Properties

Label 798.2.bo.d
Level $798$
Weight $2$
Character orbit 798.bo
Analytic conductor $6.372$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(43,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 16])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.43"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.bo (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,9,0,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 18x^{10} + 153x^{8} - 773x^{6} + 2448x^{4} - 4608x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} - \beta_{7} q^{3} + (\beta_{8} - \beta_1) q^{4} + ( - \beta_{11} - \beta_{9} + \beta_{2} + 1) q^{5} + \beta_{8} q^{6} + ( - \beta_{9} + 1) q^{7} + \beta_{9} q^{8} + \beta_1 q^{9} + ( - \beta_{9} - \beta_{4} + \beta_{3} + 1) q^{10}+ \cdots + (\beta_{11} + \beta_{9} - \beta_{8} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 9 q^{5} + 6 q^{7} + 6 q^{8} + 9 q^{10} + 3 q^{11} - 6 q^{12} - 9 q^{13} + 9 q^{15} + 15 q^{17} - 12 q^{18} + 9 q^{19} - 15 q^{22} + 3 q^{23} + 3 q^{25} + 3 q^{26} - 6 q^{27} + 3 q^{29} + 6 q^{31}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 18x^{10} + 153x^{8} - 773x^{6} + 2448x^{4} - 4608x^{2} + 4096 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 5 \nu^{11} - 4 \nu^{10} + 42 \nu^{9} + 72 \nu^{8} - 157 \nu^{7} - 612 \nu^{6} + 105 \nu^{5} + \cdots + 12288 ) / 2048 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3 \nu^{11} - 20 \nu^{10} - 54 \nu^{9} + 168 \nu^{8} + 459 \nu^{7} - 628 \nu^{6} - 2319 \nu^{5} + \cdots - 13312 ) / 2048 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3 \nu^{11} + 20 \nu^{10} - 54 \nu^{9} - 168 \nu^{8} + 459 \nu^{7} + 628 \nu^{6} - 2319 \nu^{5} + \cdots + 13312 ) / 2048 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 5 \nu^{11} - 4 \nu^{10} - 42 \nu^{9} + 72 \nu^{8} + 157 \nu^{7} - 612 \nu^{6} - 105 \nu^{5} + \cdots + 12288 ) / 2048 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{10} + 18\nu^{8} - 153\nu^{6} + 709\nu^{4} - 1872\nu^{2} + 64\nu + 2304 ) / 128 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{10} - 18\nu^{8} + 153\nu^{6} - 709\nu^{4} + 1872\nu^{2} + 64\nu - 2304 ) / 128 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - \nu^{11} - 28 \nu^{10} + 18 \nu^{9} + 440 \nu^{8} - 153 \nu^{7} - 3132 \nu^{6} + 773 \nu^{5} + \cdots + 33792 ) / 2048 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{11} - 28 \nu^{10} - 18 \nu^{9} + 440 \nu^{8} + 153 \nu^{7} - 3132 \nu^{6} - 773 \nu^{5} + \cdots + 33792 ) / 2048 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -9\nu^{11} + 146\nu^{9} - 1089\nu^{7} + 4509\nu^{5} - 10688\nu^{3} + 11520\nu + 1024 ) / 2048 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 15 \nu^{11} - 48 \nu^{10} - 222 \nu^{9} + 608 \nu^{8} + 1431 \nu^{7} - 3760 \nu^{6} - 5275 \nu^{5} + \cdots + 23552 ) / 2048 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 7\nu^{11} - 110\nu^{9} + 783\nu^{7} - 3219\nu^{5} + 7584\nu^{3} + 256\nu^{2} - 8448\nu - 1024 ) / 512 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{6} + \beta_{5} \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{11} - \beta_{10} + \beta_{9} + \beta_{7} - \beta_{3} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{8} - 