Properties

Label 798.2.bo.d.631.1
Level $798$
Weight $2$
Character 798.631
Analytic conductor $6.372$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(43,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 16])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.43"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.bo (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,9,0,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 18x^{10} + 153x^{8} - 773x^{6} + 2448x^{4} - 4608x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 631.1
Root \(-1.74073 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 798.631
Dual form 798.2.bo.d.43.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.939693 + 0.342020i) q^{2} +(0.173648 + 0.984808i) q^{3} +(0.766044 + 0.642788i) q^{4} +(-0.0268090 + 0.0224954i) q^{5} +(-0.173648 + 0.984808i) q^{6} +(0.500000 - 0.866025i) q^{7} +(0.500000 + 0.866025i) q^{8} +(-0.939693 + 0.342020i) q^{9} +(-0.0328860 + 0.0119695i) q^{10} +(1.79285 + 3.10531i) q^{11} +(-0.500000 + 0.866025i) q^{12} +(-0.575695 + 3.26493i) q^{13} +(0.766044 - 0.642788i) q^{14} +(-0.0268090 - 0.0224954i) q^{15} +(0.173648 + 0.984808i) q^{16} +(-1.77099 - 0.644587i) q^{17} -1.00000 q^{18} +(4.35731 + 0.117758i) q^{19} -0.0349966 q^{20} +(0.939693 + 0.342020i) q^{21} +(0.622651 + 3.53123i) q^{22} +(-0.485735 - 0.407580i) q^{23} +(-0.766044 + 0.642788i) q^{24} +(-0.868028 + 4.92283i) q^{25} +(-1.65765 + 2.87113i) q^{26} +(-0.500000 - 0.866025i) q^{27} +(0.939693 - 0.342020i) q^{28} +(2.72720 - 0.992620i) q^{29} +(-0.0174983 - 0.0303079i) q^{30} +(-1.02067 + 1.76785i) q^{31} +(-0.173648 + 0.984808i) q^{32} +(-2.74681 + 2.30485i) q^{33} +(-1.44372 - 1.21143i) q^{34} +(0.00607710 + 0.0344649i) q^{35} +(-0.939693 - 0.342020i) q^{36} +4.18821 q^{37} +(4.05425 + 1.60094i) q^{38} -3.31530 q^{39} +(-0.0328860 - 0.0119695i) q^{40} +(-0.400191 - 2.26960i) q^{41} +(0.766044 + 0.642788i) q^{42} +(4.76977 - 4.00232i) q^{43} +(-0.622651 + 3.53123i) q^{44} +(0.0174983 - 0.0303079i) q^{45} +(-0.317041 - 0.549131i) q^{46} +(-2.53554 + 0.922859i) q^{47} +(-0.939693 + 0.342020i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(-2.49939 + 4.32907i) q^{50} +(0.327266 - 1.85601i) q^{51} +(-2.53966 + 2.13103i) q^{52} +(2.27984 + 1.91301i) q^{53} +(-0.173648 - 0.984808i) q^{54} +(-0.117920 - 0.0429193i) q^{55} +1.00000 q^{56} +(0.640670 + 4.31156i) q^{57} +2.90223 q^{58} +(-11.9834 - 4.36161i) q^{59} +(-0.00607710 - 0.0344649i) q^{60} +(-3.60202 - 3.02245i) q^{61} +(-1.56375 + 1.31215i) q^{62} +(-0.173648 + 0.984808i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-0.0580120 - 0.100480i) q^{65} +(-3.36946 + 1.22638i) q^{66} +(4.57755 - 1.66609i) q^{67} +(-0.942323 - 1.63215i) q^{68} +(0.317041 - 0.549131i) q^{69} +(-0.00607710 + 0.0344649i) q^{70} +(-10.8142 + 9.07419i) q^{71} +(-0.766044 - 0.642788i) q^{72} +(-2.01999 - 11.4559i) q^{73} +(3.93563 + 1.43245i) q^{74} -4.99878 q^{75} +(3.26220 + 2.89103i) q^{76} +3.58571 q^{77} +(-3.11536 - 1.13390i) q^{78} +(-0.666895 - 3.78215i) q^{79} +(-0.0268090 - 0.0224954i) q^{80} +(0.766044 - 0.642788i) q^{81} +(0.400191 - 2.26960i) q^{82} +(2.58714 - 4.48106i) q^{83} +(0.500000 + 0.866025i) q^{84} +(0.0619786 - 0.0225584i) q^{85} +(5.85099 - 2.12959i) q^{86} +(1.45111 + 2.51340i) q^{87} +(-1.79285 + 3.10531i) q^{88} +(2.33987 - 13.2701i) q^{89} +(0.0268090 - 0.0224954i) q^{90} +(2.53966 + 2.13103i) q^{91} +(-0.110107 - 0.624449i) q^{92} +(-1.91823 - 0.698178i) q^{93} -2.69826 q^{94} +(-0.119464 + 0.0948623i) q^{95} -1.00000 q^{96} +(13.9434 + 5.07499i) q^{97} +(-0.173648 - 0.984808i) q^{98} +(-2.74681 - 2.30485i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 9 q^{5} + 6 q^{7} + 6 q^{8} + 9 q^{10} + 3 q^{11} - 6 q^{12} - 9 q^{13} + 9 q^{15} + 15 q^{17} - 12 q^{18} + 9 q^{19} - 15 q^{22} + 3 q^{23} + 3 q^{25} + 3 q^{26} - 6 q^{27} + 3 q^{29} + 6 q^{31}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.939693 + 0.342020i 0.664463 + 0.241845i
\(3\) 0.173648 + 0.984808i 0.100256 + 0.568579i
\(4\) 0.766044 + 0.642788i 0.383022 + 0.321394i
\(5\) −0.0268090 + 0.0224954i −0.0119893 + 0.0100602i −0.648763 0.760991i \(-0.724713\pi\)
0.636773 + 0.771051i \(0.280269\pi\)
\(6\) −0.173648 + 0.984808i −0.0708916 + 0.402046i
\(7\) 0.500000 0.866025i 0.188982 0.327327i
\(8\) 0.500000 + 0.866025i 0.176777 + 0.306186i
\(9\) −0.939693 + 0.342020i −0.313231 + 0.114007i
\(10\) −0.0328860 + 0.0119695i −0.0103995 + 0.00378510i
\(11\) 1.79285 + 3.10531i 0.540566 + 0.936287i 0.998872 + 0.0474927i \(0.0151231\pi\)
−0.458306 + 0.888794i \(0.651544\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) −0.575695 + 3.26493i −0.159669 + 0.905528i 0.794723 + 0.606972i \(0.207616\pi\)
−0.954392 + 0.298556i \(0.903495\pi\)
\(14\) 0.766044 0.642788i 0.204734 0.171792i
\(15\) −0.0268090 0.0224954i −0.00692204 0.00580828i
\(16\) 0.173648 + 0.984808i 0.0434120 + 0.246202i
\(17\) −1.77099 0.644587i −0.429528 0.156335i 0.118204 0.992989i \(-0.462286\pi\)
−0.547732 + 0.836654i \(0.684509\pi\)
\(18\) −1.00000 −0.235702
\(19\) 4.35731 + 0.117758i 0.999635 + 0.0270154i
\(20\) −0.0349966 −0.00782548
\(21\) 0.939693 + 0.342020i 0.205058 + 0.0746349i
\(22\) 0.622651 + 3.53123i 0.132750 + 0.752861i
\(23\) −0.485735 0.407580i −0.101283 0.0849864i 0.590740 0.806862i \(-0.298836\pi\)
−0.692023 + 0.721876i \(0.743280\pi\)
\(24\) −0.766044 + 0.642788i −0.156368 + 0.131208i
\(25\) −0.868028 + 4.92283i −0.173606 + 0.984567i
\(26\) −1.65765 + 2.87113i −0.325092 + 0.563075i
\(27\) −0.500000 0.866025i −0.0962250 0.166667i
\(28\) 0.939693 0.342020i 0.177585 0.0646357i
\(29\) 2.72720 0.992620i 0.506429 0.184325i −0.0761545 0.997096i \(-0.524264\pi\)
0.582583 + 0.812771i \(0.302042\pi\)
\(30\) −0.0174983 0.0303079i −0.00319474 0.00553345i
\(31\) −1.02067 + 1.76785i −0.183317 + 0.317515i −0.943008 0.332769i \(-0.892017\pi\)
0.759691 + 0.650284i \(0.225350\pi\)
\(32\) −0.173648 + 0.984808i −0.0306970 + 0.174091i
\(33\) −2.74681 + 2.30485i −0.478158 + 0.401223i
\(34\) −1.44372 1.21143i −0.247597 0.207758i
\(35\) 0.00607710 + 0.0344649i 0.00102722 + 0.00582564i
\(36\) −0.939693 0.342020i −0.156615 0.0570034i
\(37\) 4.18821 0.688538 0.344269 0.938871i \(-0.388127\pi\)
0.344269 + 0.938871i \(0.388127\pi\)
\(38\) 4.05425 + 1.60094i 0.657687 + 0.259707i
\(39\) −3.31530 −0.530872
\(40\) −0.0328860 0.0119695i −0.00519974 0.00189255i
\(41\) −0.400191 2.26960i −0.0624993 0.354451i −0.999979 0.00641245i \(-0.997959\pi\)
0.937480 0.348039i \(-0.113152\pi\)
\(42\) 0.766044 + 0.642788i 0.118203 + 0.0991843i
\(43\) 4.76977 4.00232i 0.727384 0.610347i −0.202033 0.979379i \(-0.564755\pi\)
0.929417 + 0.369031i \(0.120310\pi\)
\(44\) −0.622651 + 3.53123i −0.0938682 + 0.532353i
\(45\) 0.0174983 0.0303079i 0.00260849 0.00451804i
\(46\) −0.317041 0.549131i −0.0467452 0.0809650i
\(47\) −2.53554 + 0.922859i −0.369846 + 0.134613i −0.520255 0.854011i \(-0.674163\pi\)
0.150409 + 0.988624i \(0.451941\pi\)
\(48\) −0.939693 + 0.342020i −0.135633 + 0.0493664i
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) −2.49939 + 4.32907i −0.353467 + 0.612222i
\(51\) 0.327266 1.85601i 0.0458263 0.259894i
\(52\) −2.53966 + 2.13103i −0.352188 + 0.295521i
\(53\) 2.27984 + 1.91301i 0.313160 + 0.262772i 0.785797 0.618485i \(-0.212253\pi\)
−0.472637 + 0.881257i \(0.656698\pi\)
\(54\) −0.173648 0.984808i −0.0236305 0.134015i
\(55\) −0.117920 0.0429193i −0.0159003 0.00578723i
\(56\) 1.00000 0.133631
\(57\) 0.640670 + 4.31156i 0.0848588 + 0.571080i
\(58\) 2.90223 0.381081
\(59\) −11.9834 4.36161i −1.56011 0.567833i −0.589346 0.807881i \(-0.700615\pi\)
−0.970761 + 0.240048i \(0.922837\pi\)
\(60\) −0.00607710 0.0344649i −0.000784550 0.00444940i
\(61\) −3.60202 3.02245i −0.461191 0.386985i 0.382378 0.924006i \(-0.375105\pi\)
−0.843569 + 0.537021i \(0.819550\pi\)
\(62\) −1.56375 + 1.31215i −0.198597 + 0.166643i
\(63\) −0.173648 + 0.984808i −0.0218776 + 0.124074i
