −0.310585 0.537949i
\(279\) 7.22162 + 2.62845i 0.432347 + 0.157361i
\(280\) −0.445049 + 2.52400i −0.0265968 + 0.150838i
\(281\) 1.42562 + 8.08510i 0.0850455 + 0.482317i 0.997347 + 0.0727972i \(0.0231926\pi\)
−0.912301 + 0.409520i \(0.865696\pi\)
\(282\) 3.99070 1.45250i 0.237643 0.0864949i
\(283\) −9.05500 7.59804i −0.538264 0.451657i 0.332680 0.943040i \(-0.392047\pi\)
−0.870944 + 0.491383i \(0.836492\pi\)
\(284\) −14.7893 −0.877586
\(285\) 5.59392 9.67017i 0.331355 0.572811i
\(286\) −3.37194 −0.199387
\(287\) −9.31116 7.81299i −0.549621 0.461186i
\(288\) 0.939693 0.342020i 0.0553719 0.0201537i
\(289\) −1.53932 8.72994i −0.0905485 0.513526i
\(290\) −3.04751 + 17.2833i −0.178956 + 1.01491i
\(291\) 0.783734 + 0.285256i 0.0459433 + 0.0167220i
\(292\) 7.35497 + 12.7392i 0.430417 + 0.745504i
\(293\) −11.4008 + 19.7468i −0.666042 + 1.15362i 0.312960 + 0.949766i \(0.398679\pi\)
−0.979002 + 0.203852i \(0.934654\pi\)
\(294\) −0.766044 + 0.642788i −0.0446766 + 0.0374881i
\(295\) −0.644750 + 0.541010i −0.0375388 + 0.0314988i
\(296\) −2.31722 + 4.01354i −0.134686 + 0.233282i
\(297\) 1.61870 + 2.80367i 0.0939263 + 0.162685i
\(298\) −4.37389 1.59197i −0.253373 0.0922202i
\(299\) 0.823337 4.66937i 0.0476148 0.270037i
\(300\) 0.272391 + 1.54480i 0.0157265 + 0.0891893i
\(301\) −10.0061 + 3.64192i −0.576742 + 0.209917i
\(302\) 6.34439 + 5.32357i 0.365079 + 0.306337i
\(303\) 18.1470 1.04252
\(304\) −4.09477 1.49427i −0.234851 0.0857025i
\(305\) −3.28832 −0.188289
\(306\) −2.18496 1.83340i −0.124906 0.104808i
\(307\) 20.6365 7.51107i 1.17779 0.428679i 0.322367 0.946615i \(-0.395522\pi\)
0.855420 + 0.517936i \(0.173299\pi\)
\(308\) 0.562168 + 3.18821i 0.0320325 + 0.181665i
\(309\) 2.50390 14.2003i 0.142442 0.807828i
\(310\) 18.5085 + 6.73656i 1.05121 + 0.382611i
\(311\) 7.33475 + 12.7042i 0.415915 + 0.720387i 0.995524 0.0945083i \(-0.0301279\pi\)
−0.579609 + 0.814895i \(0.696795\pi\)
\(312\) −0.520779 + 0.902016i −0.0294833 + 0.0510666i
\(313\) 1.24336 1.04330i 0.0702789 0.0589710i −0.606972 0.794724i \(-0.707616\pi\)
0.677250 + 0.735753i \(0.263171\pi\)
\(314\) 6.03710 5.06573i 0.340693 0.285875i
\(315\) −1.28147 + 2.21957i −0.0722025 + 0.125058i
\(316\) 4.79497 + 8.30514i 0.269738 + 0.467200i
\(317\) −20.3599 7.41038i −1.14352 0.416209i −0.300339 0.953832i \(-0.597100\pi\)
−0.843185 + 0.537624i \(0.819322\pi\)
\(318\) −0.0500955 + 0.284105i −0.00280921 + 0.0159318i
\(319\) 3.84949 + 21.8316i 0.215530 + 1.22233i
\(320\) 2.40837 0.876575i 0.134632 0.0490021i
\(321\) 4.34013 + 3.64180i 0.242242 + 0.203266i
\(322\) −4.55222 −0.253685
\(323\) 2.14863 + 12.2456i 0.119553 + 0.681366i
\(324\) 1.00000 0.0555556
\(325\) −1.25158 1.05020i −0.0694253 0.0582548i
\(326\) −5.22458 + 1.90159i −0.289363 + 0.105319i
\(327\) −0.321734 1.82464i −0.0177919 0.100903i
\(328\) −2.11067 + 11.9702i −0.116542 + 0.660944i
\(329\) 3.99070 + 1.45250i 0.220014 + 0.0800787i
\(330\) 4.14862 + 7.18561i 0.228374 + 0.395555i
\(331\) 0.739531 1.28090i 0.0406483 0.0704049i −0.844986 0.534789i \(-0.820391\pi\)
0.885634 + 0.464384i \(0.153724\pi\)
\(332\) 6.46025 5.42079i 0.354552 0.297505i
\(333\) −3.55018 + 2.97896i −0.194549 + 0.163246i
\(334\) −7.73072 + 13.3900i −0.423006 + 0.732668i
\(335\) 0.0701696 + 0.121537i 0.00383377 + 0.00664029i
\(336\) 0.939693 + 0.342020i 0.0512644 + 0.0186587i
\(337\) 5.19807 29.4797i 0.283157 1.60586i −0.428638 0.903476i \(-0.641007\pi\)
0.711795 0.702387i \(-0.247882\pi\)
\(338\) 2.06905 + 11.7341i 0.112541 + 0.638253i
\(339\) −1.26508 + 0.460451i −0.0687096 + 0.0250083i
\(340\) −5.59990 4.69888i −0.303697 0.254832i
\(341\) 24.8796 1.34731
\(342\) −3.33675 2.80465i −0.180431 0.151658i
\(343\) −1.00000 −0.0539949
\(344\) 8.15705 + 6.84458i 0.439799 + 0.369035i
\(345\) −10.9634 + 3.99037i −0.590252 + 0.214834i
\(346\) 1.72147 + 9.76293i 0.0925467 + 0.524859i
\(347\) −2.64462 + 14.9984i −0.141971 + 0.805155i 0.827779 + 0.561054i \(0.189604\pi\)
−0.969750 + 0.244101i \(0.921507\pi\)
\(348\) 6.43463 + 2.34201i 0.344932 + 0.125545i
\(349\) 12.0664 + 20.8996i 0.645898 + 1.11873i 0.984093 + 0.177652i \(0.0568500\pi\)
−0.338196 + 0.941076i \(0.609817\pi\)
\(350\) −0.784317 + 1.35848i −0.0419235 + 0.0726137i
\(351\) −0.797880 + 0.669501i −0.0425877 + 0.0357353i
\(352\) 2.47999 2.08096i 0.132184 0.110915i
\(353\) 12.6803 21.9629i 0.674903 1.16897i −0.301595 0.953436i \(-0.597519\pi\)
0.976497 0.215529i \(-0.0691477\pi\)
\(354\) 0.164199 + 0.284401i 0.00872707 + 0.0151157i
\(355\) −35.6182 12.9640i −1.89042 0.688056i
\(356\) −1.43237 + 8.12339i −0.0759156 + 0.430539i
\(357\) −0.495290 2.80893i −0.0262135 0.148664i
\(358\) 0.497398 0.181038i 0.0262883 0.00956816i
\(359\) −6.59150 5.53093i −0.347886 0.291911i 0.452054 0.891990i \(-0.350691\pi\)
−0.799941 + 0.600079i \(0.795136\pi\)
\(360\) 2.56293 0.135079
\(361\) 3.26785 + 18.7169i 0.171992 + 0.985098i
\(362\) 1.43746 0.0755514
\(363\) −0.397790 0.333786i −0.0208786 0.0175192i
\(364\) −0.978745 + 0.356234i −0.0513002 + 0.0186717i
\(365\) 6.54664 + 37.1279i 0.342667 + 1.94336i
\(366\) −0.222796 + 1.26354i −0.0116457 + 0.0660462i
\(367\) −19.6478 7.15123i −1.02561 0.373291i −0.226201 0.974081i \(-0.572631\pi\)
−0.799407 + 0.600790i \(0.794853\pi\)
