Properties

Label 798.2.bo.d.169.1
Level $798$
Weight $2$
Character 798.169
Analytic conductor $6.372$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [798,2,Mod(43,798)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(798, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 16])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("798.43"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 798.bo (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,9,0,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37206208130\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 18x^{10} + 153x^{8} - 773x^{6} + 2448x^{4} - 4608x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 169.1
Root \(1.89389 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 798.169
Dual form 798.2.bo.d.85.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 + 0.984808i) q^{2} +(0.766044 + 0.642788i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(-0.733478 + 0.266964i) q^{5} +(-0.766044 + 0.642788i) q^{6} +(0.500000 + 0.866025i) q^{7} +(0.500000 - 0.866025i) q^{8} +(0.173648 + 0.984808i) q^{9} +(-0.135541 - 0.768692i) q^{10} +(0.793785 - 1.37488i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(-2.19946 + 1.84557i) q^{13} +(-0.939693 + 0.342020i) q^{14} +(-0.733478 - 0.266964i) q^{15} +(0.766044 + 0.642788i) q^{16} +(-1.02799 + 5.83005i) q^{17} -1.00000 q^{18} +(1.92019 + 3.91316i) q^{19} +0.780550 q^{20} +(-0.173648 + 0.984808i) q^{21} +(1.21615 + 1.02047i) q^{22} +(-2.61196 - 0.950677i) q^{23} +(0.939693 - 0.342020i) q^{24} +(-3.36350 + 2.82231i) q^{25} +(-1.43560 - 2.48653i) q^{26} +(-0.500000 + 0.866025i) q^{27} +(-0.173648 - 0.984808i) q^{28} +(-0.185461 - 1.05180i) q^{29} +(0.390275 - 0.675977i) q^{30} +(2.58705 + 4.48090i) q^{31} +(-0.766044 + 0.642788i) q^{32} +(1.49183 - 0.542981i) q^{33} +(-5.56297 - 2.02475i) q^{34} +(-0.597936 - 0.501728i) q^{35} +(0.173648 - 0.984808i) q^{36} -1.91948 q^{37} +(-4.18715 + 1.21151i) q^{38} -2.87120 q^{39} +(-0.135541 + 0.768692i) q^{40} +(-0.199173 - 0.167126i) q^{41} +(-0.939693 - 0.342020i) q^{42} +(-0.784669 + 0.285596i) q^{43} +(-1.21615 + 1.02047i) q^{44} +(-0.390275 - 0.675977i) q^{45} +(1.38980 - 2.40720i) q^{46} +(-1.30902 - 7.42384i) q^{47} +(0.173648 + 0.984808i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(-2.19537 - 3.80249i) q^{50} +(-4.53497 + 3.80529i) q^{51} +(2.69804 - 0.982007i) q^{52} +(-5.94373 - 2.16334i) q^{53} +(-0.766044 - 0.642788i) q^{54} +(-0.215181 + 1.22035i) q^{55} +1.00000 q^{56} +(-1.04438 + 4.23193i) q^{57} +1.06803 q^{58} +(-0.906187 + 5.13924i) q^{59} +(0.597936 + 0.501728i) q^{60} +(6.35895 + 2.31447i) q^{61} +(-4.86206 + 1.76964i) q^{62} +(-0.766044 + 0.642788i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(1.12056 - 1.94086i) q^{65} +(0.275679 + 1.56345i) q^{66} +(1.35802 + 7.70172i) q^{67} +(2.95999 - 5.12686i) q^{68} +(-1.38980 - 2.40720i) q^{69} +(0.597936 - 0.501728i) q^{70} +(2.22532 - 0.809951i) q^{71} +(0.939693 + 0.342020i) q^{72} +(6.81014 + 5.71438i) q^{73} +(0.333314 - 1.89032i) q^{74} -4.39074 q^{75} +(-0.466011 - 4.33392i) q^{76} +1.58757 q^{77} +(0.498578 - 2.82758i) q^{78} +(3.35911 + 2.81863i) q^{79} +(-0.733478 - 0.266964i) q^{80} +(-0.939693 + 0.342020i) q^{81} +(0.199173 - 0.167126i) q^{82} +(-5.55161 - 9.61567i) q^{83} +(0.500000 - 0.866025i) q^{84} +(-0.802402 - 4.55065i) q^{85} +(-0.145001 - 0.822341i) q^{86} +(0.534013 - 0.924938i) q^{87} +(-0.793785 - 1.37488i) q^{88} +(5.22893 - 4.38759i) q^{89} +(0.733478 - 0.266964i) q^{90} +(-2.69804 - 0.982007i) q^{91} +(2.12929 + 1.78669i) q^{92} +(-0.898472 + 5.09549i) q^{93} +7.53836 q^{94} +(-2.45309 - 2.35760i) q^{95} -1.00000 q^{96} +(1.76622 - 10.0167i) q^{97} +(-0.766044 - 0.642788i) q^{98} +(1.49183 + 0.542981i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 9 q^{5} + 6 q^{7} + 6 q^{8} + 9 q^{10} + 3 q^{11} - 6 q^{12} - 9 q^{13} + 9 q^{15} + 15 q^{17} - 12 q^{18} + 9 q^{19} - 15 q^{22} + 3 q^{23} + 3 q^{25} + 3 q^{26} - 6 q^{27} + 3 q^{29} + 6 q^{31}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/798\mathbb{Z}\right)^\times\).

\(n\) \(115\) \(211\) \(533\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.173648 + 0.984808i −0.122788 + 0.696364i
\(3\) 0.766044 + 0.642788i 0.442276 + 0.371114i
\(4\) −0.939693 0.342020i −0.469846 0.171010i
\(5\) −0.733478 + 0.266964i −0.328021 + 0.119390i −0.500781 0.865574i \(-0.666954\pi\)
0.172760 + 0.984964i \(0.444732\pi\)
\(6\) −0.766044 + 0.642788i −0.312736 + 0.262417i
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 0.500000 0.866025i 0.176777 0.306186i
\(9\) 0.173648 + 0.984808i 0.0578827 + 0.328269i
\(10\) −0.135541 0.768692i −0.0428619 0.243082i
\(11\) 0.793785 1.37488i 0.239335 0.414541i −0.721189 0.692739i \(-0.756404\pi\)
0.960524 + 0.278198i \(0.0897372\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) −2.19946 + 1.84557i −0.610022 + 0.511869i −0.894649 0.446769i \(-0.852575\pi\)
0.284628 + 0.958638i \(0.408130\pi\)
\(14\) −0.939693 + 0.342020i −0.251143 + 0.0914087i
\(15\) −0.733478 0.266964i −0.189383 0.0689298i
\(16\) 0.766044 + 0.642788i 0.191511 + 0.160697i
\(17\) −1.02799 + 5.83005i −0.249325 + 1.41399i 0.560904 + 0.827881i \(0.310454\pi\)