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) −0.0580120 0.100480i −0.00719551 0.0124630i
\(66\) −3.36946 + 1.22638i −0.414752 + 0.150957i
\(67\) 4.57755 1.66609i 0.559236 0.203545i −0.0469091 0.998899i \(-0.514937\pi\)
0.606146 + 0.795354i \(0.292715\pi\)
\(68\) −0.942323 1.63215i −0.114274 0.197928i
\(69\) 0.317041 0.549131i 0.0381673 0.0661077i
\(70\) −0.00607710 + 0.0344649i −0.000726352 + 0.00411935i
\(71\) −10.8142 + 9.07419i −1.28341 + 1.07691i −0.290645 + 0.956831i \(0.593870\pi\)
−0.992765 + 0.120077i \(0.961686\pi\)
\(72\) −0.766044 0.642788i −0.0902792 0.0757532i
\(73\) −2.01999 11.4559i −0.236422 1.34082i −0.839598 0.543208i \(-0.817209\pi\)
0.603176 0.797608i \(-0.293902\pi\)
\(74\) 3.93563 + 1.43245i 0.457508 + 0.166519i
\(75\) −4.99878 −0.577209
\(76\) 3.26220 + 2.89103i 0.374200 + 0.331624i
\(77\) 3.58571 0.408629
\(78\) −3.11536 1.13390i −0.352745 0.128389i
\(79\) −0.666895 3.78215i −0.0750315 0.425525i −0.999066 0.0432152i \(-0.986240\pi\)
0.924034 0.382310i \(-0.124871\pi\)
\(80\) −0.0268090 0.0224954i −0.00299733 0.00251506i
\(81\) 0.766044 0.642788i 0.0851160 0.0714208i
\(82\) 0.400191 2.26960i 0.0441937 0.250635i
\(83\) 2.58714 4.48106i 0.283976 0.491860i −0.688385 0.725346i \(-0.741680\pi\)
0.972360 + 0.233486i \(0.0750132\pi\)
\(84\) 0.500000 + 0.866025i 0.0545545 + 0.0944911i
\(85\) 0.0619786 0.0225584i 0.00672252 0.00244680i
\(86\) 5.85099 2.12959i 0.630929 0.229639i
\(87\) 1.45111 + 2.51340i 0.155576 + 0.269465i
\(88\) −1.79285 + 3.10531i −0.191119 + 0.331027i
\(89\) 2.33987 13.2701i 0.248026 1.40663i −0.565332 0.824863i \(-0.691252\pi\)
0.813358 0.581763i \(-0.197637\pi\)
\(90\) 0.0268090 0.0224954i 0.00282591 0.00237122i
\(91\) 2.53966 + 2.13103i 0.266229 + 0.223393i
\(92\) −0.110107 0.624449i −0.0114795 0.0651033i
\(93\) −1.91823 0.698178i −0.198911 0.0723977i
\(94\) −2.69826 −0.278304
\(95\) −0.119464 + 0.0948623i −0.0122567 + 0.00973267i
\(96\) −1.00000 −0.102062
\(97\) 13.9434 + 5.07499i 1.41574 + 0.515287i 0.932809 0.360371i \(-0.117350\pi\)
0.482931 + 0.875659i \(0.339572\pi\)
\(98\) −0.173648 0.984808i −0.0175411 0.0994806i
\(99\) −2.74681 2.30485i −0.276065 0.231646i
\(100\) −3.82928 + 3.21315i −0.382928 + 0.321315i
\(101\) −0.666946 + 3.78244i −0.0663636 + 0.376367i 0.933479 + 0.358632i \(0.116757\pi\)
−0.999843 + 0.0177350i \(0.994354\pi\)
\(102\) 0.942323 1.63215i 0.0933039 0.161607i
\(103\) 0.475422 + 0.823455i 0.0468447 + 0.0811375i 0.888497 0.458882i \(-0.151750\pi\)
−0.841652 + 0.540020i \(0.818417\pi\)
\(104\) −3.11536 + 1.13390i −0.305486 + 0.111188i
\(105\) −0.0328860 + 0.0119695i −0.00320935 + 0.00116811i
\(106\) 1.48806 + 2.57739i 0.144533 + 0.250339i
\(107\) 6.51163 11.2785i 0.629503 1.09033i −0.358148 0.933665i \(-0.616592\pi\)
0.987652 0.156667i \(-0.0500748\pi\)
\(108\) 0.173648 0.984808i 0.0167093 0.0947632i
\(109\) 10.3823 8.71182i 0.994448 0.834441i 0.00824270 0.999966i \(-0.497376\pi\)
0.986206 + 0.165525i \(0.0529318\pi\)
\(110\) −0.0961290 0.0806618i −0.00916554 0.00769080i
\(111\) 0.727276 + 4.12459i 0.0690300 + 0.391488i
\(112\) 0.939693 + 0.342020i 0.0887926 + 0.0323179i
\(113\) 9.54828 0.898227 0.449113 0.893475i \(-0.351740\pi\)
0.449113 + 0.893475i \(0.351740\pi\)
\(114\) −0.872607 + 4.27066i −0.0817271 + 0.399984i
\(115\) 0.0221907 0.00206930
\(116\) 2.72720 + 0.992620i 0.253214 + 0.0921625i
\(117\) −0.575695 3.26493i −0.0532230 0.301843i
\(118\) −9.76897 8.19714i −0.899306 0.754608i
\(119\) −1.44372 + 1.21143i −0.132346 + 0.111051i
\(120\) 0.00607710 0.0344649i 0.000554760 0.00314620i
\(121\) −0.928647 + 1.60846i −0.0844224 + 0.146224i
\(122\) −2.35105 4.07214i −0.212854 0.368674i
\(123\) 2.16562 0.788222i 0.195268 0.0710716i
\(124\) −1.91823 + 0.698178i −0.172262 + 0.0626982i
\(125\) −0.174962 0.303042i −0.0156490 0.0271049i
\(126\) −0.500000 + 0.866025i −0.0445435 + 0.0771517i
\(127\) 0.232841 1.32051i 0.0206613 0.117176i −0.972733 0.231929i \(-0.925496\pi\)
0.993394 + 0.114753i \(0.0366075\pi\)
\(128\) −0.766044 + 0.642788i −0.0677094 + 0.0568149i
\(129\) 4.76977 + 4.00232i 0.419955 + 0.352384i
\(130\) −0.0201474 0.114261i −0.00176704 0.0100214i
\(131\) −14.1040 5.13344i −1.23227 0.448510i −0.357897 0.933761i \(-0.616506\pi\)
−0.874375 + 0.485251i \(0.838728\pi\)
\(132\) −3.58571 −0.312096
\(133\) 2.28064 3.71466i 0.197756 0.322102i
\(134\) 4.87132 0.420818
\(135\) 0.0328860 + 0.0119695i 0.00283038 + 0.00103017i
\(136\) −0.327266 1.85601i −0.0280628 0.159152i
\(137\) 5.54433 + 4.65225i 0.473684 + 0.397468i 0.848136 0.529778i \(-0.177725\pi\)
−0.374452 + 0.927246i \(0.622169\pi\)
\(138\) 0.485735 0.407580i 0.0413485 0.0346955i
\(139\) 0.329246 1.86725i 0.0279263 0.158378i −0.967656 0.252275i \(-0.918821\pi\)
0.995582 + 0.0938970i \(0.0299324\pi\)
\(140\) −0.0174983 + 0.0303079i −0.00147888 + 0.00256149i
\(141\) −1.34913 2.33676i −0.113617 0.196791i
\(142\) −13.2656 + 4.82828i −1.11322 + 0.405180i
\(143\) −11.1708 + 4.06583i −0.934146 + 0.340001i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −0.0507841 + 0.0879606i −0.00421739 + 0.00730473i
\(146\) 2.01999 11.4559i 0.167176 0.948100i
\(147\) 0.766044 0.642788i 0.0631823 0.0530162i
\(148\) 3.20836 + 2.69213i 0.263725 + 0.221292i
\(149\) −2.91099 16.5090i −0.238477 1.35247i −0.835165 0.549999i \(-0.814628\pi\)
0.596688 0.802473i \(-0.296483\pi\)
\(150\) −4.69731 1.70968i −0.383534 0.139595i
\(151\) 9.11755 0.741976 0.370988 0.928638i \(-0.379019\pi\)
0.370988 + 0.928638i \(0.379019\pi\)
\(152\) 2.07667 + 3.83242i 0.168440 + 0.310850i
\(153\) 1.88465 0.152365
\(154\) 3.36946 + 1.22638i 0.271519 + 0.0988248i
\(155\) −0.0124054 0.0703545i −0.000996425 0.00565101i
\(156\) −2.53966 2.13103i −0.203336 0.170619i
\(157\) 6.08932 5.10954i 0.485980 0.407786i −0.366603 0.930378i \(-0.619479\pi\)
0.852583 + 0.522592i \(0.175035\pi\)
\(158\) 0.666895 3.78215i 0.0530553 0.300891i
\(159\) −1.48806 + 2.57739i −0.118011 + 0.204401i
\(160\) −0.0174983 0.0303079i −0.00138336 0.00239605i
\(161\) −0.595842 + 0.216869i −0.0469590 + 0.0170917i
\(162\) 0.939693 0.342020i 0.0738292 0.0268716i
\(163\) 2.31095 + 4.00269i 0.181008 + 0.313515i 0.942224 0.334983i \(-0.108731\pi\)
−0.761216 + 0.648498i \(0.775397\pi\)
\(164\) 1.15230 1.99585i 0.0899798 0.155850i
\(165\) 0.0217907 0.123581i 0.00169640 0.00962078i
\(166\) 3.96373 3.32596i 0.307645 0.258145i
\(167\) 0.0329288 + 0.0276305i 0.00254811 + 0.00213811i 0.644061 0.764974i \(-0.277248\pi\)
−0.641513 + 0.767112i \(0.721693\pi\)
\(168\) 0.173648 + 0.984808i 0.0133972 + 0.0759796i
\(169\) 1.88767 + 0.687054i 0.145205 + 0.0528503i
\(170\) 0.0659562 0.00505861
\(171\) −4.13481 + 1.37963i −0.316196 + 0.105503i
\(172\) 6.22650 0.474766
\(173\) −21.6056 7.86378i −1.64264 0.597872i −0.655143 0.755505i \(-0.727392\pi\)
−0.987498 + 0.157633i \(0.949614\pi\)
\(174\) 0.503967 + 2.85814i 0.0382056 + 0.216675i
\(175\) 3.82928 + 3.21315i 0.289467 + 0.242891i
\(176\) −2.74681 + 2.30485i −0.207049 + 0.173734i
\(177\) 2.21445 12.5587i 0.166448 0.943973i
\(178\) 6.73740 11.6695i 0.504989 0.874667i
\(179\) 2.09481 + 3.62831i 0.156573 + 0.271193i 0.933631 0.358237i \(-0.116622\pi\)
−0.777057 + 0.629430i \(0.783289\pi\)
\(180\) 0.0328860 0.0119695i 0.00245118 0.000892157i
\(181\) 14.8709 5.41258i 1.10535 0.402314i 0.276063 0.961139i \(-0.410970\pi\)
0.829285 + 0.558825i \(0.188748\pi\)
\(182\) 1.65765 + 2.87113i 0.122873 + 0.212822i
\(183\) 2.35105 4.07214i 0.173795 0.301021i
\(184\) 0.110107 0.624449i 0.00811721 0.0460350i
\(185\) −0.112282 + 0.0942155i −0.00825511 + 0.00692686i
\(186\) −1.56375 1.31215i −0.114660 0.0962111i
\(187\) −1.17348 6.65513i −0.0858132 0.486671i
\(188\) −2.53554 0.922859i −0.184923 0.0673064i
\(189\) −1.00000 −0.0727393
\(190\) −0.144704 + 0.0482824i −0.0104979 + 0.00350277i
\(191\) −10.8677 −0.786358 −0.393179 0.919462i \(-0.628625\pi\)
−0.393179 + 0.919462i \(0.628625\pi\)
\(192\) −0.939693 0.342020i −0.0678165 0.0246832i
\(193\) 2.03930 + 11.5655i 0.146792 + 0.832500i 0.965911 + 0.258876i \(0.0833520\pi\)