\(368\) 2.27611 + 3.94234i 0.118650 + 0.205509i
\(369\) −6.07743 + 10.5264i −0.316378 + 0.547983i
\(370\) −9.09889 + 7.63487i −0.473029 + 0.396918i
\(371\) −0.220995 + 0.185437i −0.0114735 + 0.00962739i
\(372\) 3.84254 6.65548i 0.199227 0.345070i
\(373\) −0.542849 0.940242i −0.0281076 0.0486839i 0.851629 0.524144i \(-0.175615\pi\)
−0.879737 + 0.475461i \(0.842281\pi\)
\(374\) −8.67702 3.15818i −0.448678 0.163305i
\(375\) 1.52713 8.66076i 0.0788604 0.447240i
\(376\) −0.737452 4.18230i −0.0380312 0.215685i
\(377\) −6.70204 + 2.43934i −0.345173 + 0.125633i
\(378\) 0.766044 + 0.642788i 0.0394011 + 0.0330614i
\(379\) 36.5137 1.87559 0.937793 0.347196i \(-0.112866\pi\)
0.937793 + 0.347196i \(0.112866\pi\)
\(380\) −8.55188 7.18814i −0.438702 0.368744i
\(381\) 6.49785 0.332895
\(382\) −19.7064 16.5356i −1.00827 0.846036i
\(383\) 0.681077 0.247892i 0.0348014 0.0126667i −0.324561 0.945865i \(-0.605216\pi\)
0.359362 + 0.933198i \(0.382994\pi\)
\(384\) −0.173648 0.984808i −0.00886145 0.0502558i
\(385\) −1.44080 + 8.17118i −0.0734299 + 0.416442i
\(386\) 9.09242 + 3.30937i 0.462792 + 0.168442i
\(387\) 5.32414 + 9.22168i 0.270641 + 0.468764i
\(388\) 0.417016 0.722293i 0.0211708 0.0366689i
\(389\) −13.9730 + 11.7247i −0.708459 + 0.594468i −0.924166 0.381990i \(-0.875239\pi\)
0.215707 + 0.976458i \(0.430794\pi\)
\(390\) −2.04491 + 1.71589i −0.103548 + 0.0868873i
\(391\) 6.49206 11.2446i 0.328318 0.568663i
\(392\) 0.500000 + 0.866025i 0.0252538 + 0.0437409i
\(393\) −17.6392 6.42016i −0.889782 0.323854i
\(394\) 0.909879 5.16018i 0.0458390 0.259966i
\(395\) 4.26800 + 24.2050i 0.214746 + 1.21789i
\(396\) 3.04216 1.10725i 0.152874 0.0556416i
\(397\) 19.0761 + 16.0068i 0.957404 + 0.803358i 0.980529 0.196375i \(-0.0629170\pi\)
−0.0231245 + 0.999733i \(0.507361\pi\)
\(398\) −13.0786 −0.655569
\(399\) −0.753306 4.29331i −0.0377125 0.214934i
\(400\) 1.56863 0.0784317
\(401\) −1.53815 1.29066i −0.0768113 0.0644524i 0.603574 0.797307i \(-0.293743\pi\)
−0.680385 + 0.732855i \(0.738187\pi\)
\(402\) 0.0514549 0.0187281i 0.00256634 0.000934071i
\(403\) 1.38996 + 7.88286i 0.0692389 + 0.392673i
\(404\) 3.15119 17.8713i 0.156778 0.889129i
\(405\) 2.40837 + 0.876575i 0.119673 + 0.0435574i
\(406\) 3.42379 + 5.93019i 0.169920 + 0.294310i
\(407\) −7.50175 + 12.9934i −0.371848 + 0.644059i
\(408\) −2.18496 + 1.83340i −0.108172 + 0.0907667i
\(409\) 27.2457 22.8619i 1.34721 1.13045i 0.367505 0.930022i \(-0.380212\pi\)
0.979709 0.200425i \(-0.0642323\pi\)
\(410\) −15.5761 + 26.9785i −0.769247 + 1.33237i
\(411\) 4.89843 + 8.48432i 0.241622 + 0.418501i
\(412\) −13.5498 4.93172i −0.667550 0.242968i
\(413\) −0.0570257 + 0.323409i −0.00280605 + 0.0159139i
\(414\) 0.790485 + 4.48306i 0.0388502 + 0.220331i
\(415\) 20.3104 7.39238i 0.996999 0.362878i
\(416\) 0.797880 + 0.669501i 0.0391193 + 0.0328250i
\(417\) −10.3570 −0.507183
\(418\) −13.2564 4.83755i −0.648391 0.236612i
\(419\) 12.7827 0.624474 0.312237 0.950004i \(-0.398922\pi\)
0.312237 + 0.950004i \(0.398922\pi\)
\(420\) 1.96332 + 1.64742i 0.0958003 + 0.0803860i
\(421\) −21.0571 + 7.66415i −1.02626 + 0.373528i −0.799655 0.600459i \(-0.794984\pi\)
−0.226604 + 0.973987i \(0.572762\pi\)
\(422\) −1.29591 7.34945i −0.0630838 0.357766i
\(423\) 0.737452 4.18230i 0.0358561 0.203350i
\(424\) 0.271090 + 0.0986688i 0.0131653 + 0.00479178i
\(425\) −2.23708 3.87473i −0.108514 0.187952i
\(426\) −7.39467 + 12.8079i −0.358273 + 0.620547i
\(427\) −0.982858 + 0.824716i −0.0475638 + 0.0399108i
\(428\) 4.34013 3.64180i 0.209788 0.176033i
\(429\) −1.68597 + 2.92018i −0.0813993 + 0.140988i
\(430\) 13.6454 + 23.6346i 0.658040 + 1.13976i
\(431\) 16.4998 + 6.00542i 0.794766 + 0.289271i 0.707316 0.706898i \(-0.249906\pi\)
0.0874500 + 0.996169i \(0.472128\pi\)
\(432\) 0.173648 0.984808i 0.00835465 0.0473816i
\(433\) −5.39793 30.6132i −0.259408 1.47118i −0.784499 0.620130i \(-0.787080\pi\)
0.525091 0.851046i \(-0.324031\pi\)
\(434\) 7.22162 2.62845i 0.346649 0.126170i
\(435\) 13.4440 + 11.2809i 0.644591 + 0.540876i
\(436\) −1.85279 −0.0887327
\(437\) 9.93578 17.1759i 0.475293 0.821635i
\(438\) 14.7099 0.702868
\(439\) 17.9988 + 15.1028i 0.859035 + 0.720816i 0.961760 0.273894i \(-0.0883116\pi\)
−0.102725 + 0.994710i \(0.532756\pi\)
\(440\) 7.79685 2.83782i 0.371700 0.135288i
\(441\) 0.173648 + 0.984808i 0.00826896 + 0.0468956i
\(442\) 0.515873 2.92566i 0.0245376 0.139160i
\(443\) −18.4272 6.70695i −0.875502 0.318657i −0.135109 0.990831i \(-0.543138\pi\)
−0.740393 + 0.672174i \(0.765361\pi\)
\(444\) 2.31722 + 4.01354i 0.109970 + 0.190474i
\(445\) −10.5704 + 18.3086i −0.501087 + 0.867909i
\(446\) −1.17851 + 0.988883i −0.0558038 + 0.0468250i
\(447\) −3.56563 + 2.99192i −0.168649 + 0.141513i
\(448\) 0.500000 0.866025i 0.0236228 0.0409159i
\(449\) −2.75380 4.76972i −0.129960 0.225097i 0.793701 0.608308i \(-0.208152\pi\)
−0.923661 + 0.383211i \(0.874818\pi\)
\(450\) 1.47403 + 0.536505i 0.0694867 + 0.0252911i
\(451\) −6.83307 + 38.7523i −0.321757 + 1.82477i
\(452\) 0.233777 + 1.32582i 0.0109959 + 0.0623611i
\(453\) 7.78255 2.83261i 0.365656 0.133088i
\(454\) −17.9304 15.0454i −0.841517 0.706116i
\(455\) −2.66945 −0.125146
\(456\) −3.34146 + 2.79904i −0.156478 + 0.131077i
\(457\) 21.7210 1.01606 0.508032 0.861338i \(-0.330373\pi\)