−0.810229 + 0.586113i \(0.800657\pi\)
\(18\) −1.00000 −0.235702
\(19\) 1.92019 + 3.91316i 0.440523 + 0.897741i
\(20\) 0.780550 0.174536
\(21\) −0.173648 + 0.984808i −0.0378931 + 0.214903i
\(22\) 1.21615 + 1.02047i 0.259284 + 0.217565i
\(23\) −2.61196 0.950677i −0.544632 0.198230i 0.0550278 0.998485i \(-0.482475\pi\)
−0.599660 + 0.800255i \(0.704697\pi\)
\(24\) 0.939693 0.342020i 0.191814 0.0698146i
\(25\) −3.36350 + 2.82231i −0.672701 + 0.564463i
\(26\) −1.43560 2.48653i −0.281544 0.487649i
\(27\) −0.500000 + 0.866025i −0.0962250 + 0.166667i
\(28\) −0.173648 0.984808i −0.0328164 0.186111i
\(29\) −0.185461 1.05180i −0.0344392 0.195314i 0.962734 0.270449i \(-0.0871723\pi\)
−0.997173 + 0.0751351i \(0.976061\pi\)
\(30\) 0.390275 0.675977i 0.0712542 0.123416i
\(31\) 2.58705 + 4.48090i 0.464647 + 0.804793i 0.999186 0.0403516i \(-0.0128478\pi\)
−0.534538 + 0.845144i \(0.679514\pi\)
\(32\) −0.766044 + 0.642788i −0.135419 + 0.113630i
\(33\) 1.49183 0.542981i 0.259694 0.0945208i
\(34\) −5.56297 2.02475i −0.954041 0.347243i
\(35\) −0.597936 0.501728i −0.101070 0.0848075i
\(36\) 0.173648 0.984808i 0.0289414 0.164135i
\(37\) −1.91948 −0.315560 −0.157780 0.987474i \(-0.550434\pi\)
−0.157780 + 0.987474i \(0.550434\pi\)
\(38\) −4.18715 + 1.21151i −0.679246 + 0.196533i
\(39\) −2.87120 −0.459759
\(40\) −0.135541 + 0.768692i −0.0214309 + 0.121541i
\(41\) −0.199173 0.167126i −0.0311056 0.0261007i 0.627102 0.778937i \(-0.284241\pi\)
−0.658208 + 0.752836i \(0.728685\pi\)
\(42\) −0.939693 0.342020i −0.144998 0.0527749i
\(43\) −0.784669 + 0.285596i −0.119661 + 0.0435530i −0.401157 0.916009i \(-0.631392\pi\)
0.281496 + 0.959562i \(0.409169\pi\)
\(44\) −1.21615 + 1.02047i −0.183341 + 0.153842i
\(45\) −0.390275 0.675977i −0.0581788 0.100769i
\(46\) 1.38980 2.40720i 0.204914 0.354922i
\(47\) −1.30902 7.42384i −0.190941 1.08288i −0.918082 0.396391i \(-0.870263\pi\)
0.727141 0.686488i \(-0.240848\pi\)
\(48\) 0.173648 + 0.984808i 0.0250640 + 0.142145i
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) −2.19537 3.80249i −0.310472 0.537754i
\(51\) −4.53497 + 3.80529i −0.635023 + 0.532848i
\(52\) 2.69804 0.982007i 0.374151 0.136180i
\(53\) −5.94373 2.16334i −0.816434 0.297158i −0.100155 0.994972i \(-0.531934\pi\)
−0.716279 + 0.697814i \(0.754156\pi\)
\(54\) −0.766044 0.642788i −0.104245 0.0874723i
\(55\) −0.215181 + 1.22035i −0.0290150 + 0.164552i
\(56\) 1.00000 0.133631
\(57\) −1.04438 + 4.23193i −0.138331 + 0.560533i
\(58\) 1.06803 0.140239
\(59\) −0.906187 + 5.13924i −0.117976 + 0.669073i 0.867258 + 0.497858i \(0.165880\pi\)
−0.985234 + 0.171214i \(0.945231\pi\)