−0.819118 + 0.573624i \(0.805537\pi\)
\(194\) 11.3668 + 9.53786i 0.816087 + 0.684778i
\(195\) 0.0888796 0.0745788i 0.00636480 0.00534070i
\(196\) 0.173648 0.984808i 0.0124034 0.0703434i
\(197\) −9.08304 + 15.7323i −0.647140 + 1.12088i 0.336663 + 0.941625i \(0.390702\pi\)
−0.983803 + 0.179254i \(0.942632\pi\)
\(198\) −1.79285 3.10531i −0.127413 0.220685i
\(199\) 1.71109 0.622787i 0.121296 0.0441482i −0.280659 0.959808i \(-0.590553\pi\)
0.401955 + 0.915659i \(0.368331\pi\)
\(200\) −4.69731 + 1.70968i −0.332150 + 0.120893i
\(201\) 2.43566 + 4.21869i 0.171798 + 0.297563i
\(202\) −1.92039 + 3.32622i −0.135119 + 0.234032i
\(203\) 0.503967 2.85814i 0.0353715 0.200602i
\(204\) 1.44372 1.21143i 0.101081 0.0848169i
\(205\) 0.0617841 + 0.0518430i 0.00431519 + 0.00362087i
\(206\) 0.165112 + 0.936399i 0.0115039 + 0.0652420i
\(207\) 0.595842 + 0.216869i 0.0414139 + 0.0150734i
\(208\) −3.31530 −0.229874
\(209\) 7.44634 + 13.7419i 0.515074 + 0.950549i
\(210\) −0.0349966 −0.00241499
\(211\) −13.5957 4.94844i −0.935969 0.340665i −0.171396 0.985202i \(-0.554828\pi\)
−0.764573 + 0.644537i \(0.777050\pi\)
\(212\) 0.516797 + 2.93090i 0.0354938 + 0.201295i
\(213\) −10.8142 9.07419i −0.740977 0.621753i
\(214\) 9.97640 8.37119i 0.681972 0.572243i
\(215\) −0.0378390 + 0.214596i −0.00258060 + 0.0146353i
\(216\) 0.500000 0.866025i 0.0340207 0.0589256i
\(217\) 1.02067 + 1.76785i 0.0692874 + 0.120009i
\(218\) 12.7358 4.63546i 0.862579 0.313953i
\(219\) 10.9311 3.97861i 0.738657 0.268849i
\(220\) −0.0627438 0.108675i −0.00423018 0.00732689i
\(221\) 3.12408 5.41107i 0.210148 0.363988i
\(222\) −0.727276 + 4.12459i −0.0488116 + 0.276824i
\(223\) −5.18215 + 4.34834i −0.347023 + 0.291187i −0.799593 0.600542i \(-0.794952\pi\)
0.452571 + 0.891729i \(0.350507\pi\)
\(224\) 0.766044 + 0.642788i 0.0511835 + 0.0429481i
\(225\) −0.868028 4.92283i −0.0578685 0.328189i
\(226\) 8.97245 + 3.26570i 0.596838 + 0.217231i
\(227\) −16.9521 −1.12515 −0.562576 0.826746i \(-0.690189\pi\)
−0.562576 + 0.826746i \(0.690189\pi\)
\(228\) −2.28064 + 3.71466i −0.151039 + 0.246009i
\(229\) −7.84659 −0.518517 −0.259259 0.965808i \(-0.583478\pi\)
−0.259259 + 0.965808i \(0.583478\pi\)
\(230\) 0.0208525 + 0.00758968i 0.00137497 + 0.000500448i
\(231\) 0.622651 + 3.53123i 0.0409675 + 0.232338i
\(232\) 2.22324 + 1.86552i 0.145963 + 0.122477i
\(233\) 1.17533 0.986220i 0.0769985 0.0646094i −0.603476 0.797381i \(-0.706218\pi\)
0.680475 + 0.732772i \(0.261774\pi\)
\(234\) 0.575695 3.26493i 0.0376344 0.213435i
\(235\) 0.0472150 0.0817787i 0.00307996 0.00533466i
\(236\) −6.37624 11.0440i −0.415058 0.718901i
\(237\) 3.60888 1.31353i 0.234422 0.0853227i
\(238\) −1.77099 + 0.644587i −0.114796 + 0.0417824i
\(239\) −1.06079 1.83734i −0.0686166 0.118847i 0.829676 0.558245i \(-0.188525\pi\)
−0.898293 + 0.439398i \(0.855192\pi\)
\(240\) 0.0174983 0.0303079i 0.00112951 0.00195637i
\(241\) 5.12534 29.0672i 0.330152 1.87239i −0.140520 0.990078i \(-0.544877\pi\)
0.470672 0.882308i \(-0.344011\pi\)
\(242\) −1.42277 + 1.19385i −0.0914591 + 0.0767433i
\(243\) 0.766044 + 0.642788i 0.0491418 + 0.0412348i
\(244\) −0.816511 4.63066i −0.0522718 0.296448i
\(245\) 0.0328860 + 0.0119695i 0.00210101 + 0.000764706i
\(246\) 2.30461 0.146936
\(247\) −2.89295 + 14.1585i −0.184074 + 0.900884i
\(248\) −2.04134 −0.129625
\(249\) 4.86223 + 1.76971i 0.308132 + 0.112151i
\(250\) −0.0607635 0.344607i −0.00384302 0.0217949i
\(251\) −6.96775 5.84663i −0.439800 0.369036i 0.395834 0.918322i \(-0.370455\pi\)
−0.835635 + 0.549286i \(0.814900\pi\)
\(252\) −0.766044 + 0.642788i −0.0482563 + 0.0404918i
\(253\) 0.394812 2.23909i 0.0248216 0.140770i
\(254\) 0.670439 1.16123i 0.0420671 0.0728623i
\(255\) 0.0329781 + 0.0571198i 0.00206517 + 0.00357698i
\(256\) −0.939693 + 0.342020i −0.0587308 + 0.0213763i
\(257\) −6.65694 + 2.42293i −0.415248 + 0.151138i −0.541191 0.840899i \(-0.682027\pi\)
0.125943 + 0.992037i \(0.459804\pi\)
\(258\) 3.11325 + 5.39230i 0.193822 + 0.335710i
\(259\) 2.09411 3.62710i 0.130121 0.225377i
\(260\) 0.0201474 0.114261i 0.00124949 0.00708619i
\(261\) −2.22324 + 1.86552i −0.137615 + 0.115473i
\(262\) −11.4977 9.64770i −0.710329 0.596037i
\(263\) −0.509093 2.88721i −0.0313920 0.178033i 0.965080 0.261954i \(-0.0843668\pi\)
−0.996472 + 0.0839209i \(0.973256\pi\)
\(264\) −3.36946 1.22638i −0.207376 0.0754787i
\(265\) −0.104154 −0.00639813
\(266\) 3.41358 2.71062i 0.209300 0.166199i
\(267\) 13.4748 0.824644
\(268\) 4.57755 + 1.66609i 0.279618 + 0.101773i
\(269\) 4.42796 + 25.1122i 0.269978 + 1.53112i 0.754476 + 0.656327i \(0.227891\pi\)
−0.484499 + 0.874792i \(0.660998\pi\)
\(270\) 0.0268090 + 0.0224954i 0.00163154 + 0.00136903i
\(271\) −1.71099 + 1.43569i −0.103935 + 0.0872120i −0.693274 0.720674i \(-0.743833\pi\)
0.589339 + 0.807886i \(0.299388\pi\)
\(272\) 0.327266 1.85601i 0.0198434 0.112537i
\(273\) −1.65765 + 2.87113i −0.100325 + 0.173769i
\(274\) 3.61881 + 6.26796i 0.218620 + 0.378661i
\(275\) −16.8432 + 6.13042i −1.01568 + 0.369678i
\(276\) 0.595842 0.216869i 0.0358655 0.0130540i
\(277\) 8.63438 + 14.9552i 0.518790 + 0.898570i 0.999762 + 0.0218340i \(0.00695054\pi\)
−0.480972 + 0.876736i \(0.659716\pi\)
\(278\) 0.948025 1.64203i 0.0568588 0.0984823i
\(279\) 0.354474 2.01032i 0.0212218 0.120355i
\(280\) −0.0268090 + 0.0224954i −0.00160214 + 0.00134436i
\(281\) 17.4692 + 14.6584i 1.04213 + 0.874448i 0.992244 0.124307i \(-0.0396709\pi\)
0.0498823 + 0.998755i \(0.484115\pi\)
\(282\) −0.468548 2.65727i −0.0279016 0.158238i
\(283\) −22.8671 8.32295i −1.35931 0.494748i −0.443469 0.896290i \(-0.646252\pi\)
−0.915841 + 0.401542i \(0.868475\pi\)
\(284\) −14.1169 −0.837686
\(285\) −0.114166 0.101176i −0.00676260 0.00599316i
\(286\) −11.8877 −0.702933
\(287\) −2.16562 0.788222i −0.127833 0.0465273i
\(288\) −0.173648 0.984808i −0.0102323 0.0580304i
\(289\) −10.3018 8.64428i −0.605991 0.508487i
\(290\) −0.0778057 + 0.0652867i −0.00456891 + 0.00383377i
\(291\) −2.57664 + 14.6128i −0.151045 + 0.856620i
\(292\) 5.81633 10.0742i 0.340375 0.589547i
\(293\) 7.66890 + 13.2829i 0.448022 + 0.775997i 0.998257 0.0590129i \(-0.0187953\pi\)
−0.550235 + 0.835010i \(0.685462\pi\)
\(294\) 0.939693 0.342020i 0.0548040 0.0199470i
\(295\) 0.419379 0.152641i 0.0244172 0.00888712i
\(296\) 2.09411 + 3.62710i 0.121718 + 0.210821i
\(297\) 1.79285 3.10531i 0.104032 0.180189i
\(298\) 2.91099 16.5090i 0.168629 0.956343i
\(299\) 1.61036 1.35125i 0.0931293 0.0781448i
\(300\) −3.82928 3.21315i −0.221084 0.185511i
\(301\) −1.08122 6.13190i −0.0623205 0.353437i
\(302\) 8.56769 + 3.11839i 0.493015 + 0.179443i
\(303\) −3.84079 −0.220648
\(304\) 0.640670 + 4.31156i 0.0367449 + 0.247285i
\(305\) 0.164558 0.00942254
\(306\) 1.77099 + 0.644587i 0.101241 + 0.0368486i
\(307\) 5.58913 + 31.6975i 0.318989 + 1.80907i 0.548928 + 0.835870i \(0.315036\pi\)
−0.229939 + 0.973205i \(0.573853\pi\)
\(308\) 2.74681 + 2.30485i 0.156514 + 0.131331i
\(309\) −0.728389 + 0.611191i −0.0414366 + 0.0347694i
\(310\) 0.0124054 0.0703545i 0.000704579 0.00399587i
\(311\) −7.69009 + 13.3196i −0.436065 + 0.755287i −0.997382 0.0723139i \(-0.976962\pi\)
0.561317 + 0.827601i \(0.310295\pi\)
\(312\) −1.65765 2.87113i −0.0938458 0.162546i
\(313\) −9.66698 + 3.51849i −0.546410 + 0.198877i −0.600451 0.799662i \(-0.705012\pi\)
0.0540406 + 0.998539i \(0.482790\pi\)
\(314\) 7.46965 2.71873i 0.421537 0.153427i
\(315\) −0.0174983 0.0303079i −0.000985918 0.00170766i
\(316\) 1.92025 3.32596i 0.108022 0.187100i
\(317\) 4.24744 24.0884i 0.238560 1.35294i −0.596425 0.802669i \(-0.703413\pi\)
0.834985 0.550272i \(-0.185476\pi\)
\(318\) −2.27984 + 1.91301i −0.127847 + 0.107276i
\(319\) 7.97187 + 6.68919i 0.446339 + 0.374523i
\(320\) −0.00607710 0.0344649i −0.000339720 0.00192665i
\(321\) 12.2379 + 4.45422i 0.683051 + 0.248610i
\(322\) −0.634082 −0.0353360
\(323\) −7.64084 3.01721i −0.425148 0.167882i
\(324\) 1.00000 0.0555556
\(325\) −15.5730 5.66810i −0.863834 0.314410i