0.508032 + 0.861338i \(0.330373\pi\)
\(458\) 19.0927 + 16.0207i 0.892142 + 0.748596i
\(459\) −2.68025 + 0.975530i −0.125103 + 0.0455339i
\(460\) 2.02596 + 11.4898i 0.0944610 + 0.535715i
\(461\) −1.40847 + 7.98784i −0.0655991 + 0.372031i 0.934281 + 0.356538i \(0.116043\pi\)
−0.999880 + 0.0154930i \(0.995068\pi\)
\(462\) 3.04216 + 1.10725i 0.141534 + 0.0515141i
\(463\) −19.2341 33.3145i −0.893885 1.54825i −0.835179 0.549979i \(-0.814636\pi\)
−0.0587064 0.998275i \(-0.518698\pi\)
\(464\) 3.42379 5.93019i 0.158946 0.275302i
\(465\) 15.0883 12.6606i 0.699703 0.587120i
\(466\) 12.3199 10.3376i 0.570707 0.478880i
\(467\) −8.96708 + 15.5314i −0.414947 + 0.718710i −0.995423 0.0955679i \(-0.969533\pi\)
0.580476 + 0.814278i \(0.302867\pi\)
\(468\) 0.520779 + 0.902016i 0.0240730 + 0.0416957i
\(469\) 0.0514549 + 0.0187281i 0.00237597 + 0.000864782i
\(470\) 1.89004 10.7190i 0.0871811 0.494428i
\(471\) −1.36850 7.76114i −0.0630571 0.357615i
\(472\) 0.308593 0.112319i 0.0142041 0.00516988i
\(473\) 26.4076 + 22.1586i 1.21422 + 1.01885i
\(474\) 9.58995 0.440481
\(475\) −3.41378 5.92434i −0.156635 0.271827i
\(476\) −2.85226 −0.130733
\(477\) 0.220995 + 0.185437i 0.0101187 + 0.00849056i
\(478\) −10.8770 + 3.95890i −0.497502 + 0.181076i
\(479\) 4.46425 + 25.3180i 0.203977 + 1.15681i 0.899041 + 0.437863i \(0.144265\pi\)
−0.695065 + 0.718947i \(0.744624\pi\)
\(480\) 0.445049 2.52400i 0.0203136 0.115204i
\(481\) −4.53593 1.65094i −0.206821 0.0752765i
\(482\) −0.0549690 0.0952091i −0.00250377 0.00433665i
\(483\) −2.27611 + 3.94234i −0.103567 + 0.179383i
\(484\) −0.397790 + 0.333786i −0.0180814 + 0.0151721i
\(485\) 1.63747 1.37400i 0.0743539 0.0623903i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) −9.41204 16.3021i −0.426500 0.738720i 0.570059 0.821604i \(-0.306920\pi\)
−0.996559 + 0.0828835i \(0.973587\pi\)
\(488\) 1.20565 + 0.438822i 0.0545774 + 0.0198646i
\(489\) −0.965464 + 5.47542i −0.0436598 + 0.247607i
\(490\) 0.445049 + 2.52400i 0.0201053 + 0.114023i
\(491\) −14.4658 + 5.26512i −0.652833 + 0.237612i −0.647139 0.762372i \(-0.724035\pi\)
−0.00569373 + 0.999984i \(0.501812\pi\)
\(492\) 9.31116 + 7.81299i 0.419780 + 0.352237i
\(493\) −19.5311 −0.879636
\(494\) 0.792129 4.47041i 0.0356396 0.201133i
\(495\) 8.29723 0.372933
\(496\) −5.88712 4.93988i −0.264339 0.221807i
\(497\) −13.8974 + 5.05825i −0.623385 + 0.226894i
\(498\) −1.46442 8.30514i −0.0656222 0.372162i
\(499\) 4.56483 25.8885i 0.204350 1.15893i −0.694109 0.719870i \(-0.744201\pi\)
0.898459 0.439057i \(-0.144687\pi\)
\(500\) −8.26400 3.00785i −0.369577 0.134515i
\(501\) 7.73072 + 13.3900i 0.345383 + 0.598221i
\(502\) 10.1649 17.6062i 0.453683 0.785802i
\(503\) 6.94135 5.82448i 0.309499 0.259701i −0.474786 0.880101i \(-0.657474\pi\)
0.784285 + 0.620401i \(0.213030\pi\)
\(504\) 0.766044 0.642788i 0.0341223 0.0286320i
\(505\) 23.2548 40.2784i 1.03482 1.79237i
\(506\) 7.36867 + 12.7629i 0.327577 + 0.567381i
\(507\) 11.1966 + 4.07522i 0.497258 + 0.180987i
\(508\) 1.12834 6.39914i 0.0500620 0.283916i
\(509\) −0.672098 3.81166i −0.0297902 0.168949i 0.966283 0.257483i \(-0.0828930\pi\)
−0.996073 + 0.0885338i \(0.971782\pi\)
\(510\) −6.86930 + 2.50022i −0.304178 + 0.110712i
\(511\) 11.2685 + 9.45537i 0.498488 + 0.418281i
\(512\) −1.00000 −0.0441942
\(513\) −4.09728 + 1.48739i −0.180899 + 0.0656698i
\(514\) −19.0911 −0.842071
\(515\) −28.3099 23.7548i −1.24748 1.04676i
\(516\) 10.0061 3.64192i 0.440494 0.160327i
\(517\) −2.38742 13.5397i −0.104999 0.595477i
\(518\) −0.804761 + 4.56403i −0.0353592 + 0.200532i
\(519\) 9.31568 + 3.39063i 0.408913 + 0.148832i
\(520\) 1.33472 + 2.31181i 0.0585315 + 0.101380i
\(521\) 0.654406 1.13347i 0.0286701 0.0496580i −0.851334 0.524623i \(-0.824206\pi\)
0.880004 + 0.474965i \(0.157539\pi\)
\(522\) 5.24556 4.40154i 0.229592 0.192650i
\(523\) 6.23425 5.23115i 0.272605 0.228742i −0.496228 0.868192i \(-0.665282\pi\)
0.768833 + 0.639450i \(0.220838\pi\)
\(524\) −9.38565 + 16.2564i −0.410014 + 0.710165i
\(525\) 0.784317 + 1.35848i 0.0342304 + 0.0592888i
\(526\) −18.2807 6.65362i −0.797076 0.290112i
\(527\) −3.80634 + 21.5868i −0.165807 + 0.940338i
\(528\) −0.562168 3.18821i −0.0244652 0.138749i
\(529\) 2.13994 0.778873i 0.0930407 0.0338641i
\(530\) 0.566395 + 0.475262i 0.0246026 + 0.0206441i
\(531\) 0.328398 0.0142512
\(532\) −4.35890 0.00366395i −0.188982 0.000158853i
\(533\) −12.6600 −0.548365
\(534\) 6.31888 + 5.30217i 0.273444 + 0.229447i
\(535\) 13.6450 4.96636i 0.589923 0.214714i
\(536\) −0.00950849 0.0539253i −0.000410704 0.00232922i
\(537\) 0.0919154 0.521278i 0.00396644 0.0224948i
\(538\) −18.4840 6.72762i −0.796901 0.290048i
\(539\) 1.61870 + 2.80367i 0.0697222 + 0.120762i
\(540\) 1.28147 2.21957i 0.0551456 0.0955149i
\(541\) −25.0232 + 20.9970i −1.07583 + 0.902730i −0.995568 0.0940438i \(-0.970021\pi\)
−0.0802635 + 0.996774i \(0.525576\pi\)
\(542\) −0.496674 + 0.416759i −0.0213340 + 0.0179013i
\(543\) 0.718732 1.24488i 0.0308437 0.0534229i
\(544\) 1.42613 + 2.47013i 0.0611448 + 0.105906i
\(545\) −4.46221 1.62411i −0.191140 0.0695693i
\(546\) −0.180865 + 1.02574i −0.00774030 + 0.0438974i
\(547\) −3.24307 18.3924i −0.138664 0.786402i −0.972238 0.233994i \(-0.924820\pi\)
0.833574 0.552408i \(-0.186291\pi\)