\(60\) 0.597936 + 0.501728i 0.0771932 + 0.0647728i
\(61\) 6.35895 + 2.31447i 0.814180 + 0.296337i 0.715349 0.698767i \(-0.246268\pi\)
0.0988304 + 0.995104i \(0.468490\pi\)
\(62\) −4.86206 + 1.76964i −0.617482 + 0.224745i
\(63\) −0.766044 + 0.642788i −0.0965125 + 0.0809836i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 1.12056 1.94086i 0.138988 0.240734i
\(66\) 0.275679 + 1.56345i 0.0339337 + 0.192448i
\(67\) 1.35802 + 7.70172i 0.165909 + 0.940914i 0.948123 + 0.317905i \(0.102979\pi\)
−0.782214 + 0.623010i \(0.785910\pi\)
\(68\) 2.95999 5.12686i 0.358952 0.621723i
\(69\) −1.38980 2.40720i −0.167312 0.289793i
\(70\) 0.597936 0.501728i 0.0714671 0.0599680i
\(71\) 2.22532 0.809951i 0.264097 0.0961234i −0.206578 0.978430i \(-0.566233\pi\)
0.470675 + 0.882307i \(0.344010\pi\)
\(72\) 0.939693 + 0.342020i 0.110744 + 0.0403075i
\(73\) 6.81014 + 5.71438i 0.797066 + 0.668818i 0.947483 0.319805i \(-0.103617\pi\)
−0.150417 + 0.988623i \(0.548062\pi\)
\(74\) 0.333314 1.89032i 0.0387469 0.219745i
\(75\) −4.39074 −0.506999
\(76\) −0.466011 4.33392i −0.0534552 0.497134i
\(77\) 1.58757 0.180920
\(78\) 0.498578 2.82758i 0.0564529 0.320160i
\(79\) 3.35911 + 2.81863i 0.377929 + 0.317120i 0.811889 0.583812i \(-0.198439\pi\)
−0.433960 + 0.900932i \(0.642884\pi\)
\(80\) −0.733478 0.266964i −0.0820053 0.0298475i
\(81\) −0.939693 + 0.342020i −0.104410 + 0.0380022i
\(82\) 0.199173 0.167126i 0.0219950 0.0184560i
\(83\) −5.55161 9.61567i −0.609369 1.05546i −0.991345 0.131285i \(-0.958090\pi\)
0.381976 0.924172i \(-0.375244\pi\)
\(84\) 0.500000 0.866025i 0.0545545 0.0944911i
\(85\) −0.802402 4.55065i −0.0870327 0.493587i
\(86\) −0.145001 0.822341i −0.0156359 0.0886753i
\(87\) 0.534013 0.924938i 0.0572522 0.0991637i
\(88\) −0.793785 1.37488i −0.0846178 0.146562i
\(89\) 5.22893 4.38759i 0.554265 0.465084i −0.322117 0.946700i \(-0.604394\pi\)
0.876382 + 0.481616i \(0.159950\pi\)
\(90\) 0.733478 0.266964i 0.0773153 0.0281405i
\(91\) −2.69804 0.982007i −0.282832 0.102942i
\(92\) 2.12929 + 1.78669i 0.221994 + 0.186275i
\(93\) −0.898472 + 5.09549i −0.0931672 + 0.528377i
\(94\) 7.53836 0.777523
\(95\) −2.45309 2.35760i −0.251682 0.241884i
\(96\) −1.00000 −0.102062
\(97\) 1.76622 10.0167i 0.179332 1.01704i −0.753692 0.657228i \(-0.771729\pi\)
0.933024 0.359815i \(-0.117160\pi\)
\(98\) −0.766044 0.642788i −0.0773822 0.0649314i
\(99\) 1.49183 + 0.542981i 0.149934 + 0.0545716i
\(100\) 4.12595 1.50172i 0.412595 0.150172i
\(101\) 10.1796 8.54167i 1.01291 0.849928i 0.0241857 0.999707i \(-0.492301\pi\)
0.988719 + 0.149779i \(0.0478562\pi\)