\(326\) 0.802586 + 4.55169i 0.0444511 + 0.252095i
\(327\) 10.3823 + 8.71182i 0.574145 + 0.481765i
\(328\) 1.76543 1.48137i 0.0974797 0.0817952i
\(329\) −0.468548 + 2.65727i −0.0258319 + 0.146500i
\(330\) 0.0627438 0.108675i 0.00345393 0.00598238i
\(331\) 10.5737 + 18.3142i 0.581184 + 1.00664i 0.995339 + 0.0964344i \(0.0307438\pi\)
−0.414155 + 0.910206i \(0.635923\pi\)
\(332\) 4.86223 1.76971i 0.266850 0.0971254i
\(333\) −3.93563 + 1.43245i −0.215671 + 0.0784980i
\(334\) 0.0214927 + 0.0372265i 0.00117603 + 0.00203694i
\(335\) −0.0852399 + 0.147640i −0.00465715 + 0.00806642i
\(336\) −0.173648 + 0.984808i −0.00947328 + 0.0537257i
\(337\) 19.0185 15.9584i 1.03600 0.869309i 0.0444495 0.999012i \(-0.485847\pi\)
0.991553 + 0.129702i \(0.0414022\pi\)
\(338\) 1.53884 + 1.29124i 0.0837018 + 0.0702342i
\(339\) 1.65804 + 9.40322i 0.0900524 + 0.510713i
\(340\) 0.0619786 + 0.0225584i 0.00336126 + 0.00122340i
\(341\) −7.31963 −0.396380
\(342\) −4.35731 0.117758i −0.235616 0.00636760i
\(343\) −1.00000 −0.0539949
\(344\) 5.85099 + 2.12959i 0.315464 + 0.114820i
\(345\) 0.00385338 + 0.0218536i 0.000207459 + 0.00117656i
\(346\) −17.6130 14.7791i −0.946882 0.794528i
\(347\) 3.57165 2.99697i 0.191736 0.160886i −0.541866 0.840465i \(-0.682282\pi\)
0.733602 + 0.679579i \(0.237837\pi\)
\(348\) −0.503967 + 2.85814i −0.0270154 + 0.153212i
\(349\) −3.32726 + 5.76298i −0.178104 + 0.308485i −0.941231 0.337763i \(-0.890330\pi\)
0.763127 + 0.646249i \(0.223663\pi\)
\(350\) 2.49939 + 4.32907i 0.133598 + 0.231398i
\(351\) 3.11536 1.13390i 0.166286 0.0605230i
\(352\) −3.36946 + 1.22638i −0.179593 + 0.0653665i
\(353\) −4.66102 8.07312i −0.248081 0.429689i 0.714912 0.699214i \(-0.246467\pi\)
−0.962993 + 0.269525i \(0.913133\pi\)
\(354\) 6.37624 11.0440i 0.338893 0.586980i
\(355\) 0.0857900 0.486539i 0.00455326 0.0258228i
\(356\) 10.3223 8.66143i 0.547080 0.459055i
\(357\) −1.44372 1.21143i −0.0764099 0.0641156i
\(358\) 0.727519 + 4.12597i 0.0384506 + 0.218064i
\(359\) −22.8602 8.32043i −1.20651 0.439135i −0.341021 0.940056i \(-0.610773\pi\)
−0.865493 + 0.500920i \(0.832995\pi\)
\(360\) 0.0349966 0.00184448
\(361\) 18.9723 + 1.02621i 0.998540 + 0.0540111i
\(362\) 15.8253 0.831761
\(363\) −1.74528 0.635232i −0.0916037 0.0333410i
\(364\) 0.575695 + 3.26493i 0.0301746 + 0.171129i
\(365\) 0.311860 + 0.261681i 0.0163235 + 0.0136970i
\(366\) 3.60202 3.02245i 0.188280 0.157986i
\(367\) −1.44017 + 8.16759i −0.0751761 + 0.426345i 0.923871 + 0.382704i \(0.125007\pi\)
−0.999047 + 0.0436412i \(0.986104\pi\)
\(368\) 0.317041 0.549131i 0.0165269 0.0286255i
\(369\) 1.15230 + 1.99585i 0.0599865 + 0.103900i
\(370\) −0.137734 + 0.0501310i −0.00716044 + 0.00260619i
\(371\) 2.79664 1.01789i 0.145194 0.0528463i
\(372\) −1.02067 1.76785i −0.0529192 0.0916587i
\(373\) −13.6332 + 23.6133i −0.705899 + 1.22265i 0.260467 + 0.965483i \(0.416123\pi\)
−0.966366 + 0.257170i \(0.917210\pi\)
\(374\) 1.17348 6.65513i 0.0606791 0.344128i
\(375\) 0.268057 0.224926i 0.0138424 0.0116151i
\(376\) −2.06699 1.73441i −0.106597 0.0894453i
\(377\) 1.67080 + 9.47557i 0.0860505 + 0.488017i
\(378\) −0.939693 0.342020i −0.0483326 0.0175916i
\(379\) −5.16558 −0.265338 −0.132669 0.991160i \(-0.542355\pi\)
−0.132669 + 0.991160i \(0.542355\pi\)
\(380\) −0.152491 0.00412111i −0.00782262 0.000211409i
\(381\) 1.34088 0.0686953
\(382\) −10.2123 3.71697i −0.522506 0.190177i
\(383\) 2.95463 + 16.7565i 0.150974 + 0.856218i 0.962374 + 0.271727i \(0.0875948\pi\)
−0.811400 + 0.584491i \(0.801294\pi\)
\(384\) −0.766044 0.642788i −0.0390920 0.0328021i
\(385\) −0.0961290 + 0.0806618i −0.00489919 + 0.00411091i
\(386\) −2.03930 + 11.5655i −0.103798 + 0.588666i
\(387\) −3.11325 + 5.39230i −0.158255 + 0.274106i
\(388\) 7.41914 + 12.8503i 0.376650 + 0.652376i
\(389\) −0.245776 + 0.0894553i −0.0124614 + 0.00453556i −0.348243 0.937404i \(-0.613222\pi\)
0.335782 + 0.941940i \(0.390999\pi\)
\(390\) 0.109027 0.0396826i 0.00552080 0.00200941i
\(391\) 0.597511 + 1.03492i 0.0302174 + 0.0523381i
\(392\) 0.500000 0.866025i 0.0252538 0.0437409i
\(393\) 2.60631 14.7811i 0.131471 0.745610i
\(394\) −13.9160 + 11.6769i −0.701079 + 0.588275i
\(395\) 0.102960 + 0.0863933i 0.00518046 + 0.00434692i
\(396\) −0.622651 3.53123i −0.0312894 0.177451i
\(397\) 18.3499 + 6.67882i 0.920955 + 0.335200i 0.758618 0.651535i \(-0.225875\pi\)
0.162337 + 0.986735i \(0.448097\pi\)
\(398\) 1.82091 0.0912738
\(399\) 4.05425 + 1.60094i 0.202967 + 0.0801474i
\(400\) −4.99878 −0.249939
\(401\) −17.5953 6.40417i −0.878668 0.319809i −0.136996 0.990572i \(-0.543745\pi\)
−0.741672 + 0.670763i \(0.765967\pi\)
\(402\) 0.845897 + 4.79732i 0.0421895 + 0.239268i
\(403\) −5.18431 4.35015i −0.258249 0.216696i
\(404\) −2.94222 + 2.46881i −0.146381 + 0.122828i
\(405\) −0.00607710 + 0.0344649i −0.000301973 + 0.00171258i
\(406\) 1.45111 2.51340i 0.0720176 0.124738i
\(407\) 7.50885 + 13.0057i 0.372200 + 0.644669i
\(408\) 1.77099 0.644587i 0.0876770 0.0319118i
\(409\) 0.875499 0.318656i 0.0432906 0.0157565i −0.320284 0.947322i \(-0.603778\pi\)
0.363575 + 0.931565i \(0.381556\pi\)
\(410\) 0.0403267 + 0.0698479i 0.00199159 + 0.00344954i
\(411\) −3.61881 + 6.26796i −0.178503 + 0.309175i
\(412\) −0.165112 + 0.936399i −0.00813450 + 0.0461331i
\(413\) −9.76897 + 8.19714i −0.480699 + 0.403355i
\(414\) 0.485735 + 0.407580i 0.0238726 + 0.0200315i
\(415\) 0.0314446 + 0.178331i 0.00154355 + 0.00875394i
\(416\) −3.11536 1.13390i −0.152743 0.0555939i
\(417\) 1.89605 0.0928500
\(418\) 2.29725 + 15.4600i 0.112362 + 0.756173i
\(419\) 20.9513 1.02354 0.511770 0.859122i \(-0.328990\pi\)
0.511770 + 0.859122i \(0.328990\pi\)
\(420\) −0.0328860 0.0119695i −0.00160467 0.000584054i
\(421\) −1.78984 10.1507i −0.0872315 0.494714i −0.996853 0.0792757i \(-0.974739\pi\)
0.909621 0.415439i \(-0.136372\pi\)
\(422\) −11.0833 9.30003i −0.539529 0.452718i
\(423\) 2.06699 1.73441i 0.100500 0.0843298i
\(424\) −0.516797 + 2.93090i −0.0250979 + 0.142337i
\(425\) 4.71046 8.15876i 0.228491 0.395758i
\(426\) −7.05847 12.2256i −0.341984 0.592333i
\(427\) −4.41853 + 1.60821i −0.213828 + 0.0778269i
\(428\) 12.2379 4.45422i 0.591539 0.215303i
\(429\) −5.94384 10.2950i −0.286971 0.497049i
\(430\) −0.108953 + 0.188712i −0.00525419 + 0.00910052i
\(431\) 0.754991 4.28177i 0.0363666 0.206245i −0.961210 0.275816i \(-0.911052\pi\)
0.997577 + 0.0695708i \(0.0221630\pi\)
\(432\) 0.766044 0.642788i 0.0368563 0.0309261i
\(433\) 10.8521 + 9.10597i 0.521517 + 0.437605i 0.865160 0.501496i \(-0.167217\pi\)
−0.343643 + 0.939100i \(0.611661\pi\)
\(434\) 0.354474 + 2.01032i 0.0170153 + 0.0964986i
\(435\) −0.0954428 0.0347383i −0.00457613 0.00166558i
\(436\) 13.5532 0.649080
\(437\) −2.06850 1.83315i −0.0989499 0.0876915i
\(438\) 11.6327 0.555830
\(439\) −32.1206 11.6909i −1.53303 0.557978i −0.568671 0.822565i \(-0.692542\pi\)
−0.964362 + 0.264587i \(0.914764\pi\)
\(440\) −0.0217907 0.123581i −0.00103883 0.00589150i
\(441\) 0.766044 + 0.642788i 0.0364783 + 0.0306089i
\(442\) 4.78637 4.01624i 0.227664 0.191033i
\(443\) 2.82197 16.0042i 0.134076 0.760383i −0.841423 0.540378i \(-0.818281\pi\)
0.975499 0.220005i \(-0.0706075\pi\)
\(444\) −2.09411 + 3.62710i −0.0993819 + 0.172135i
\(445\) 0.235786 + 0.408393i 0.0111773 + 0.0193597i
\(446\) −6.35685 + 2.31370i −0.301006 + 0.109557i
\(447\) 15.7527 5.73353i 0.745079 0.271187i
\(448\) 0.500000 + 0.866025i 0.0236228 + 0.0409159i
\(449\) −1.55351 + 2.69075i −0.0733146 + 0.126985i −0.900352 0.435162i \(-0.856691\pi\)
0.827038 + 0.562147i \(0.190024\pi\)
\(450\) 0.868028 4.92283i 0.0409192 0.232065i
\(451\) 6.33032 5.31177i 0.298083 0.250122i
\(452\) 7.31441 + 6.13752i 0.344041 + 0.288684i
\(453\) 1.58325 + 8.97903i 0.0743874 + 0.421872i
\(454\) −15.9298 5.79796i −0.747621 0.272112i
\(455\) −0.116024 −0.00543929
\(456\) −3.41358 + 2.71062i −0.159856 + 0.126936i
\(457\) −12.1543 −0.568555 −0.284277 0.958742i \(-0.591754\pi\)
−0.284277 + 0.958742i \(0.591754\pi\)
\(458\) −7.37338 2.68369i −0.344536 0.125401i