\(548\) 9.20603 3.35072i 0.393262 0.143136i
\(549\) 0.982858 + 0.824716i 0.0419474 + 0.0351980i
\(550\) 5.07829 0.216539
\(551\) −29.8479 0.0250892i −1.27156 0.00106884i
\(552\) 4.55222 0.193755
\(553\) 7.34632 + 6.16430i 0.312397 + 0.262133i
\(554\) −23.4662 + 8.54099i −0.996983 + 0.362872i
\(555\) 2.06255 + 11.6973i 0.0875504 + 0.496523i
\(556\) −1.79847 + 10.1996i −0.0762721 + 0.432560i
\(557\) 23.0959 + 8.40622i 0.978605 + 0.356183i 0.781298 0.624159i \(-0.214558\pi\)
0.197307 + 0.980342i \(0.436780\pi\)
\(558\) −3.84254 6.65548i −0.162668 0.281749i
\(559\) −5.54540 + 9.60492i −0.234545 + 0.406245i
\(560\) 1.96332 1.64742i 0.0829655 0.0696163i
\(561\) −7.07357 + 5.93543i −0.298646 + 0.250594i
\(562\) 4.10491 7.10992i 0.173155 0.299914i
\(563\) −17.5090 30.3266i −0.737918 1.27811i −0.953431 0.301611i \(-0.902476\pi\)
0.215513 0.976501i \(-0.430858\pi\)
\(564\) −3.99070 1.45250i −0.168039 0.0611611i
\(565\) −0.599155 + 3.39798i −0.0252067 + 0.142954i
\(566\) 2.05260 + 11.6409i 0.0862773 + 0.489303i
\(567\) 0.939693 0.342020i 0.0394634 0.0143635i
\(568\) 11.3293 + 9.50640i 0.475366 + 0.398880i
\(569\) −18.4491 −0.773427 −0.386713 0.922200i \(-0.626390\pi\)
−0.386713 + 0.922200i \(0.626390\pi\)
\(570\) −10.5011 + 3.81208i −0.439841 + 0.159670i
\(571\) 1.89926 0.0794817 0.0397408 0.999210i \(-0.487347\pi\)
0.0397408 + 0.999210i \(0.487347\pi\)
\(572\) 2.58305 + 2.16744i 0.108003 + 0.0906252i
\(573\) −24.1735 + 8.79842i −1.00986 + 0.367559i
\(574\) 2.11067 + 11.9702i 0.0880976 + 0.499627i
\(575\) −1.23998 + 7.03229i −0.0517108 + 0.293267i
\(576\) −0.939693 0.342020i −0.0391539 0.0142508i
\(577\) 17.2292 + 29.8418i 0.717261 + 1.24233i 0.962081 + 0.272763i \(0.0879376\pi\)
−0.244820 + 0.969568i \(0.578729\pi\)
\(578\) −4.43231 + 7.67698i −0.184360 + 0.319320i
\(579\) 7.41221 6.21958i 0.308041 0.258477i
\(580\) 13.4440 11.2809i 0.558233 0.468413i
\(581\) 4.21663 7.30341i 0.174935 0.302997i
\(582\) −0.417016 0.722293i −0.0172859 0.0299400i
\(583\) 0.877626 + 0.319430i 0.0363476 + 0.0132294i
\(584\) 2.55435 14.4865i 0.105700 0.599454i
\(585\) 0.463545 + 2.62889i 0.0191652 + 0.108691i
\(586\) 21.4265 7.79860i 0.885120 0.322157i
\(587\) −4.83063 4.05338i −0.199381 0.167301i 0.537631 0.843180i \(-0.319319\pi\)
−0.737012 + 0.675880i \(0.763764\pi\)
\(588\) 1.00000 0.0412393
\(589\) −5.84468 + 32.9847i −0.240826 + 1.35911i
\(590\) 0.841662 0.0346507
\(591\) −4.01391 3.36807i −0.165110 0.138544i
\(592\) 4.35494 1.58507i 0.178987 0.0651460i
\(593\) −0.397208 2.25268i −0.0163114 0.0925064i 0.975565 0.219710i \(-0.0705110\pi\)
−0.991877 + 0.127203i \(0.959400\pi\)
\(594\) 0.562168 3.18821i 0.0230660 0.130814i
\(595\) −6.86930 2.50022i −0.281614 0.102499i
\(596\) 2.32730 + 4.03100i 0.0953299 + 0.165116i
\(597\) −6.53928 + 11.3264i −0.267635 + 0.463558i
\(598\) −3.63213 + 3.04772i −0.148529 + 0.124630i
\(599\) 33.6604 28.2444i 1.37533 1.15404i 0.404420 0.914574i \(-0.367474\pi\)
0.970906 0.239462i \(-0.0769709\pi\)
\(600\) 0.784317 1.35848i 0.0320196 0.0554596i
\(601\) −10.9282 18.9281i −0.445769 0.772094i 0.552337 0.833621i \(-0.313736\pi\)
−0.998105 + 0.0615270i \(0.980403\pi\)
\(602\) 10.0061 + 3.64192i 0.407818 + 0.148434i
\(603\) 0.00950849 0.0539253i 0.000387216 0.00219601i
\(604\) −1.43816 8.15619i −0.0585177 0.331871i
\(605\) −1.25061 + 0.455187i −0.0508447 + 0.0185060i
\(606\) −13.9014 11.6646i −0.564705 0.473844i
\(607\) −9.43458 −0.382938 −0.191469 0.981499i \(-0.561325\pi\)
−0.191469 + 0.981499i \(0.561325\pi\)
\(608\) 2.17628 + 3.77675i 0.0882596 + 0.153167i
\(609\) 6.84759 0.277478
\(610\) 2.51900 + 2.11369i 0.101991 + 0.0855810i
\(611\) 4.15655 1.51286i 0.168156 0.0612038i
\(612\) 0.495290 + 2.80893i 0.0200209 + 0.113544i
\(613\) −0.266001 + 1.50857i −0.0107437 + 0.0609304i −0.989708 0.143100i \(-0.954293\pi\)
0.978965 + 0.204030i \(0.0654041\pi\)
\(614\) −20.6365 7.51107i −0.832821 0.303122i
\(615\) 15.5761 + 26.9785i 0.628087 + 1.08788i
\(616\) 1.61870 2.80367i 0.0652192 0.112963i
\(617\) 12.3111 10.3303i 0.495628 0.415881i −0.360410 0.932794i \(-0.617363\pi\)
0.856038 + 0.516913i \(0.172919\pi\)
\(618\) −11.0459 + 9.26860i −0.444331 + 0.372838i
\(619\) −11.9018 + 20.6145i −0.478373 + 0.828566i −0.999693 0.0247951i \(-0.992107\pi\)
0.521319 + 0.853362i \(0.325440\pi\)
\(620\) −9.84818 17.0576i −0.395513 0.685048i
\(621\) 4.27769 + 1.55695i 0.171658 + 0.0624783i
\(622\) 2.54733 14.4466i 0.102139 0.579257i
\(623\) 1.43237 + 8.12339i 0.0573868 + 0.325457i
\(624\) 0.978745 0.356234i 0.0391812 0.0142608i
\(625\) −23.2744 19.5295i −0.930976 0.781181i
\(626\) −1.62309 −0.0648718
\(627\) −10.8176 + 9.06159i −0.432015 + 0.361885i
\(628\) −7.88087 −0.314481
\(629\) −10.1260 8.49676i −0.403752 0.338788i
\(630\) 2.40837 0.876575i 0.0959518 0.0349236i
\(631\) −5.81608 32.9846i −0.231534 1.31310i −0.849791 0.527120i \(-0.823272\pi\)
0.618256 0.785977i \(-0.287839\pi\)
\(632\) 1.66528 9.44425i 0.0662411 0.375672i
\(633\) −7.01277 2.55244i −0.278733 0.101450i
\(634\) 10.8333 + 18.7638i 0.430244 + 0.745204i
\(635\) 8.32679 14.4224i 0.330438 0.572336i
\(636\) 0.220995 0.185437i 0.00876301 0.00735304i
\(637\) −0.797880 + 0.669501i −0.0316132 + 0.0265266i
\(638\) 11.0842 19.1983i 0.438827 0.760070i