3\beta_{7} + 2\beta_{6} + 2\beta_{5} - \beta_{3} - \beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 5\beta_{11} - 5\beta_{10} + 5\beta_{9} + 5\beta_{7} + \beta_{6} - \beta_{5} + 4\beta_{4} - 5\beta_{3} + 4\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - \beta_{11} - \beta_{10} - 7 \beta_{9} + 13 \beta_{8} - 12 \beta_{7} - 2 \beta_{6} - 2 \beta_{5} + \cdots + 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 11 \beta_{11} - 11 \beta_{10} + 11 \beta_{9} + 3 \beta_{8} + 14 \beta_{7} + 11 \beta_{6} - 11 \beta_{5} + \cdots - 19 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 14 \beta_{11} - 14 \beta_{10} - 74 \beta_{9} + 27 \beta_{8} - 13 \beta_{7} - 29 \beta_{6} - 29 \beta_{5} + \cdots + 30 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 2 \beta_{11} + 2 \beta_{10} - 2 \beta_{9} + 38 \beta_{8} + 36 \beta_{7} + 61 \beta_{6} - 61 \beta_{5} + \cdots - 114 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 99 \beta_{11} - 99 \beta_{10} - 389 \beta_{9} + 48 \beta_{8} + 51 \beta_{7} - 94 \beta_{6} + \cdots + 145 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 46 \beta_{11} + 46 \beta_{10} - 46 \beta_{9} + 225 \beta_{8} + 179 \beta_{7} + 188 \beta_{6} + \cdots - 330 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 413 \beta_{11} - 413 \beta_{10} - 1091 \beta_{9} + 462 \beta_{8} - 49 \beta_{7} - 113 \beta_{6} + \cdots + 339 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(1\) \(-\beta_{1} + \beta_{8}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1
−1.74073 0.984808i
1.74073 0.984808i
1.89389 0.642788i
−1.89389 0.642788i
1.89389 + 0.642788i
−1.89389 + 0.642788i
−1.97054 0.342020i
1.97054 0.342020i
−1.74073 + 0.984808i
1.74073 + 0.984808i
−1.97054 + 0.342020i
1.97054 + 0.342020i
0.939693 0.342020i 0.173648 0.984808i 0.766044 0.642788i −0.0268090 0.0224954i −0.173648 0.984808i 0.500000 + 0.866025i 0.500000 0.866025i −0.939693 0.342020i −0.0328860 0.0119695i
43.2 0.939693 0.342020i 0.173648 0.984808i 0.766044 0.642788i 2.64015 + 2.21535i −0.173648 0.984808i 0.500000 + 0.866025i 0.500000 0.866025i −0.939693 0.342020i 3.23862 + 1.17876i
85.1 −0.173648 0.984808i 0.766044 0.642788i −0.939693 + 0.342020i −0.733478 0.266964i −0.766044 0.642788i 0.500000 0.866025i 0.500000 + 0.866025i 0.173648 0.984808i −0.135541 + 0.768692i
85.2 −0.173648 0.984808i 0.766044 0.642788i −0.939693 + 0.342020i 2.82587 + 1.02853i −0.766044 0.642788i 0.500000 0.866025i 0.500000 + 0.866025i 0.173648 0.984808i 0.522200 2.96155i
169.1 −0.173648 + 0.984808i 0.766044 + 0.642788i −0.939693 0.342020i −0.733478 + 0.266964i −0.766044 + 0.642788i 0.500000 + 0.866025i 0.500000 0.866025i 0.173648 + 0.984808i −0.135541 0.768692i
169.2 −0.173648 + 0.984808i 0.766044 + 0.642788i −0.939693 0.342020i 2.82587 1.02853i −0.766044 + 0.642788i 0.500000 + 0.866025i 0.500000 0.866025i 0.173648 + 0.984808i 0.522200 + 2.96155i
253.1 −0.766044 + 0.642788i −0.939693 0.342020i 0.173648 0.984808i −0.445049 2.52400i 0.939693 0.342020i 0.500000 0.866025i 0.500000 + 0.866025i 0.766044 + 0.642788i 1.96332 + 1.64742i
253.2 −0.766044 + 0.642788i −0.939693 0.342020i 0.173648 0.984808i 0.239312 + 1.35721i 0.939693 0.342020i 0.500000 0.866025i 0.500000 + 0.866025i 0.766044 + 0.642788i −1.05572 0.885853i