\(459\) 0.327266 + 1.85601i 0.0152754 + 0.0866314i
\(460\) 0.0169991 + 0.0142639i 0.000792586 + 0.000665059i
\(461\) 10.2402 8.59252i 0.476932 0.400194i −0.372383 0.928079i \(-0.621459\pi\)
0.849316 + 0.527885i \(0.177015\pi\)
\(462\) −0.622651 + 3.53123i −0.0289684 + 0.164288i
\(463\) −8.04258 + 13.9302i −0.373771 + 0.647390i −0.990142 0.140066i \(-0.955269\pi\)
0.616372 + 0.787455i \(0.288602\pi\)
\(464\) 1.45111 + 2.51340i 0.0673663 + 0.116682i
\(465\) 0.0671315 0.0244338i 0.00311315 0.00113309i
\(466\) 1.44176 0.524757i 0.0667881 0.0243089i
\(467\) 0.624510 + 1.08168i 0.0288989 + 0.0500543i 0.880113 0.474764i \(-0.157467\pi\)
−0.851214 + 0.524818i \(0.824133\pi\)
\(468\) 1.65765 2.87113i 0.0766248 0.132718i
\(469\) 0.845897 4.79732i 0.0390599 0.221520i
\(470\) 0.0723375 0.0606984i 0.00333668 0.00279981i
\(471\) 6.08932 + 5.10954i 0.280581 + 0.235435i
\(472\) −2.21445 12.5587i −0.101928 0.578063i
\(473\) 20.9799 + 7.63608i 0.964659 + 0.351107i
\(474\) 3.84049 0.176400
\(475\) −4.36197 + 21.3481i −0.200141 + 0.979517i
\(476\) −1.88465 −0.0863827
\(477\) −2.79664 1.01789i −0.128049 0.0466061i
\(478\) −0.368408 2.08934i −0.0168506 0.0955643i
\(479\) 25.2433 + 21.1816i 1.15340 + 0.967814i 0.999794 0.0203188i \(-0.00646812\pi\)
0.153602 + 0.988133i \(0.450913\pi\)
\(480\) 0.0268090 0.0224954i 0.00122366 0.00102677i
\(481\) −2.41113 + 13.6742i −0.109938 + 0.623491i
\(482\) 14.7578 25.5613i 0.672201 1.16429i
\(483\) −0.317041 0.549131i −0.0144259 0.0249863i
\(484\) −1.74528 + 0.635232i −0.0793311 + 0.0288742i
\(485\) −0.487972 + 0.177607i −0.0221577 + 0.00806474i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −2.93281 + 5.07978i −0.132898 + 0.230187i −0.924793 0.380472i \(-0.875762\pi\)
0.791894 + 0.610658i \(0.209095\pi\)
\(488\) 0.816511 4.63066i 0.0369617 0.209620i
\(489\) −3.54059 + 2.97091i −0.160111 + 0.134349i
\(490\) 0.0268090 + 0.0224954i 0.00121110 + 0.00101624i
\(491\) 0.645589 + 3.66131i 0.0291350 + 0.165233i 0.995904 0.0904196i \(-0.0288208\pi\)
−0.966769 + 0.255652i \(0.917710\pi\)
\(492\) 2.16562 + 0.788222i 0.0976338 + 0.0355358i
\(493\) −5.46967 −0.246342
\(494\) −7.56098 + 12.3152i −0.340185 + 0.554087i
\(495\) 0.125488 0.00564025
\(496\) −1.91823 0.698178i −0.0861310 0.0313491i
\(497\) 2.45138 + 13.9025i 0.109959 + 0.623611i
\(498\) 3.96373 + 3.32596i 0.177619 + 0.149040i
\(499\) −33.1657 + 27.8293i −1.48470 + 1.24581i −0.583717 + 0.811957i \(0.698402\pi\)
−0.900983 + 0.433854i \(0.857153\pi\)
\(500\) 0.0607635 0.344607i 0.00271743 0.0154113i
\(501\) −0.0214927 + 0.0372265i −0.000960225 + 0.00166316i
\(502\) −4.54787 7.87715i −0.202982 0.351574i
\(503\) −16.3507 + 5.95118i −0.729043 + 0.265350i −0.679760 0.733435i \(-0.737916\pi\)
−0.0492832 + 0.998785i \(0.515694\pi\)
\(504\) −0.939693 + 0.342020i −0.0418572 + 0.0152348i
\(505\) −0.0672073 0.116406i −0.00299069 0.00518002i
\(506\) 1.13682 1.96902i 0.0505377 0.0875338i
\(507\) −0.348827 + 1.97829i −0.0154919 + 0.0878591i
\(508\) 1.02717 0.861900i 0.0455734 0.0382406i
\(509\) 15.8667 + 13.3138i 0.703280 + 0.590122i 0.922705 0.385507i \(-0.125974\pi\)
−0.219425 + 0.975629i \(0.570418\pi\)
\(510\) 0.0114532 + 0.0649542i 0.000507155 + 0.00287622i
\(511\) −10.9311 3.97861i −0.483565 0.176003i
\(512\) −1.00000 −0.0441942
\(513\) −2.07667 3.83242i −0.0916874 0.169205i
\(514\) −7.08416 −0.312469
\(515\) −0.0312695 0.0113812i −0.00137790 0.000501514i
\(516\) 1.08122 + 6.13190i 0.0475981 + 0.269942i
\(517\) −7.41161 6.21908i −0.325962 0.273515i
\(518\) 3.20836 2.69213i 0.140967 0.118285i
\(519\) 3.99255 22.6429i 0.175253 0.993911i
\(520\) 0.0580120 0.100480i 0.00254400 0.00440633i
\(521\) −1.20007 2.07858i −0.0525760 0.0910643i 0.838540 0.544841i \(-0.183410\pi\)
−0.891116 + 0.453776i \(0.850077\pi\)
\(522\) −2.72720 + 0.992620i −0.119366 + 0.0434458i
\(523\) 13.1468 4.78505i 0.574870 0.209235i −0.0381921 0.999270i \(-0.512160\pi\)
0.613062 + 0.790035i \(0.289938\pi\)
\(524\) −7.50458 12.9983i −0.327839 0.567834i
\(525\) −2.49939 + 4.32907i −0.109082 + 0.188936i
\(526\) 0.509093 2.88721i 0.0221975 0.125888i
\(527\) 2.94712 2.47293i 0.128379 0.107723i
\(528\) −2.74681 2.30485i −0.119540 0.100306i
\(529\) −3.92409 22.2546i −0.170613 0.967592i
\(530\) −0.0978727 0.0356228i −0.00425132 0.00154735i
\(531\) 12.7525 0.553411
\(532\) 4.13481 1.37963i 0.179267 0.0598146i
\(533\) 7.64046 0.330945
\(534\) 12.6622 + 4.60865i 0.547946 + 0.199436i
\(535\) 0.0791436 + 0.448846i 0.00342168 + 0.0194053i
\(536\) 3.73165 + 3.13123i 0.161183 + 0.135248i
\(537\) −3.20943 + 2.69303i −0.138497 + 0.116213i
\(538\) −4.42796 + 25.1122i −0.190903 + 1.08266i
\(539\) 1.79285 3.10531i 0.0772237 0.133755i
\(540\) 0.0174983 + 0.0303079i 0.000753007 + 0.00130425i
\(541\) −38.2378 + 13.9174i −1.64397 + 0.598357i −0.987727 0.156191i \(-0.950078\pi\)
−0.656245 + 0.754548i \(0.727856\pi\)
\(542\) −2.09884 + 0.763915i −0.0901528 + 0.0328130i
\(543\) 7.91266 + 13.7051i 0.339565 + 0.588144i
\(544\) 0.942323 1.63215i 0.0404018 0.0699779i
\(545\) −0.0823640 + 0.467110i −0.00352809 + 0.0200088i
\(546\) −2.53966 + 2.13103i −0.108688 + 0.0911997i
\(547\) 27.5901 + 23.1508i 1.17967 + 0.989859i 0.999981 + 0.00613486i \(0.00195280\pi\)
0.179687 + 0.983724i \(0.442492\pi\)
\(548\) 1.25680 + 7.12766i 0.0536877 + 0.304478i
\(549\) 4.41853 + 1.60821i 0.188578 + 0.0686369i
\(550\) −17.9241 −0.764288
\(551\) 12.0001 4.00400i 0.511223 0.170576i
\(552\) 0.634082 0.0269883
\(553\) −3.60888 1.31353i −0.153465 0.0558568i
\(554\) 2.99869 + 17.0064i 0.127402 + 0.722533i
\(555\) −0.112282 0.0942155i −0.00476609 0.00399922i
\(556\) 1.45246 1.21876i 0.0615980 0.0516869i
\(557\) −4.83482 + 27.4196i −0.204858 + 1.16181i 0.692805 + 0.721125i \(0.256375\pi\)
−0.897663 + 0.440682i \(0.854737\pi\)
\(558\) 1.02067 1.76785i 0.0432083 0.0748390i
\(559\) 10.3213 + 17.8771i 0.436546 + 0.756120i
\(560\) −0.0328860 + 0.0119695i −0.00138969 + 0.000505805i
\(561\) 6.35025 2.31130i 0.268108 0.0975832i
\(562\) 11.4022 + 19.7492i 0.480974 + 0.833071i
\(563\) 0.780059 1.35110i 0.0328756 0.0569422i −0.849119 0.528201i \(-0.822867\pi\)
0.881995 + 0.471259i \(0.156200\pi\)
\(564\) 0.468548 2.65727i 0.0197294 0.111891i
\(565\) −0.255979 + 0.214792i −0.0107691 + 0.00903638i
\(566\) −18.6415 15.6420i −0.783559 0.657484i
\(567\) −0.173648 0.984808i −0.00729254 0.0413580i
\(568\) −13.2656 4.82828i −0.556611 0.202590i
\(569\) 45.0846 1.89005 0.945023 0.327003i \(-0.106039\pi\)
0.945023 + 0.327003i \(0.106039\pi\)
\(570\) −0.0726765 0.134122i −0.00304408 0.00561774i
\(571\) −39.6156 −1.65786 −0.828930 0.559353i \(-0.811050\pi\)
−0.828930 + 0.559353i \(0.811050\pi\)
\(572\) −11.1708 4.06583i −0.467073 0.170001i
\(573\) −1.88715 10.7026i −0.0788370 0.447107i
\(574\) −1.76543 1.48137i −0.0736877 0.0618313i
\(575\) 2.42808 2.03740i 0.101258 0.0849655i
\(576\) 0.173648 0.984808i 0.00723534 0.0410337i
\(577\) 9.68632 16.7772i 0.403247 0.698444i −0.590869 0.806767i \(-0.701215\pi\)
0.994116 + 0.108324i \(0.0345484\pi\)
\(578\) −6.72405 11.6464i −0.279684 0.484426i
\(579\) −11.0356 + 4.01664i −0.458625 + 0.166926i
\(580\) −0.0954428 + 0.0347383i −0.00396305 + 0.00144243i
\(581\) −2.58714 4.48106i −0.107333 0.185906i
\(582\) −7.41914 + 12.8503i −0.307533 + 0.532663i
\(583\) −1.85308 + 10.5094i −0.0767469 + 0.435253i
\(584\) 8.91114 7.47733i 0.368746 0.309414i
\(585\) 0.0888796 + 0.0745788i 0.00367472 + 0.00308346i
\(586\) 2.66338 + 15.1048i 0.110023 + 0.623973i
\(587\) 19.4747 + 7.08821i 0.803807 + 0.292562i 0.711063 0.703128i \(-0.248214\pi\)
0.0927436 + 0.995690i \(0.470436\pi\)
\(588\) 1.00000 0.0412393
\(589\) −4.65554 + 7.58287i −0.191828 + 0.312447i
\(590\) 0.446293 0.0183736
\(591\) −17.0705 6.21317i −0.702188 0.255576i
\(592\) 0.727276 + 4.12459i 0.0298908 + 0.169519i
\(593\) −1.19061 0.999039i −0.0488924 0.0410256i 0.618014 0.786167i \(-0.287937\pi\)
−0.666906 + 0.745141i \(0.732382\pi\)
\(594\) 2.74681 2.30485i 0.112703 0.0945691i
\(595\) 0.0114532 0.0649542i 0.000469535 0.00266286i