\(102\) −2.95999 5.12686i −0.293083 0.507635i
\(103\) −2.85773 + 4.94974i −0.281581 + 0.487712i −0.971774 0.235913i \(-0.924192\pi\)
0.690194 + 0.723625i \(0.257525\pi\)
\(104\) 0.498578 + 2.82758i 0.0488896 + 0.277267i
\(105\) −0.135541 0.768692i −0.0132275 0.0750167i
\(106\) 3.16259 5.47777i 0.307178 0.532048i
\(107\) −0.0407792 0.0706317i −0.00394228 0.00682822i 0.864048 0.503410i \(-0.167922\pi\)
−0.867990 + 0.496582i \(0.834588\pi\)
\(108\) 0.766044 0.642788i 0.0737127 0.0618523i
\(109\) −1.95078 + 0.710024i −0.186850 + 0.0680080i −0.433751 0.901033i \(-0.642810\pi\)
0.246900 + 0.969041i \(0.420588\pi\)
\(110\) −1.16445 0.423824i −0.111026 0.0404100i
\(111\) −1.47041 1.23382i −0.139565 0.117109i
\(112\) −0.173648 + 0.984808i −0.0164082 + 0.0930556i
\(113\) −1.25721 −0.118268 −0.0591340 0.998250i \(-0.518834\pi\)
−0.0591340 + 0.998250i \(0.518834\pi\)
\(114\) −3.98629 1.76338i −0.373350 0.165156i
\(115\) 2.16961 0.202318
\(116\) −0.185461 + 1.05180i −0.0172196 + 0.0976572i
\(117\) −2.19946 1.84557i −0.203341 0.170623i
\(118\) −4.90381 1.78484i −0.451432 0.164308i
\(119\) −5.56297 + 2.02475i −0.509956 + 0.185609i
\(120\) −0.597936 + 0.501728i −0.0545839 + 0.0458013i
\(121\) 4.23981 + 7.34357i 0.385437 + 0.667597i
\(122\) −3.38352 + 5.86044i −0.306330 + 0.530579i
\(123\) −0.0451489 0.256052i −0.00407094 0.0230874i
\(124\) −0.898472 5.09549i −0.0806851 0.457588i
\(125\) 3.66497 6.34792i 0.327805 0.567775i
\(126\) −0.500000 0.866025i −0.0445435 0.0771517i
\(127\) 4.96514 4.16625i 0.440585 0.369695i −0.395343 0.918534i \(-0.629374\pi\)
0.835928 + 0.548839i \(0.184930\pi\)
\(128\) 0.939693 0.342020i 0.0830579 0.0302306i
\(129\) −0.784669 0.285596i −0.0690862 0.0251453i
\(130\) 1.71679 + 1.44056i 0.150573 + 0.126346i
\(131\) −3.25468 + 18.4582i −0.284363 + 1.61270i 0.423191 + 0.906040i \(0.360910\pi\)
−0.707554 + 0.706660i \(0.750201\pi\)
\(132\) −1.58757 −0.138180
\(133\) −2.42880 + 3.61952i −0.210604 + 0.313852i
\(134\) −7.82053 −0.675591
\(135\) 0.135541 0.768692i 0.0116655 0.0661585i
\(136\) 4.53497 + 3.80529i 0.388871 + 0.326301i
\(137\) −4.11553 1.49793i −0.351614 0.127977i 0.160174 0.987089i \(-0.448794\pi\)
−0.511788 + 0.859112i \(0.671017\pi\)
\(138\) 2.61196 0.950677i 0.222345 0.0809270i
\(139\) 0.460504 0.386408i 0.0390594 0.0327747i −0.623049 0.782183i \(-0.714106\pi\)
0.662108 + 0.749408i \(0.269662\pi\)
\(140\) 0.390275 + 0.675977i 0.0329843 + 0.0571304i
\(141\) 3.76918 6.52842i 0.317422 0.549792i
\(142\) 0.411223 + 2.33216i 0.0345090 + 0.195710i
\(143\) 0.791528 + 4.48898i 0.0661909 + 0.375387i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 0.416824 + 0.721960i 0.0346154 + 0.0599555i