\(639\) 7.39467 + 12.8079i 0.292529 + 0.506674i
\(640\) −2.40837 0.876575i −0.0951992 0.0346497i
\(641\) −1.53218 + 8.68942i −0.0605175 + 0.343212i 0.939482 + 0.342597i \(0.111307\pi\)
−1.00000 0.000614268i \(0.999804\pi\)
\(642\) −0.983828 5.57956i −0.0388286 0.220208i
\(643\) 11.6757 4.24960i 0.460444 0.167588i −0.101375 0.994848i \(-0.532324\pi\)
0.561819 + 0.827260i \(0.310102\pi\)
\(644\) 3.48720 + 2.92611i 0.137415 + 0.115305i
\(645\) 27.2908 1.07458
\(646\) 6.22540 10.7618i 0.244935 0.423418i
\(647\) −14.1726 −0.557183 −0.278592 0.960410i \(-0.589868\pi\)
−0.278592 + 0.960410i \(0.589868\pi\)
\(648\) −0.766044 0.642788i −0.0300931 0.0252511i
\(649\) 0.999037 0.363620i 0.0392156 0.0142733i
\(650\) 0.283711 + 1.60900i 0.0111281 + 0.0631103i
\(651\) 1.33450 7.56833i 0.0523032 0.296626i
\(652\) 5.22458 + 1.90159i 0.204610 + 0.0744721i
\(653\) −3.30337 5.72161i −0.129271 0.223904i 0.794123 0.607757i \(-0.207930\pi\)
−0.923394 + 0.383853i \(0.874597\pi\)
\(654\) −0.926396 + 1.60457i −0.0362250 + 0.0627435i
\(655\) −36.8541 + 30.9243i −1.44001 + 1.20831i
\(656\) 9.31116 7.81299i 0.363540 0.305046i
\(657\) 7.35497 12.7392i 0.286945 0.497003i
\(658\) −2.12341 3.67785i −0.0827790 0.143378i
\(659\) −43.5657 15.8566i −1.69708 0.617686i −0.701591 0.712580i \(-0.747527\pi\)
−0.995487 + 0.0948937i \(0.969749\pi\)
\(660\) 1.44080 8.17118i 0.0560830 0.318063i
\(661\) −3.72542 21.1279i −0.144902 0.821781i −0.967446 0.253079i \(-0.918557\pi\)
0.822543 0.568702i \(-0.192554\pi\)
\(662\) −1.38986 + 0.505869i −0.0540186 + 0.0196612i
\(663\) −2.27576 1.90959i −0.0883833 0.0741624i
\(664\) −8.43326 −0.327274
\(665\) −10.4946 3.82973i −0.406964 0.148510i
\(666\) 4.63444 0.179581
\(667\) 23.8789 + 20.0368i 0.924596 + 0.775828i
\(668\) 14.5290 5.28813i 0.562144 0.204604i
\(669\) 0.267145 + 1.51506i 0.0103284 + 0.0585755i
\(670\) 0.0243696 0.138207i 0.000941481 0.00533940i
\(671\) 3.90318 + 1.42064i 0.150681 + 0.0548432i
\(672\) −0.500000 0.866025i −0.0192879 0.0334077i
\(673\) −24.3510 + 42.1771i −0.938661 + 1.62581i −0.170689 + 0.985325i \(0.554599\pi\)
−0.767972 + 0.640483i \(0.778734\pi\)
\(674\) −22.9312 + 19.2415i −0.883275 + 0.741156i
\(675\) 1.20164 1.00830i 0.0462513 0.0388095i
\(676\) 5.95758 10.3188i 0.229138 0.396878i
\(677\) −1.97396 3.41901i −0.0758656 0.131403i 0.825597 0.564261i \(-0.190839\pi\)
−0.901462 + 0.432858i \(0.857505\pi\)
\(678\) 1.26508 + 0.460451i 0.0485850 + 0.0176835i
\(679\) 0.144828 0.821361i 0.00555799 0.0315210i
\(680\) 1.26940 + 7.19910i 0.0486791 + 0.276073i
\(681\) −21.9949 + 8.00550i −0.842847 + 0.306771i
\(682\) −19.0589 15.9923i −0.729804 0.612378i
\(683\) 37.9567 1.45237 0.726186 0.687498i \(-0.241291\pi\)
0.726186 + 0.687498i \(0.241291\pi\)
\(684\) 0.753306 + 4.29331i 0.0288034 + 0.164159i
\(685\) 25.1087 0.959354
\(686\) 0.766044 + 0.642788i 0.0292477 + 0.0245417i
\(687\) 23.4206 8.52442i 0.893553 0.325227i
\(688\) −1.84905 10.4865i −0.0704945 0.399794i
\(689\) −0.0521774 + 0.295912i −0.00198780 + 0.0112734i
\(690\) 10.9634 + 3.99037i 0.417371 + 0.151911i
\(691\) −11.9111 20.6306i −0.453120 0.784826i 0.545458 0.838138i \(-0.316356\pi\)
−0.998578 + 0.0533117i \(0.983022\pi\)
\(692\) 4.95677 8.58538i 0.188428 0.326367i
\(693\) 2.47999 2.08096i 0.0942070 0.0790490i
\(694\) 11.6667 9.78949i 0.442861 0.371604i
\(695\) −13.2721 + 22.9880i −0.503440 + 0.871984i
\(696\) −3.42379 5.93019i −0.129779 0.224783i
\(697\) −32.5780 11.8574i −1.23398 0.449132i
\(698\) 4.19060 23.7661i 0.158617 0.899560i
\(699\) −2.79269 15.8381i −0.105629 0.599053i
\(700\) 1.47403 0.536505i 0.0557133 0.0202780i
\(701\) 16.5082 + 13.8520i 0.623507 + 0.523184i 0.898904 0.438146i \(-0.144365\pi\)
−0.275397 + 0.961331i \(0.588809\pi\)
\(702\) 1.04156 0.0393111
\(703\) −15.4640 12.9980i −0.583235 0.490228i
\(704\) −3.23739 −0.122014
\(705\) −8.33786 6.99630i −0.314022 0.263496i
\(706\) −23.8311 + 8.67381i −0.896896 + 0.326443i
\(707\) −3.15119 17.8713i −0.118513 0.672119i
\(708\) 0.0570257 0.323409i 0.00214316 0.0121544i
\(709\) −34.9324 12.7143i −1.31191 0.477497i −0.411054 0.911611i \(-0.634839\pi\)
−0.900858 + 0.434114i \(0.857062\pi\)
\(710\) 18.9521 + 32.8259i 0.711258 + 1.23193i
\(711\) 4.79497 8.30514i 0.179826 0.311467i
\(712\) 6.31888 5.30217i 0.236810 0.198707i
\(713\) 26.7995 22.4874i 1.00365 0.842160i
\(714\) −1.42613 + 2.47013i −0.0533716 + 0.0924423i
\(715\) 4.32103 + 7.48424i 0.161597 + 0.279895i
\(716\) −0.497398 0.181038i −0.0185886 0.00676571i
\(717\) −2.00999 + 11.3992i −0.0750644 + 0.425711i
\(718\) 1.49417 + 8.47387i 0.0557620 + 0.316242i
\(719\) 30.3388 11.0424i 1.13145 0.411813i 0.292629 0.956226i \(-0.405470\pi\)
0.838817 + 0.544414i \(0.183248\pi\)
\(720\) −1.96332 1.64742i −0.0731687 0.0613958i
\(721\) −14.4194 −0.537006
\(722\) 9.52765 16.4385i 0.354582 0.611777i
\(723\) −0.109938 −0.00408864
\(724\) −1.10116 0.923983i −0.0409243 0.0343396i
\(725\) 10.0936 3.67376i 0.374866 0.136440i
\(726\) 0.0901717 + 0.511389i 0.00334659 + 0.0189794i
\(727\) 8.01516 45.4562i 0.297266 1.68588i −0.360583 0.932727i \(-0.617422\pi\)
0.657848 0.753150i \(-0.271467\pi\)
\(728\) 0.978745 + 0.356234i 0.0362747 + 0.0132029i
\(729\) −0.500000 0.866025i −0.0185185 0.0320750i