\(596\) 8.38186 14.5178i 0.343334 0.594672i
\(597\) 0.910454 + 1.57695i 0.0372624 + 0.0645403i
\(598\) 1.97539 0.718985i 0.0807799 0.0294015i
\(599\) −14.3386 + 5.21883i −0.585860 + 0.213236i −0.617908 0.786251i \(-0.712019\pi\)
0.0320476 + 0.999486i \(0.489797\pi\)
\(600\) −2.49939 4.32907i −0.102037 0.176733i
\(601\) −1.81900 + 3.15060i −0.0741984 + 0.128515i −0.900737 0.434364i \(-0.856973\pi\)
0.826539 + 0.562879i \(0.190306\pi\)
\(602\) 1.08122 6.13190i 0.0440672 0.249918i
\(603\) −3.73165 + 3.13123i −0.151965 + 0.127513i
\(604\) 6.98445 + 5.86065i 0.284193 + 0.238466i
\(605\) −0.0112869 0.0640115i −0.000458880 0.00260244i
\(606\) −3.60916 1.31363i −0.146612 0.0533625i
\(607\) 31.3480 1.27237 0.636187 0.771535i \(-0.280511\pi\)
0.636187 + 0.771535i \(0.280511\pi\)
\(608\) −0.872607 + 4.27066i −0.0353889 + 0.173198i
\(609\) 2.90223 0.117604
\(610\) 0.154633 + 0.0562820i 0.00626093 + 0.00227879i
\(611\) −1.55338 8.80963i −0.0628428 0.356399i
\(612\) 1.44372 + 1.21143i 0.0583591 + 0.0489691i
\(613\) −22.4177 + 18.8107i −0.905443 + 0.759757i −0.971247 0.238076i \(-0.923483\pi\)
0.0658037 + 0.997833i \(0.479039\pi\)
\(614\) −5.58913 + 31.6975i −0.225559 + 1.27921i
\(615\) −0.0403267 + 0.0698479i −0.00162613 + 0.00281654i
\(616\) 1.79285 + 3.10531i 0.0722361 + 0.125117i
\(617\) 7.99111 2.90853i 0.321710 0.117093i −0.176117 0.984369i \(-0.556354\pi\)
0.497827 + 0.867276i \(0.334131\pi\)
\(618\) −0.893501 + 0.325208i −0.0359419 + 0.0130818i
\(619\) −5.35433 9.27396i −0.215209 0.372752i 0.738129 0.674660i \(-0.235710\pi\)
−0.953337 + 0.301908i \(0.902376\pi\)
\(620\) 0.0357199 0.0618687i 0.00143455 0.00248471i
\(621\) −0.110107 + 0.624449i −0.00441845 + 0.0250583i
\(622\) −11.7819 + 9.88620i −0.472411 + 0.396400i
\(623\) −10.3223 8.66143i −0.413554 0.347013i
\(624\) −0.575695 3.26493i −0.0230462 0.130702i
\(625\) −23.4751 8.54422i −0.939002 0.341769i
\(626\) −10.2874 −0.411167
\(627\) −12.2401 + 9.71947i −0.488823 + 0.388158i
\(628\) 7.94904 0.317201
\(629\) −7.41728 2.69967i −0.295746 0.107643i
\(630\) −0.00607710 0.0344649i −0.000242117 0.00137312i
\(631\) −23.0015 19.3005i −0.915674 0.768342i 0.0575161 0.998345i \(-0.481682\pi\)
−0.973190 + 0.230003i \(0.926126\pi\)
\(632\) 2.94199 2.46862i 0.117026 0.0981965i
\(633\) 2.51239 14.2485i 0.0998586 0.566326i
\(634\) 12.2300 21.1830i 0.485716 0.841285i
\(635\) 0.0234631 + 0.0406393i 0.000931104 + 0.00161272i
\(636\) −2.79664 + 1.01789i −0.110894 + 0.0403620i
\(637\) 3.11536 1.13390i 0.123435 0.0449267i
\(638\) 5.20327 + 9.01233i 0.205999 + 0.356801i
\(639\) 7.05847 12.2256i 0.279229 0.483638i
\(640\) 0.00607710 0.0344649i 0.000240218 0.00136235i
\(641\) 26.7472 22.4436i 1.05645 0.886469i 0.0626955 0.998033i \(-0.480030\pi\)
0.993757 + 0.111564i \(0.0355859\pi\)
\(642\) 9.97640 + 8.37119i 0.393737 + 0.330385i
\(643\) 3.33110 + 18.8916i 0.131366 + 0.745012i 0.977322 + 0.211760i \(0.0679194\pi\)
−0.845956 + 0.533253i \(0.820969\pi\)
\(644\) −0.595842 0.216869i −0.0234795 0.00854583i
\(645\) −0.217906 −0.00858005
\(646\) −6.14809 5.44857i −0.241893 0.214371i
\(647\) 5.30007 0.208367 0.104184 0.994558i \(-0.466777\pi\)
0.104184 + 0.994558i \(0.466777\pi\)
\(648\) 0.939693 + 0.342020i 0.0369146 + 0.0134358i
\(649\) −7.94035 45.0320i −0.311686 1.76766i
\(650\) −12.6952 10.6525i −0.497947 0.417827i
\(651\) −1.56375 + 1.31215i −0.0612883 + 0.0514270i
\(652\) −0.802586 + 4.55169i −0.0314317 + 0.178258i
\(653\) 17.7863 30.8068i 0.696031 1.20556i −0.273801 0.961786i \(-0.588281\pi\)
0.969832 0.243775i \(-0.0783858\pi\)
\(654\) 6.77659 + 11.7374i 0.264986 + 0.458969i
\(655\) 0.493592 0.179653i 0.0192862 0.00701962i
\(656\) 2.16562 0.788222i 0.0845534 0.0307749i
\(657\) 5.81633 + 10.0742i 0.226917 + 0.393031i
\(658\) −1.34913 + 2.33676i −0.0525946 + 0.0910965i
\(659\) 8.66179 49.1235i 0.337416 1.91358i −0.0645314 0.997916i \(-0.520555\pi\)
0.401947 0.915663i \(-0.368334\pi\)
\(660\) 0.0961290 0.0806618i 0.00374182 0.00313976i
\(661\) −20.5233 17.2211i −0.798263 0.669822i 0.149513 0.988760i \(-0.452229\pi\)
−0.947776 + 0.318938i \(0.896674\pi\)
\(662\) 3.67221 + 20.8262i 0.142725 + 0.809432i
\(663\) 5.87135 + 2.13700i 0.228024 + 0.0829941i
\(664\) 5.17428 0.200801
\(665\) 0.0224213 + 0.150890i 0.000869460 + 0.00585126i
\(666\) −4.18821 −0.162290
\(667\) −1.72927 0.629403i −0.0669576 0.0243706i
\(668\) 0.00746435 + 0.0423324i 0.000288804 + 0.00163789i
\(669\) −5.18215 4.34834i −0.200354 0.168117i
\(670\) −0.130595 + 0.109582i −0.00504533 + 0.00423353i
\(671\) 2.92777 16.6042i 0.113025 0.640998i
\(672\) −0.500000 + 0.866025i −0.0192879 + 0.0334077i
\(673\) 24.6177 + 42.6391i 0.948943 + 1.64362i 0.747657 + 0.664085i \(0.231179\pi\)
0.201287 + 0.979532i \(0.435488\pi\)
\(674\) 23.3296 8.49129i 0.898623 0.327072i
\(675\) 4.69731 1.70968i 0.180800 0.0658057i
\(676\) 1.00441 + 1.73968i 0.0386310 + 0.0669108i
\(677\) 24.4519 42.3520i 0.939764 1.62772i 0.173855 0.984771i \(-0.444378\pi\)
0.765910 0.642948i \(-0.222289\pi\)
\(678\) −1.65804 + 9.40322i −0.0636767 + 0.361128i
\(679\) 11.3668 9.53786i 0.436217 0.366029i
\(680\) 0.0505254 + 0.0423959i 0.00193756 + 0.00162581i
\(681\) −2.94370 16.6946i −0.112803 0.639737i
\(682\) −6.87820 2.50346i −0.263380 0.0958625i
\(683\) −7.75146 −0.296601 −0.148301 0.988942i \(-0.547380\pi\)
−0.148301 + 0.988942i \(0.547380\pi\)
\(684\) −4.05425 1.60094i −0.155018 0.0612136i
\(685\) −0.253292 −0.00967778
\(686\) −0.939693 0.342020i −0.0358776 0.0130584i
\(687\) −1.36255 7.72738i −0.0519844 0.294818i
\(688\) 4.76977 + 4.00232i 0.181846 + 0.152587i
\(689\) −7.55834 + 6.34220i −0.287950 + 0.241619i
\(690\) −0.00385338 + 0.0218536i −0.000146696 + 0.000831952i
\(691\) 10.9083 18.8938i 0.414973 0.718754i −0.580453 0.814294i \(-0.697124\pi\)
0.995426 + 0.0955401i \(0.0304578\pi\)
\(692\) −11.4961 19.9118i −0.437015 0.756933i
\(693\) −3.36946 + 1.22638i −0.127995 + 0.0465865i
\(694\) 4.38128 1.59466i 0.166311 0.0605323i
\(695\) 0.0331777 + 0.0574654i 0.00125850 + 0.00217979i
\(696\) −1.45111 + 2.51340i −0.0550043 + 0.0952703i
\(697\) −0.754219 + 4.27739i −0.0285681 + 0.162018i
\(698\) −5.09766 + 4.27744i −0.192949 + 0.161904i
\(699\) 1.17533 + 0.986220i 0.0444551 + 0.0373023i
\(700\) 0.868028 + 4.92283i 0.0328084 + 0.186066i
\(701\) −4.57262 1.66430i −0.172705 0.0628596i 0.254220 0.967146i \(-0.418181\pi\)
−0.426926 + 0.904287i \(0.640403\pi\)
\(702\) 3.31530 0.125128
\(703\) 18.2493 + 0.493194i 0.688287 + 0.0186012i
\(704\) −3.58571 −0.135141
\(705\) 0.0887351 + 0.0322969i 0.00334196 + 0.00121637i
\(706\) −1.61876 9.18042i −0.0609227 0.345510i
\(707\) 2.94222 + 2.46881i 0.110653 + 0.0928492i
\(708\) 9.76897 8.19714i 0.367140 0.308067i
\(709\) −3.12699 + 17.7341i −0.117437 + 0.666016i 0.868078 + 0.496427i \(0.165355\pi\)
−0.985515 + 0.169589i \(0.945756\pi\)
\(710\) 0.247022 0.427855i 0.00927058 0.0160571i
\(711\) 1.92025 + 3.32596i 0.0720149 + 0.124733i
\(712\) 12.6622 4.60865i 0.474535 0.172717i
\(713\) 1.21631 0.442702i 0.0455513 0.0165793i
\(714\) −0.942323 1.63215i −0.0352656 0.0610818i
\(715\) 0.208014 0.360291i 0.00777929 0.0134741i
\(716\) −0.727519 + 4.12597i −0.0271887 + 0.154195i
\(717\) 1.62522 1.36372i 0.0606950 0.0509291i
\(718\) −18.6358 15.6373i −0.695482 0.583578i
\(719\) 2.51778 + 14.2791i 0.0938974 + 0.532519i 0.995080 + 0.0990784i \(0.0315895\pi\)
−0.901182 + 0.433441i \(0.857299\pi\)
\(720\) 0.0328860 + 0.0119695i 0.00122559 + 0.000446079i
\(721\) 0.950844 0.0354113
\(722\) 17.4771 + 7.45322i 0.650431 + 0.277380i
\(723\) 29.5157 1.09770
\(724\) 14.8709 + 5.41258i 0.552674 + 0.201157i
\(725\) 2.51922 + 14.2872i 0.0935613 + 0.530613i
\(726\) −1.42277 1.19385i −0.0528039 0.0443077i
\(727\) −0.161055 + 0.135141i −0.00597319 + 0.00501210i −0.645769 0.763533i \(-0.723463\pi\)
0.639796 + 0.768545i \(0.279019\pi\)
\(728\) −0.575695 + 3.26493i −0.0213367 + 0.121006i
\(729\) −0.500000 + 0.866025i −0.0185185 + 0.0320750i
\(730\) 0.203552 + 0.352562i 0.00753379 + 0.0130489i