\(146\) −6.81014 + 5.71438i −0.563611 + 0.472926i
\(147\) −0.939693 + 0.342020i −0.0775045 + 0.0282093i
\(148\) 1.80372 + 0.656500i 0.148265 + 0.0539640i
\(149\) 15.0186 + 12.6021i 1.23037 + 1.03240i 0.998215 + 0.0597234i \(0.0190219\pi\)
0.232154 + 0.972679i \(0.425423\pi\)
\(150\) 0.762444 4.32404i 0.0622533 0.353056i
\(151\) 14.8027 1.20463 0.602314 0.798259i \(-0.294245\pi\)
0.602314 + 0.798259i \(0.294245\pi\)
\(152\) 4.34900 + 0.293645i 0.352750 + 0.0238178i
\(153\) −5.91999 −0.478603
\(154\) −0.275679 + 1.56345i −0.0222148 + 0.125986i
\(155\) −3.09378 2.59599i −0.248498 0.208515i
\(156\) 2.69804 + 0.982007i 0.216016 + 0.0786235i
\(157\) 13.0050 4.73344i 1.03791 0.377770i 0.233825 0.972279i \(-0.424876\pi\)
0.804089 + 0.594509i \(0.202654\pi\)
\(158\) −3.35911 + 2.81863i −0.267236 + 0.224238i
\(159\) −3.16259 5.47777i −0.250810 0.434415i
\(160\) 0.390275 0.675977i 0.0308540 0.0534406i
\(161\) −0.482671 2.73737i −0.0380398 0.215735i
\(162\) −0.173648 0.984808i −0.0136431 0.0773738i
\(163\) 5.41154 9.37307i 0.423865 0.734155i −0.572449 0.819940i \(-0.694006\pi\)
0.996314 + 0.0857850i \(0.0273398\pi\)
\(164\) 0.130001 + 0.225168i 0.0101514 + 0.0175827i
\(165\) −0.949266 + 0.796528i −0.0739002 + 0.0620097i
\(166\) 10.4336 3.79753i 0.809806 0.294745i
\(167\) 5.29178 + 1.92605i 0.409490 + 0.149042i 0.538548 0.842595i \(-0.318973\pi\)
−0.129058 + 0.991637i \(0.541195\pi\)
\(168\) 0.766044 + 0.642788i 0.0591016 + 0.0495921i
\(169\) −0.825910 + 4.68397i −0.0635316 + 0.360305i
\(170\) 4.62085 0.354403
\(171\) −3.52028 + 2.57054i −0.269202 + 0.196574i
\(172\) 0.835027 0.0636702
\(173\) 3.04184 17.2511i 0.231267 1.31158i −0.619068 0.785337i \(-0.712490\pi\)
0.850335 0.526242i \(-0.176399\pi\)
\(174\) 0.818155 + 0.686514i 0.0620242 + 0.0520445i
\(175\) −4.12595 1.50172i −0.311892 0.113520i
\(176\) 1.49183 0.542981i 0.112451 0.0409287i
\(177\) −3.99762 + 3.35440i −0.300480 + 0.252132i
\(178\) 3.41294 + 5.91139i 0.255811 + 0.443077i
\(179\) −5.69539 + 9.86470i −0.425693 + 0.737322i −0.996485 0.0837727i \(-0.973303\pi\)
0.570792 + 0.821095i \(0.306636\pi\)
\(180\) 0.135541 + 0.768692i 0.0101026 + 0.0572949i
\(181\) −1.17719 6.67615i −0.0874995 0.496234i −0.996789 0.0800706i \(-0.974485\pi\)
0.909290 0.416164i \(-0.136626\pi\)
\(182\) 1.43560 2.48653i 0.106414 0.184314i
\(183\) 3.38352 + 5.86044i 0.250117 + 0.433216i
\(184\) −2.12929 + 1.78669i −0.156974 + 0.131716i
\(185\) 1.40789 0.512431i 0.103510 0.0376747i
\(186\) −4.86206 1.76964i −0.356503 0.129757i
\(187\) 7.19959 + 6.04117i 0.526486 + 0.441774i