631.1 0.939693 + 0.342020i 0.173648 + 0.984808i 0.766044 + 0.642788i −0.0268090 + 0.0224954i −0.173648 + 0.984808i 0.500000 0.866025i 0.500000 + 0.866025i −0.939693 + 0.342020i −0.0328860 + 0.0119695i
631.2 0.939693 + 0.342020i 0.173648 + 0.984808i 0.766044 + 0.642788i 2.64015 2.21535i −0.173648 + 0.984808i 0.500000 0.866025i 0.500000 + 0.866025i −0.939693 + 0.342020i 3.23862 1.17876i
757.1 −0.766044 0.642788i −0.939693 + 0.342020i 0.173648 + 0.984808i −0.445049 + 2.52400i 0.939693 + 0.342020i 0.500000 + 0.866025i 0.500000 0.866025i 0.766044 0.642788i 1.96332 1.64742i
757.2 −0.766044 0.642788i −0.939693 + 0.342020i 0.173648 + 0.984808i 0.239312 1.35721i 0.939693 + 0.342020i 0.500000 + 0.866025i 0.500000 0.866025i 0.766044 0.642788i −1.05572 + 0.885853i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 43.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 798.2.bo.d 12
19.e even 9 1 inner 798.2.bo.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
798.2.bo.d 12 1.a even 1 1 trivial
798.2.bo.d 12 19.e even 9 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} - 9 T_{5}^{11} + 39 T_{5}^{10} - 108 T_{5}^{9} + 255 T_{5}^{8} - 459 T_{5}^{7} + 343 T_{5}^{6} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(798, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{6} - T^{3} + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{6} + T^{3} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{12} - 9 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{12} - 3 T^{11} + \cdots + 110889 \) Copy content Toggle raw display
$13$ \( T^{12} + 9 T^{11} + \cdots + 11449 \) Copy content Toggle raw display
$17$ \( T^{12} - 15 T^{11} + \cdots + 4289041 \) Copy content Toggle raw display
$19$ \( T^{12} - 9 T^{11} + \cdots + 47045881 \) Copy content Toggle raw display
$23$ \( T^{12} - 3 T^{11} + \cdots + 103041 \) Copy content Toggle raw display
$29$ \( T^{12} - 3 T^{11} + \cdots + 3249 \) Copy content Toggle raw display
$31$ \( T^{12} - 6 T^{11} + \cdots + 16410601 \) Copy content Toggle raw display
$37$ \( (T^{6} - 108 T^{4} + \cdots + 8691)^{2} \) Copy content Toggle raw display
$41$ \( T^{12} + 27 T^{11} + \cdots + 59049 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 1868573529 \) Copy content Toggle raw display
$47$ \( T^{12} + 6 T^{11} + \cdots + 4915089 \) Copy content Toggle raw display
$53$ \( T^{12} + 9 T^{11} + \cdots + 5157441 \) Copy content Toggle raw display
$59$ \( T^{12} + 24 T^{11} + \cdots + 5948721 \) Copy content Toggle raw display
$61$ \( T^{12} + 15 T^{11} + \cdots + 811801 \) Copy content Toggle raw display
$67$ \( T^{12} - 33 T^{11} + \cdots + 104329 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 159823248841 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 3013021881 \) Copy content Toggle raw display
$79$ \( T^{12} - 33 T^{11} + \cdots + 3308761 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 268009641 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 1067682024369 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 63635612121 \) Copy content Toggle raw display
show more
show less