\(730\) 18.8503 32.6497i 0.697681 1.20842i
\(731\) −23.2660 + 19.5225i −0.860525 + 0.722066i
\(732\) 0.982858 0.824716i 0.0363275 0.0304824i
\(733\) −13.8212 + 23.9390i −0.510498 + 0.884208i 0.489428 + 0.872044i \(0.337205\pi\)
−0.999926 + 0.0121644i \(0.996128\pi\)
\(734\) 10.4544 + 18.1075i 0.385879 + 0.668361i
\(735\) 2.40837 + 0.876575i 0.0888341 + 0.0323330i
\(736\) 0.790485 4.48306i 0.0291377 0.165248i
\(737\) −0.0307827 0.174577i −0.00113390 0.00643064i
\(738\) 11.4218 4.15721i 0.420443 0.153029i
\(739\) −37.4903 31.4581i −1.37910 1.15720i −0.969543 0.244920i \(-0.921238\pi\)
−0.409558 0.912284i \(-0.634317\pi\)
\(740\) 11.8778 0.436635
\(741\) −3.47542 2.92121i −0.127673 0.107313i
\(742\) 0.288488 0.0105907
\(743\) −22.0427 18.4960i −0.808668 0.678553i 0.141621 0.989921i \(-0.454769\pi\)
−0.950290 + 0.311368i \(0.899213\pi\)
\(744\) −7.22162 + 2.62845i −0.264757 + 0.0963638i
\(745\) 2.07152 + 11.7482i 0.0758948 + 0.430421i
\(746\) −0.188529 + 1.06920i −0.00690255 + 0.0391463i
\(747\) −7.92467 2.88434i −0.289948 0.105533i
\(748\) 4.61694 + 7.99678i 0.168812 + 0.292391i
\(749\) 2.83282 4.90659i 0.103509 0.179283i
\(750\) −6.73687 + 5.65291i −0.245996 + 0.206415i
\(751\) 36.6935 30.7895i 1.33897 1.12353i 0.357076 0.934075i \(-0.383774\pi\)
0.981890 0.189450i \(-0.0606706\pi\)
\(752\) −2.12341 + 3.67785i −0.0774327 + 0.134117i
\(753\) −10.1649 17.6062i −0.370431 0.641604i
\(754\) 6.70204 + 2.43934i 0.244074 + 0.0888357i
\(755\) 3.68590 20.9038i 0.134144 0.760766i
\(756\) −0.173648 0.984808i −0.00631552 0.0358171i
\(757\) −10.5695 + 3.84699i −0.384155 + 0.139821i −0.526877 0.849942i \(-0.676637\pi\)
0.142721 + 0.989763i \(0.454415\pi\)
\(758\) −27.9712 23.4706i −1.01596 0.852490i
\(759\) 14.7373 0.534931
\(760\) 1.93067 + 11.0035i 0.0700329 + 0.399138i
\(761\) 10.0069 0.362748 0.181374 0.983414i \(-0.441946\pi\)
0.181374 + 0.983414i \(0.441946\pi\)
\(762\) −4.97764 4.17674i −0.180321 0.151307i
\(763\) −1.74106 + 0.633692i −0.0630304 + 0.0229412i
\(764\) 4.46708 + 25.3340i 0.161613 + 0.916554i
\(765\) −1.26940 + 7.19910i −0.0458951 + 0.260284i
\(766\) −0.681077 0.247892i −0.0246083 0.00895669i
\(767\) 0.171023 + 0.296220i 0.00617527 + 0.0106959i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) −8.74563 + 7.33846i −0.315376 + 0.264632i −0.786710 0.617323i \(-0.788217\pi\)
0.471334 + 0.881955i \(0.343773\pi\)
\(770\) 6.35605 5.33336i 0.229056 0.192201i
\(771\) −9.54554 + 16.5334i −0.343774 + 0.595434i
\(772\) −4.83797 8.37962i −0.174122 0.301589i
\(773\) 1.21802 + 0.443324i 0.0438092 + 0.0159453i 0.363832 0.931465i \(-0.381468\pi\)
−0.320023 + 0.947410i \(0.603691\pi\)
\(774\) 1.84905 10.4865i 0.0664629 0.376930i
\(775\) −2.09334 11.8719i −0.0751952 0.426453i
\(776\) −0.783734 + 0.285256i −0.0281344 + 0.0102401i
\(777\) 3.55018 + 2.97896i 0.127362 + 0.106870i
\(778\) 18.2405 0.653952
\(779\) −49.7714 18.1627i −1.78324 0.650746i
\(780\) 2.66945 0.0955815
\(781\) 36.6774 + 30.7760i 1.31242 + 1.10125i
\(782\) −12.2011 + 4.44083i −0.436310 + 0.158804i
\(783\) −1.18907 6.74356i −0.0424939 0.240995i
\(784\) 0.173648 0.984808i 0.00620172 0.0351717i
\(785\) −18.9801 6.90818i −0.677427 0.246563i
\(786\) 9.38565 + 16.2564i 0.334775 + 0.579847i
\(787\) −4.75793 + 8.24098i −0.169602 + 0.293759i −0.938280 0.345877i \(-0.887582\pi\)
0.768678 + 0.639636i \(0.220915\pi\)
\(788\) −4.01391 + 3.36807i −0.142989 + 0.119982i
\(789\) −14.9025 + 12.5047i −0.530545 + 0.445180i
\(790\) 12.2892 21.2855i 0.437230 0.757305i
\(791\) 0.673134 + 1.16590i 0.0239339 + 0.0414547i
\(792\) −3.04216 1.10725i −0.108098 0.0393446i
\(793\) −0.232055 + 1.31605i −0.00824051 + 0.0467343i
\(794\) −4.32421 24.5238i −0.153461 0.870318i
\(795\) 0.694787 0.252882i 0.0246415 0.00896879i
\(796\) 10.0188 + 8.40674i 0.355106 + 0.297969i
\(797\) 30.5897 1.08354 0.541770 0.840526i \(-0.317754\pi\)
0.541770 + 0.840526i \(0.317754\pi\)
\(798\) −2.18262 + 3.77308i −0.0772640 + 0.133566i
\(799\) 12.1130 0.428528
\(800\) −1.20164 1.00830i −0.0424845 0.0356488i
\(801\) 7.75125 2.82122i 0.273877 0.0996830i
\(802\) 0.348669 + 1.97740i 0.0123119 + 0.0698245i
\(803\) 8.26945 46.8984i 0.291823 1.65501i
\(804\) −0.0514549 0.0187281i −0.00181468 0.000660488i
\(805\) 5.83352 + 10.1040i 0.205605 + 0.356118i
\(806\) 4.00223 6.93207i 0.140973 0.244172i
\(807\) −15.0683 + 12.6438i −0.530429 + 0.445082i
\(808\) −13.9014 + 11.6646i −0.489049 + 0.410361i
\(809\) 26.4934 45.8879i 0.931458 1.61333i 0.150628 0.988591i \(-0.451870\pi\)
0.780831 0.624743i \(-0.214796\pi\)
\(810\) −1.28147 2.21957i −0.0450262 0.0779876i
\(811\) −5.24116 1.90763i −0.184042 0.0669858i 0.248355 0.968669i \(-0.420110\pi\)
−0.432397 + 0.901683i \(0.642332\pi\)
\(812\) 1.18907 6.74356i 0.0417282 0.236652i
\(813\) 0.112587 + 0.638512i 0.00394860 + 0.0223936i
\(814\) 14.0987 5.13150i 0.494158 0.179859i
\(815\) 10.9158 + 9.15948i 0.382365 + 0.320843i
\(816\) 2.85226 0.0998491
\(817\) −35.5808 + 29.8049i −1.24482 + 1.04274i
\(818\) −35.5668 −1.24356
\(819\) 0.797880 + 0.669501i 0.0278802 + 0.0233943i
\(820\) 29.2734 10.6547i 1.02227 0.372077i
\(821\) 7.18295 + 40.7365i 0.250687 + 1.42171i 0.806907 + 0.590679i \(0.201140\pi\)
−0.556220 + 0.831035i \(0.687749\pi\)