\(731\) −11.0271 + 4.01352i −0.407850 + 0.148445i
\(732\) 4.41853 1.60821i 0.163314 0.0594413i
\(733\) −7.21852 12.5028i −0.266622 0.461803i 0.701365 0.712802i \(-0.252574\pi\)
−0.967987 + 0.250999i \(0.919241\pi\)
\(734\) −4.14680 + 7.18246i −0.153061 + 0.265109i
\(735\) −0.00607710 + 0.0344649i −0.000224157 + 0.00127126i
\(736\) 0.485735 0.407580i 0.0179044 0.0150236i
\(737\) 13.3806 + 11.2277i 0.492881 + 0.413576i
\(738\) 0.400191 + 2.26960i 0.0147312 + 0.0835450i
\(739\) −10.7706 3.92019i −0.396204 0.144206i 0.136231 0.990677i \(-0.456501\pi\)
−0.532436 + 0.846471i \(0.678723\pi\)
\(740\) −0.146573 −0.00538814
\(741\) −14.4458 0.390401i −0.530678 0.0143417i
\(742\) 2.97612 0.109257
\(743\) −40.6758 14.8048i −1.49225 0.543135i −0.538211 0.842810i \(-0.680899\pi\)
−0.954041 + 0.299675i \(0.903122\pi\)
\(744\) −0.354474 2.01032i −0.0129957 0.0737020i
\(745\) 0.449418 + 0.377106i 0.0164654 + 0.0138161i
\(746\) −20.8872 + 17.5265i −0.764736 + 0.641690i
\(747\) −0.898505 + 5.09567i −0.0328746 + 0.186441i
\(748\) 3.37890 5.85242i 0.123545 0.213986i
\(749\) −6.51163 11.2785i −0.237930 0.412106i
\(750\) 0.328820 0.119681i 0.0120068 0.00437012i
\(751\) −4.98638 + 1.81490i −0.181956 + 0.0662265i −0.431391 0.902165i \(-0.641977\pi\)
0.249436 + 0.968391i \(0.419755\pi\)
\(752\) −1.34913 2.33676i −0.0491977 0.0852129i
\(753\) 4.54787 7.87715i 0.165734 0.287059i
\(754\) −1.67080 + 9.47557i −0.0608469 + 0.345080i
\(755\) −0.244432 + 0.205103i −0.00889579 + 0.00746445i
\(756\) −0.766044 0.642788i −0.0278608 0.0233780i
\(757\) −7.25627 41.1523i −0.263733 1.49571i −0.772618 0.634872i \(-0.781053\pi\)
0.508884 0.860835i \(-0.330058\pi\)
\(758\) −4.85406 1.76673i −0.176307 0.0641706i
\(759\) 2.27363 0.0825277
\(760\) −0.141885 0.0560276i −0.00514671 0.00203233i
\(761\) 36.1760 1.31138 0.655689 0.755031i \(-0.272378\pi\)
0.655689 + 0.755031i \(0.272378\pi\)
\(762\) 1.26001 + 0.458607i 0.0456455 + 0.0166136i
\(763\) −2.35349 13.3473i −0.0852019 0.483204i
\(764\) −8.32513 6.98561i −0.301193 0.252731i
\(765\) −0.0505254 + 0.0423959i −0.00182675 + 0.00153283i
\(766\) −2.95463 + 16.7565i −0.106755 + 0.605438i
\(767\) 21.1391 36.6140i 0.763290 1.32206i
\(768\) −0.500000 0.866025i −0.0180422 0.0312500i
\(769\) −15.2808 + 5.56174i −0.551039 + 0.200562i −0.602508 0.798113i \(-0.705832\pi\)
0.0514693 + 0.998675i \(0.483610\pi\)
\(770\) −0.117920 + 0.0429193i −0.00424953 + 0.00154670i
\(771\) −3.54208 6.13507i −0.127565 0.220949i
\(772\) −5.87194 + 10.1705i −0.211336 + 0.366044i
\(773\) 0.178791 1.01398i 0.00643067 0.0364702i −0.981424 0.191853i \(-0.938550\pi\)
0.987854 + 0.155383i \(0.0496613\pi\)
\(774\) −4.76977 + 4.00232i −0.171446 + 0.143860i
\(775\) −7.81685 6.55912i −0.280790 0.235610i
\(776\) 2.57664 + 14.6128i 0.0924960 + 0.524571i
\(777\) 3.93563 + 1.43245i 0.141190 + 0.0513890i
\(778\) −0.261550 −0.00937702
\(779\) −1.47649 9.93645i −0.0529009 0.356010i
\(780\) 0.116024 0.00415433
\(781\) −47.5665 17.3128i −1.70206 0.619500i
\(782\) 0.207513 + 1.17687i 0.00742066 + 0.0420847i
\(783\) −2.22324 1.86552i −0.0794520 0.0666681i
\(784\) 0.766044 0.642788i 0.0273587 0.0229567i
\(785\) −0.0483071 + 0.273963i −0.00172415 + 0.00977816i
\(786\) 7.50458 12.9983i 0.267680 0.463635i
\(787\) 14.4053 + 24.9507i 0.513493 + 0.889396i 0.999878 + 0.0156512i \(0.00498215\pi\)
−0.486384 + 0.873745i \(0.661685\pi\)
\(788\) −17.0705 + 6.21317i −0.608113 + 0.221335i
\(789\) 2.75494 1.00272i 0.0980786 0.0356977i
\(790\) 0.0672021 + 0.116397i 0.00239094 + 0.00414123i
\(791\) 4.77414 8.26905i 0.169749 0.294014i
\(792\) 0.622651 3.53123i 0.0221250 0.125477i
\(793\) 11.9418 10.0203i 0.424064 0.355832i
\(794\) 14.9590 + 12.5521i 0.530874 + 0.445456i
\(795\) −0.0180861 0.102572i −0.000641450 0.00363784i
\(796\) 1.71109 + 0.622787i 0.0606481 + 0.0220741i
\(797\) −26.5055 −0.938871 −0.469436 0.882967i \(-0.655543\pi\)
−0.469436 + 0.882967i \(0.655543\pi\)
\(798\) 3.26220 + 2.89103i 0.115481 + 0.102341i
\(799\) 5.08527 0.179904
\(800\) −4.69731 1.70968i −0.166075 0.0604464i
\(801\) 2.33987 + 13.2701i 0.0826754 + 0.468875i
\(802\) −14.3438 12.0359i −0.506498 0.425003i
\(803\) 31.9527 26.8115i 1.12759 0.946158i
\(804\) −0.845897 + 4.79732i −0.0298325 + 0.169188i
\(805\) 0.0110954 0.0192177i 0.000391060 0.000677336i
\(806\) −3.38382 5.86094i −0.119190 0.206443i
\(807\) −23.9618 + 8.72138i −0.843495 + 0.307007i
\(808\) −3.60916 + 1.31363i −0.126970 + 0.0462133i
\(809\) −0.978661 1.69509i −0.0344079 0.0595962i 0.848309 0.529502i \(-0.177621\pi\)
−0.882717 + 0.469906i \(0.844288\pi\)
\(810\) −0.0174983 + 0.0303079i −0.000614828 + 0.00106491i
\(811\) 8.29515 47.0441i 0.291282 1.65194i −0.390659 0.920535i \(-0.627753\pi\)
0.681941 0.731407i \(-0.261136\pi\)
\(812\) 2.22324 1.86552i 0.0780203 0.0654668i
\(813\) −1.71099 1.43569i −0.0600070 0.0503519i
\(814\) 2.60780 + 14.7896i 0.0914033 + 0.518374i
\(815\) −0.151996 0.0553221i −0.00532420 0.00193785i
\(816\) 1.88465 0.0659758
\(817\) 21.2547 16.8776i 0.743607 0.590474i
\(818\) 0.931686 0.0325757
\(819\) −3.11536 1.13390i −0.108859 0.0396216i
\(820\) 0.0140053 + 0.0794281i 0.000489087 + 0.00277375i
\(821\) 9.30800 + 7.81034i 0.324852 + 0.272583i 0.790598 0.612335i \(-0.209770\pi\)
−0.465747 + 0.884918i \(0.654214\pi\)
\(822\) −5.54433 + 4.65225i −0.193381 + 0.162266i
\(823\) 6.44139 36.5309i 0.224533 1.27339i −0.639044 0.769170i \(-0.720670\pi\)
0.863577 0.504218i \(-0.168219\pi\)
\(824\) −0.475422 + 0.823455i −0.0165621 + 0.0286864i
\(825\) −8.96207 15.5228i −0.312019 0.540433i
\(826\) −11.9834 + 4.36161i −0.416956 + 0.151760i
\(827\) −6.65654 + 2.42278i −0.231470 + 0.0842484i −0.455151 0.890414i \(-0.650415\pi\)
0.223681 + 0.974662i \(0.428193\pi\)
\(828\) 0.317041 + 0.549131i 0.0110179 + 0.0190836i
\(829\) 21.1780 36.6813i 0.735541 1.27399i −0.218944 0.975737i \(-0.570261\pi\)
0.954486 0.298257i \(-0.0964053\pi\)
\(830\) −0.0314446 + 0.178331i −0.00109146 + 0.00618997i
\(831\) −13.2286 + 11.1001i −0.458896 + 0.385060i
\(832\) −2.53966 2.13103i −0.0880470 0.0738802i
\(833\) 0.327266 + 1.85601i 0.0113391 + 0.0643071i
\(834\) 1.78170 + 0.648488i 0.0616954 + 0.0224553i
\(835\) −0.00150435 −5.20600e−5
\(836\) −3.12891 + 15.3133i −0.108216 + 0.529623i
\(837\) 2.04134 0.0705589
\(838\) 19.6878 + 7.16578i 0.680105 + 0.247538i
\(839\) 1.31203 + 7.44089i 0.0452963 + 0.256888i 0.999044 0.0437208i \(-0.0139212\pi\)
−0.953747 + 0.300609i \(0.902810\pi\)
\(840\) −0.0268090 0.0224954i −0.000924997 0.000776164i
\(841\) −15.7630 + 13.2267i −0.543550 + 0.456093i
\(842\) 1.78984 10.1507i 0.0616820 0.349816i
\(843\) −11.4022 + 19.7492i −0.392713 + 0.680199i
\(844\) −7.23414 12.5299i −0.249009 0.431297i
\(845\) −0.0660619 + 0.0240446i −0.00227260 + 0.000827158i
\(846\) 2.53554 0.922859i 0.0871735 0.0317286i
\(847\) 0.928647 + 1.60846i 0.0319087 + 0.0552674i
\(848\) −1.48806 + 2.57739i −0.0511001 + 0.0885080i
\(849\) 4.22567 23.9650i 0.145025 0.822476i
\(850\) 7.21685 6.05565i 0.247536 0.207707i
\(851\) −2.03436 1.70703i −0.0697371 0.0585164i
\(852\) −2.45138 13.9025i −0.0839829 0.476291i
\(853\) −30.9028 11.2477i −1.05809 0.385114i −0.246382 0.969173i \(-0.579242\pi\)
−0.811712 + 0.584058i \(0.801464\pi\)
\(854\) −4.70210 −0.160903
\(855\) 0.0798145 0.130000i 0.00272960 0.00444592i
\(856\) 13.0233 0.445126
\(857\) 17.3504 + 6.31502i 0.592678 + 0.215717i 0.620907 0.783884i \(-0.286765\pi\)
−0.0282290 + 0.999601i \(0.508987\pi\)
\(858\) −2.06427 11.7071i −0.0704731 0.399673i
\(859\) 1.18301 + 0.992660i 0.0403636 + 0.0338691i 0.662746 0.748844i \(-0.269391\pi\)
−0.622383 + 0.782713i \(0.713835\pi\)
\(860\) −0.166926 + 0.140067i −0.00569212 + 0.00477626i
\(861\) 0.400191 2.26960i 0.0136385 0.0773476i
\(862\) 2.17391 3.76532i 0.0740437 0.128247i
\(863\) −14.3435 24.8436i −0.488257 0.845686i 0.511652 0.859193i \(-0.329034\pi\)
−0.999909 + 0.0135068i \(0.995701\pi\)
\(864\) 0.939693 0.342020i 0.0319690 0.0116358i
\(865\) 0.756121 0.275206i 0.0257089 0.00935727i