\(822\) 1.70121 9.64801i 0.0593363 0.336513i
\(823\) 21.7256 + 7.90749i 0.757308 + 0.275638i 0.691678 0.722206i \(-0.256872\pi\)
0.0656307 + 0.997844i \(0.479094\pi\)
\(824\) 7.20969 + 12.4875i 0.251161 + 0.435024i
\(825\) 2.53914 4.39793i 0.0884017 0.153116i
\(826\) 0.251567 0.211090i 0.00875314 0.00734476i
\(827\) 6.71745 5.63661i 0.233588 0.196004i −0.518479 0.855091i \(-0.673501\pi\)
0.752067 + 0.659087i \(0.229057\pi\)
\(828\) 2.27611 3.94234i 0.0791003 0.137006i
\(829\) −17.0616 29.5515i −0.592573 1.02637i −0.993885 0.110424i \(-0.964779\pi\)
0.401312 0.915941i \(-0.368554\pi\)
\(830\) −20.3104 7.39238i −0.704985 0.256593i
\(831\) −4.33638 + 24.5928i −0.150427 + 0.853115i
\(832\) −0.180865 1.02574i −0.00627036 0.0355610i
\(833\) −2.68025 + 0.975530i −0.0928651 + 0.0338001i
\(834\) 7.93390 + 6.65733i 0.274728 + 0.230525i
\(835\) 39.6267 1.37134
\(836\) 7.04546 + 12.2268i 0.243672 + 0.422873i
\(837\) −7.68508 −0.265635
\(838\) −9.79210 8.21654i −0.338262 0.283836i
\(839\) 5.13345 1.86842i 0.177226 0.0645051i −0.251883 0.967758i \(-0.581050\pi\)
0.429109 + 0.903253i \(0.358828\pi\)
\(840\) −0.445049 2.52400i −0.0153556 0.0870862i
\(841\) 3.10647 17.6177i 0.107120 0.607506i
\(842\) 21.0571 + 7.66415i 0.725674 + 0.264124i
\(843\) −4.10491 7.10992i −0.141381 0.244879i
\(844\) −3.73142 + 6.46300i −0.128441 + 0.222466i
\(845\) 23.3933 19.6293i 0.804754 0.675268i
\(846\) −3.25325 + 2.72980i −0.111849 + 0.0938525i
\(847\) −0.259639 + 0.449708i −0.00892131 + 0.0154522i
\(848\) −0.144244 0.249838i −0.00495336 0.00857948i
\(849\) 11.1076 + 4.04283i 0.381212 + 0.138750i
\(850\) −0.776929 + 4.40618i −0.0266484 + 0.151131i
\(851\) 3.66345 + 20.7765i 0.125582 + 0.712208i
\(852\) 13.8974 5.05825i 0.476118 0.173293i
\(853\) 42.0375 + 35.2736i 1.43934 + 1.20775i 0.939925 + 0.341380i \(0.110894\pi\)
0.499410 + 0.866366i \(0.333550\pi\)
\(854\) 1.28303 0.0439044
\(855\) −1.94917 + 11.0002i −0.0666602 + 0.376200i
\(856\) −5.66564 −0.193648
\(857\) 2.79285 + 2.34348i 0.0954021 + 0.0800518i 0.689241 0.724532i \(-0.257944\pi\)
−0.593839 + 0.804584i \(0.702388\pi\)
\(858\) 3.16858 1.15327i 0.108174 0.0393720i
\(859\) −1.68345 9.54735i −0.0574387 0.325751i 0.942526 0.334132i \(-0.108443\pi\)
−0.999965 + 0.00838118i \(0.997332\pi\)
\(860\) 4.73900 26.8762i 0.161599 0.916472i
\(861\) 11.4218 + 4.15721i 0.389255 + 0.141677i
\(862\) −8.77934 15.2063i −0.299026 0.517927i
\(863\) −11.7773 + 20.3989i −0.400904 + 0.694386i −0.993835 0.110867i \(-0.964637\pi\)
0.592931 + 0.805253i \(0.297971\pi\)
\(864\) −0.766044 + 0.642788i −0.0260614 + 0.0218681i
\(865\) 19.4635 16.3318i 0.661778 0.555298i
\(866\) −15.5427 + 26.9208i −0.528163 + 0.914806i
\(867\) 4.43231 + 7.67698i 0.150529 + 0.260724i
\(868\) −7.22162 2.62845i −0.245118 0.0892155i
\(869\) 5.39116 30.5748i 0.182882 1.03718i
\(870\) −3.04751 17.2833i −0.103320 0.585959i
\(871\) 0.0535933 0.0195064i 0.00181594 0.000660948i
\(872\) 1.41932 + 1.19095i 0.0480643 + 0.0403307i
\(873\) −0.834032 −0.0282277
\(874\) −18.6517 + 6.77092i −0.630904 + 0.229030i
\(875\) −8.79437 −0.297304
\(876\) −11.2685 9.45537i −0.380726 0.319467i
\(877\) 27.1118 9.86788i 0.915500 0.333215i 0.159053 0.987270i \(-0.449156\pi\)
0.756447 + 0.654055i \(0.226934\pi\)
\(878\) −4.07999 23.1388i −0.137693 0.780897i
\(879\) 3.95946 22.4552i 0.133549 0.757395i
\(880\) −7.79685 2.83782i −0.262832 0.0956629i
\(881\) 9.05570 + 15.6849i 0.305094 + 0.528439i 0.977282 0.211942i \(-0.0679787\pi\)
−0.672188 + 0.740381i \(0.734645\pi\)
\(882\) 0.500000 0.866025i 0.0168359 0.0291606i
\(883\) 30.3304 25.4503i 1.02070 0.856469i 0.0309851 0.999520i \(-0.490136\pi\)
0.989715 + 0.143050i \(0.0456911\pi\)
\(884\) −2.27576 + 1.90959i −0.0765421 + 0.0642265i
\(885\) 0.420831 0.728901i 0.0141461 0.0245017i
\(886\) 9.80490 + 16.9826i 0.329402 + 0.570541i
\(887\) 7.60712 + 2.76876i 0.255422 + 0.0929660i 0.466558 0.884491i \(-0.345494\pi\)
−0.211136 + 0.977457i \(0.567716\pi\)
\(888\) 0.804761 4.56403i 0.0270060 0.153159i
\(889\) −1.12834 6.39914i −0.0378433 0.214620i
\(890\) 19.8659 7.23061i 0.665908 0.242371i
\(891\) −2.47999 2.08096i −0.0830827 0.0697147i
\(892\) 1.53843 0.0515104
\(893\) 18.5114 + 0.0155601i 0.619461 + 0.000520700i
\(894\) 4.65460 0.155673
\(895\) −1.03923 0.872014i −0.0347375 0.0291482i
\(896\) −0.939693 + 0.342020i −0.0313929 + 0.0114261i
\(897\) 0.823337 + 4.66937i 0.0274904 + 0.155906i
\(898\) −0.956384 + 5.42393i −0.0319150 + 0.180999i
\(899\) −49.4507 17.9986i −1.64927 0.600286i
\(900\) −0.784317 1.35848i −0.0261439 0.0452826i
\(901\) −0.411422 + 0.712603i −0.0137064 + 0.0237403i
\(902\) 30.1439 25.2937i 1.00368 0.842189i
\(903\) 8.15705 6.84458i 0.271450 0.227773i
\(904\) 0.673134 1.16590i 0.0223881 0.0387773i
\(905\) −1.84206 3.19055i −0.0612322 0.106057i
\(906\) −7.78255 2.83261i −0.258558 0.0941073i
\(907\) −8.16513 + 46.3068i −0.271119 + 1.53759i 0.479908 + 0.877319i \(0.340670\pi\)
−0.751026 + 0.660272i \(0.770441\pi\)
\(908\) 4.06450 + 23.0509i 0.134885 + 0.764971i
\(909\) −17.0526 + 6.20663i −0.565598 + 0.205861i
\(910\) 2.04491 + 1.71589i 0.0677883 + 0.0568811i
\(911\) 8.85879 0.293505 0.146752 0.989173i \(-0.453118\pi\)
0.146752 + 0.989173i \(0.453118\pi\)
\(912\) 4.35890 + 0.00366395i 0.144338 + 0.000121326i
\(913\) −27.3018 −0.903557
\(914\) −16.6392 13.9620i −0.550377 0.461821i
\(915\) 3.09001 1.12467i 0.102153 0.0371805i
\(916\) −4.32796 24.5451i −0.143000 0.810992i
\(917\) −3.25960 + 18.4861i −0.107641 + 0.610465i
\(918\) 2.68025 + 0.975530i 0.0884613 + 0.0321973i
\(919\) 3.55597 + 6.15911i 0.117300 + 0.203170i 0.918697 0.394963i \(-0.129243\pi\)
−0.801397 + 0.598133i \(0.795909\pi\)
\(920\) 5.83352 10.1040i 0.192326 0.333118i
\(921\) −16.8230 + 14.1162i −0.554337 + 0.465144i
\(922\) 6.21344 5.21369i 0.204629 0.171704i
\(923\) −7.70198 + 13.3402i −0.253514 + 0.439099i
\(924\) −1.61870 2.80367i −0.0532512 0.0922338i
\(925\) 6.83132 + 2.48640i 0.224612 + 0.0817522i
\(926\) −6.67994 + 37.8838i −0.219516 + 1.24494i
\(927\) 2.50390 + 14.2003i 0.0822388 + 0.466400i
\(928\) −6.43463 + 2.34201i −0.211227 + 0.0768803i
\(929\) −24.0718 20.1987i −0.789771 0.662696i 0.155918 0.987770i \(-0.450166\pi\)
−0.945689 + 0.325074i \(0.894611\pi\)
\(930\) −19.6964 −0.645869
\(931\) −4.09728 + 1.48739i −0.134283 + 0.0487472i
\(932\) −16.0825 −0.526798
\(933\) −11.2375 9.42937i −0.367899 0.308704i
\(934\) 16.8526 6.13385i 0.551434 0.200706i
\(935\) 4.10953 + 23.3063i 0.134396 + 0.762198i
\(936\) 0.180865 1.02574i 0.00591175 0.0335272i
\(937\) 22.0857 + 8.03855i 0.721510 + 0.262608i 0.676567 0.736381i \(-0.263467\pi\)
0.0449433 + 0.998990i \(0.485689\pi\)
\(938\) −0.0273786 0.0474211i −0.000893943 0.00154835i
\(939\) −0.811546 + 1.40564i −0.0264838 + 0.0458713i
\(940\) −8.33786 + 6.99630i −0.271951 + 0.228194i
\(941\) −41.0878 + 34.4767i −1.33942 + 1.12391i −0.357649 + 0.933856i \(0.616422\pi\)
−0.981774 + 0.190053i \(0.939134\pi\)
\(942\) −3.94043 + 6.82503i −0.128386 + 0.222372i
\(943\) 27.6658 + 47.9186i 0.900923 + 1.56044i
\(944\) −0.308593 0.112319i −0.0100438 0.00365566i
\(945\) 0.445049 2.52400i 0.0144774 0.0821057i
\(946\) −5.98611 33.9489i −0.194625 1.10378i
\(947\) −2.79451 + 1.01712i −0.0908094 + 0.0330519i −0.387025 0.922069i \(-0.626497\pi\)
0.296216 + 0.955121i \(0.404275\pi\)
\(948\) −7.34632 6.16430i −0.238598 0.200207i
\(949\) 15.3213 0.497349
\(950\) −1.19298 + 6.73264i −0.0387055 + 0.218436i
\(951\) 21.6665 0.702585
\(952\) 2.18496 + 1.83340i 0.0708149 + 0.0594207i
\(953\) 18.2204 6.63168i 0.590216 0.214821i −0.0296084 0.999562i \(-0.509426\pi\)
0.619824 + 0.784740i \(0.287204\pi\)
\(954\) −0.0500955 0.284105i −0.00162190 0.00919825i
\(955\) −11.4488 + 64.9295i −0.370475 + 2.10107i
\(956\) 10.8770 + 3.95890i 0.351787 + 0.128040i
\(957\) −11.0842 19.1983i −0.358300 0.620594i
\(958\) 12.8543 22.2643i 0.415304 0.719327i
\(959\) 7.50482 6.29729i 0.242343 0.203350i
\(960\) −1.96332 + 1.64742i −0.0633659 + 0.0531703i
\(961\) −14.0303 + 24.3011i −0.452589 + 0.783907i
\(962\) 2.41352 + 4.18034i 0.0778149 + 0.134779i
\(963\) −5.32396 1.93776i −0.171562 0.0624435i
\(964\) −0.0190905 + 0.108268i −0.000614864 + 0.00348707i
\(965\) −4.30627 24.4221i −0.138624 0.786174i
\(966\) 4.27769 1.55695i 0.137632 0.0500941i
\(967\) −29.8393 25.0382i −0.959568 0.805173i 0.0213149 0.999773i \(-0.493215\pi\)
−0.980883 + 0.194600i \(0.937659\pi\)
\(968\) 0.519278 0.0166902
\(969\) −6.20730 10.7723i −0.199407 0.346055i
\(970\) −2.13757 −0.0686332
\(971\) −15.4194 12.9384i −0.494832 0.415214i 0.360922 0.932596i \(-0.382462\pi\)
−0.855754 + 0.517382i \(0.826907\pi\)
\(972\) −0.939693 + 0.342020i −0.0301407 + 0.0109703i
\(973\) 1.79847 + 10.1996i 0.0576563 + 0.326985i
\(974\) −3.26877 + 18.5381i −0.104738 + 0.593999i
\(975\) 1.53529 + 0.558801i 0.0491687 + 0.0178960i
\(976\) −0.641515 1.11114i −0.0205344 0.0355666i
\(977\) −9.22689 + 15.9814i −0.295194 + 0.511292i −0.975030 0.222073i \(-0.928718\pi\)
0.679836 + 0.733364i \(0.262051\pi\)
\(978\) 4.25912 3.57383i 0.136192 0.114278i
\(979\) 20.4567 17.1652i 0.653799 0.548602i
\(980\) 1.28147 2.21957i 0.0409350 0.0709015i
\(981\) 0.926396 + 1.60457i 0.0295776 + 0.0512298i
\(982\) 14.4658 + 5.26512i 0.461622 + 0.168017i
\(983\) −5.58500 + 31.6741i −0.178134 + 1.01025i 0.756330 + 0.654190i \(0.226990\pi\)
−0.934464 + 0.356058i \(0.884121\pi\)
\(984\) −2.11067 11.9702i −0.0672857 0.381596i
\(985\) −12.6193 + 4.59306i −0.402086 + 0.146347i
\(986\) 14.9617 + 12.5543i 0.476477 + 0.399812i
\(987\) −4.24681 −0.135178
\(988\) −3.48033 + 2.91536i −0.110724 + 0.0927500i
\(989\) 48.4733 1.54136
\(990\) −6.35605 5.33336i −0.202008 0.169505i
\(991\) −40.3477 + 14.6853i −1.28169 + 0.466495i −0.890989 0.454024i \(-0.849988\pi\)
−0.390696 + 0.920520i \(0.627766\pi\)
\(992\) 1.33450 + 7.56833i 0.0423704 + 0.240295i
\(993\) −0.256836 + 1.45659i −0.00815045 + 0.0462235i
\(994\) 13.8974 + 5.05825i 0.440800 + 0.160438i
\(995\) 16.7598 + 29.0288i 0.531320 + 0.920273i
\(996\) −4.21663 + 7.30341i −0.133609 + 0.231418i
\(997\) 8.09766 6.79474i 0.256455 0.215192i −0.505491 0.862832i \(-0.668689\pi\)
0.761946 + 0.647640i \(0.224244\pi\)
\(998\) −20.1377 + 16.8975i −0.637446 + 0.534881i
\(999\) 2.31722 4.01354i 0.0733135 0.126983i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 798.2.bo.d.757.1 yes 12
19.6 even 9 inner 798.2.bo.d.253.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
798.2.bo.d.253.1 12 19.6 even 9 inner
798.2.bo.d.757.1 yes 12 1.1 even 1 trivial