\(866\) 7.08318 + 12.2684i 0.240696 + 0.416898i
\(867\) 6.72405 11.6464i 0.228361 0.395533i
\(868\) −0.354474 + 2.01032i −0.0120316 + 0.0682348i
\(869\) 10.5491 8.85175i 0.357854 0.300275i
\(870\) −0.0778057 0.0652867i −0.00263786 0.00221343i
\(871\) 2.80440 + 15.9045i 0.0950234 + 0.538904i
\(872\) 12.7358 + 4.63546i 0.431290 + 0.156977i
\(873\) −14.8383 −0.502200
\(874\) −1.31678 2.43007i −0.0445408 0.0821983i
\(875\) −0.349923 −0.0118296
\(876\) 10.9311 + 3.97861i 0.369329 + 0.134425i
\(877\) −4.86701 27.6022i −0.164347 0.932059i −0.949735 0.313055i \(-0.898648\pi\)
0.785388 0.619004i \(-0.212463\pi\)
\(878\) −26.1850 21.9718i −0.883699 0.741512i
\(879\) −11.7494 + 9.85895i −0.396299 + 0.332534i
\(880\) 0.0217907 0.123581i 0.000734564 0.00416592i
\(881\) −5.95785 + 10.3193i −0.200725 + 0.347666i −0.948762 0.315991i \(-0.897663\pi\)
0.748037 + 0.663657i \(0.230996\pi\)
\(882\) 0.500000 + 0.866025i 0.0168359 + 0.0291606i
\(883\) −17.4392 + 6.34736i −0.586877 + 0.213606i −0.618355 0.785899i \(-0.712201\pi\)
0.0314784 + 0.999504i \(0.489978\pi\)
\(884\) 5.87135 2.13700i 0.197475 0.0718750i
\(885\) 0.223147 + 0.386501i 0.00750100 + 0.0129921i
\(886\) 8.12555 14.0739i 0.272983 0.472821i
\(887\) −0.278021 + 1.57674i −0.00933504 + 0.0529416i −0.989119 0.147115i \(-0.953001\pi\)
0.979784 + 0.200056i \(0.0641125\pi\)
\(888\) −3.20836 + 2.69213i −0.107665 + 0.0903420i
\(889\) −1.02717 0.861900i −0.0344503 0.0289072i
\(890\) 0.0818876 + 0.464408i 0.00274488 + 0.0155670i
\(891\) 3.36946 + 1.22638i 0.112881 + 0.0410854i
\(892\) −6.76482 −0.226503
\(893\) −11.1568 + 3.72260i −0.373347 + 0.124572i
\(894\) 16.7637 0.560662
\(895\) −0.137780 0.0501478i −0.00460547 0.00167626i
\(896\) 0.173648 + 0.984808i 0.00580118 + 0.0329001i
\(897\) 1.61036 + 1.35125i 0.0537682 + 0.0451169i
\(898\) −2.38011 + 1.99715i −0.0794254 + 0.0666458i
\(899\) −1.02876 + 5.83441i −0.0343112 + 0.194589i
\(900\) 2.49939 4.32907i 0.0833129 0.144302i
\(901\) −2.80446 4.85748i −0.0934303 0.161826i
\(902\) 7.76529 2.82633i 0.258556 0.0941066i
\(903\) 5.85099 2.12959i 0.194709 0.0708682i
\(904\) 4.77414 + 8.26905i 0.158786 + 0.275025i
\(905\) −0.276916 + 0.479633i −0.00920501 + 0.0159435i
\(906\) −1.58325 + 8.97903i −0.0525998 + 0.298308i
\(907\) 38.3574 32.1857i 1.27364 1.06871i 0.279548 0.960132i \(-0.409815\pi\)
0.994088 0.108576i \(-0.0346290\pi\)
\(908\) −12.9861 10.8966i −0.430958 0.361617i
\(909\) −0.666946 3.78244i −0.0221212 0.125456i
\(910\) −0.109027 0.0396826i −0.00361421 0.00131546i
\(911\) −47.5980 −1.57699 −0.788496 0.615040i \(-0.789140\pi\)
−0.788496 + 0.615040i \(0.789140\pi\)
\(912\) −4.13481 + 1.37963i −0.136917 + 0.0456842i
\(913\) 18.5535 0.614030
\(914\) −11.4213 4.15702i −0.377783 0.137502i
\(915\) 0.0285751 + 0.162058i 0.000944664 + 0.00535746i
\(916\) −6.01084 5.04369i −0.198604 0.166648i
\(917\) −11.4977 + 9.64770i −0.379687 + 0.318595i
\(918\) −0.327266 + 1.85601i −0.0108014 + 0.0612576i
\(919\) 11.3990 19.7436i 0.376018 0.651282i −0.614461 0.788947i \(-0.710627\pi\)
0.990479 + 0.137665i \(0.0439599\pi\)
\(920\) 0.0110954 + 0.0192177i 0.000365803 + 0.000633590i
\(921\) −30.2454 + 11.0084i −0.996621 + 0.362741i
\(922\) 12.5614 4.57199i 0.413689 0.150570i
\(923\) −23.4009 40.5316i −0.770250 1.33411i
\(924\) −1.79285 + 3.10531i −0.0589805 + 0.102157i
\(925\) −3.63549 + 20.6179i −0.119534 + 0.677912i
\(926\) −12.3220 + 10.3393i −0.404924 + 0.339772i
\(927\) −0.728389 0.611191i −0.0239234 0.0200741i
\(928\) 0.503967 + 2.85814i 0.0165435 + 0.0938229i
\(929\) 1.10118 + 0.400796i 0.0361285 + 0.0131497i 0.360021 0.932944i \(-0.382769\pi\)
−0.323893 + 0.946094i \(0.604992\pi\)
\(930\) 0.0714398 0.00234260
\(931\) −2.07667 3.83242i −0.0680602 0.125602i
\(932\) 1.53429 0.0502572
\(933\) −14.4527 5.26033i −0.473159 0.172216i
\(934\) 0.216890 + 1.23004i 0.00709685 + 0.0402483i
\(935\) 0.181169 + 0.152019i 0.00592487 + 0.00497156i
\(936\) 2.53966 2.13103i 0.0830115 0.0696549i
\(937\) −6.36232 + 36.0825i −0.207848 + 1.17876i 0.685047 + 0.728499i \(0.259782\pi\)
−0.892895 + 0.450266i \(0.851329\pi\)
\(938\) 2.43566 4.21869i 0.0795272 0.137745i
\(939\) −5.14369 8.90914i −0.167858 0.290739i
\(940\) 0.0887351 0.0322969i 0.00289422 0.00105341i
\(941\) −3.42870 + 1.24795i −0.111773 + 0.0406819i −0.397301 0.917688i \(-0.630053\pi\)
0.285528 + 0.958370i \(0.407831\pi\)
\(942\) 3.97452 + 6.88407i 0.129497 + 0.224295i
\(943\) −0.730656 + 1.26553i −0.0237934 + 0.0412114i
\(944\) 2.21445 12.5587i 0.0720740 0.408752i
\(945\) 0.0268090 0.0224954i 0.000872095 0.000731775i
\(946\) 17.1030 + 14.3511i 0.556067 + 0.466595i
\(947\) −0.897385 5.08932i −0.0291611 0.165381i 0.966749 0.255725i \(-0.0823143\pi\)
−0.995911 + 0.0903446i \(0.971203\pi\)
\(948\) 3.60888 + 1.31353i 0.117211 + 0.0426613i
\(949\) 38.5657 1.25190
\(950\) −11.4004 + 18.5688i −0.369877 + 0.602450i
\(951\) 24.4600 0.793171
\(952\) −1.77099 0.644587i −0.0573981 0.0208912i
\(953\) 8.51189 + 48.2733i 0.275727 + 1.56373i 0.736643 + 0.676282i \(0.236410\pi\)
−0.460916 + 0.887444i \(0.652479\pi\)
\(954\) −2.27984 1.91301i −0.0738125 0.0619360i
\(955\) 0.291351 0.244473i 0.00942791 0.00791095i
\(956\) 0.368408 2.08934i 0.0119152 0.0675742i
\(957\) −5.20327 + 9.01233i −0.168198 + 0.291327i
\(958\) 16.4764 + 28.5380i 0.532328 + 0.922019i
\(959\) 6.80113 2.47541i 0.219620 0.0799351i
\(960\) 0.0328860 0.0119695i 0.00106139 0.000386315i
\(961\) 13.4165 + 23.2380i 0.432790 + 0.749613i
\(962\) −6.94259 + 12.0249i −0.223838 + 0.387699i
\(963\) −2.26147 + 12.8254i −0.0728747 + 0.413293i
\(964\) 22.6103 18.9723i 0.728229 0.611057i
\(965\) −0.314841 0.264183i −0.0101351 0.00850435i
\(966\) −0.110107 0.624449i −0.00354264 0.0200913i
\(967\) −21.3504 7.77093i −0.686584 0.249896i −0.0249122 0.999690i \(-0.507931\pi\)
−0.661672 + 0.749793i \(0.730153\pi\)
\(968\) −1.85729 −0.0596957
\(969\) 1.64456 8.04869i 0.0528308 0.258561i
\(970\) −0.519289 −0.0166734
\(971\) −15.0902 5.49237i −0.484266 0.176259i 0.0883378 0.996091i \(-0.471845\pi\)
−0.572604 + 0.819832i \(0.694067\pi\)
\(972\) 0.173648 + 0.984808i 0.00556977 + 0.0315877i
\(973\) −1.45246 1.21876i −0.0465637 0.0390716i
\(974\) −4.49333 + 3.77035i −0.143975 + 0.120810i
\(975\) 2.87777 16.3206i 0.0921624 0.522679i
\(976\) 2.35105 4.07214i 0.0752553 0.130346i
\(977\) 22.5616 + 39.0779i 0.721811 + 1.25021i 0.960273 + 0.279061i \(0.0900233\pi\)
−0.238462 + 0.971152i \(0.576643\pi\)
\(978\) −4.34317 + 1.58079i −0.138879 + 0.0505480i
\(979\) 45.4028 16.5253i 1.45108 0.528150i
\(980\) 0.0174983 + 0.0303079i 0.000558963 + 0.000968152i
\(981\) −6.77659 + 11.7374i −0.216360 + 0.374747i
\(982\) −0.645589 + 3.66131i −0.0206016 + 0.116837i
\(983\) 23.0613 19.3507i 0.735540 0.617191i −0.196096 0.980585i \(-0.562826\pi\)
0.931636 + 0.363393i \(0.118382\pi\)
\(984\) 1.76543 + 1.48137i 0.0562799 + 0.0472245i
\(985\) −0.110397 0.626093i −0.00351754 0.0199490i
\(986\) −5.13981 1.87074i −0.163685 0.0595765i
\(987\) −2.69826 −0.0858866
\(988\) −11.3170 + 8.98649i −0.360043 + 0.285898i
\(989\) −3.94811 −0.125543
\(990\) 0.117920 + 0.0429193i 0.00374773 + 0.00136406i
\(991\) −9.82377 55.7134i −0.312062 1.76979i −0.588239 0.808687i \(-0.700178\pi\)
0.276176 0.961107i \(-0.410933\pi\)
\(992\) −1.56375 1.31215i −0.0496492 0.0416606i
\(993\) −16.1999 + 13.5933i −0.514088 + 0.431371i
\(994\) −2.45138 + 13.9025i −0.0777530 + 0.440959i
\(995\) −0.0318628 + 0.0551880i −0.00101012 + 0.00174958i
\(996\) 2.58714 + 4.48106i 0.0819767 + 0.141988i
\(997\) 42.0112 15.2908i 1.33051 0.484265i 0.423697 0.905804i \(-0.360732\pi\)
0.906810 + 0.421539i \(0.138510\pi\)
\(998\) −40.6837 + 14.8077i −1.28782 + 0.468729i
\(999\) −2.09411 3.62710i −0.0662546 0.114756i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 798.2.bo.d.631.1 yes 12
19.5 even 9 inner 798.2.bo.d.43.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
798.2.bo.d.43.1 12 19.5 even 9 inner
798.2.bo.d.631.1 yes 12 1.1 even 1 trivial