\(188\) −1.30902 + 7.42384i −0.0954703 + 0.541439i
\(189\) −1.00000 −0.0727393
\(190\) 2.74775 2.00643i 0.199343 0.145562i
\(191\) 0.728650 0.0527233 0.0263616 0.999652i \(-0.491608\pi\)
0.0263616 + 0.999652i \(0.491608\pi\)
\(192\) 0.173648 0.984808i 0.0125320 0.0710724i
\(193\) 2.53275 + 2.12523i 0.182311 + 0.152977i 0.729376 0.684113i \(-0.239811\pi\)
−0.547065 + 0.837090i \(0.684255\pi\)
\(194\) 9.55783 + 3.47877i 0.686212 + 0.249761i
\(195\) 2.10596 0.766506i 0.150811 0.0548906i
\(196\) 0.766044 0.642788i 0.0547175 0.0459134i
\(197\) −10.3809 17.9803i −0.739609 1.28104i −0.952671 0.304002i \(-0.901677\pi\)
0.213062 0.977039i \(-0.431656\pi\)
\(198\) −0.793785 + 1.37488i −0.0564118 + 0.0977082i
\(199\) 3.65788 + 20.7449i 0.259300 + 1.47057i 0.784788 + 0.619764i \(0.212772\pi\)
−0.525488 + 0.850801i \(0.676117\pi\)
\(200\) 0.762444 + 4.32404i 0.0539129 + 0.305756i
\(201\) −3.91026 + 6.77278i −0.275809 + 0.477715i
\(202\) 6.64424 + 11.5082i 0.467487 + 0.809712i
\(203\) 0.818155 0.686514i 0.0574232 0.0481838i
\(204\) 5.56297 2.02475i 0.389486 0.141761i
\(205\) 0.190706 + 0.0694112i 0.0133195 + 0.00484789i
\(206\) −4.37830 3.67383i −0.305051 0.255968i
\(207\) 0.482671 2.73737i 0.0335480 0.190260i
\(208\) −2.87120 −0.199082
\(209\) 6.90434 + 0.466182i 0.477583 + 0.0322465i
\(210\) 0.780550 0.0538631
\(211\) 4.21965 23.9308i 0.290492 1.64746i −0.394486 0.918902i \(-0.629077\pi\)
0.684979 0.728563i \(-0.259811\pi\)
\(212\) 4.84537 + 4.06575i 0.332782 + 0.279237i
\(213\) 2.22532 + 0.809951i 0.152476 + 0.0554969i
\(214\) 0.0766399 0.0278946i 0.00523899 0.00190684i
\(215\) 0.499293 0.418957i 0.0340515 0.0285726i
\(216\) 0.500000 + 0.866025i 0.0340207 + 0.0589256i
\(217\) −2.58705 + 4.48090i −0.175620 + 0.304183i
\(218\) −0.360489 2.04443i −0.0244154 0.138467i
\(219\) 1.54373 + 8.75494i 0.104316 + 0.591604i
\(220\) 0.619589 1.07316i 0.0417727 0.0723524i
\(221\) −8.49872 14.7202i −0.571686 0.990189i
\(222\) 1.47041 1.23382i 0.0986871 0.0828083i
\(223\) 15.9435 5.80296i 1.06766 0.388595i 0.252357 0.967634i \(-0.418794\pi\)
0.815300 + 0.579039i \(0.196572\pi\)
\(224\) −0.939693 0.342020i −0.0627859 0.0228522i
\(225\) −3.36350 2.82231i −0.224234 0.188154i
\(226\) 0.218312 1.23811i 0.0145219 0.0823576i
\(227\) 23.4540 1.55670 0.778348 0.627833i \(-0.216058\pi\)
0.778348 + 0.627833i \(0.216058\pi\)
\(228\) 2.42880 3.61952i 0.160851 0.239709i
\(229\) 3.36222 0.222182 0.111091 0.993810i \(-0.464566\pi\)
0.111091 + 0.993810i \(0.464566\pi\)
\(230\) −0.376749 + 2.13665i −0.0248421 + 0.140887i
\(231\) 1.21615 + 1.02047i 0.0800167 + 0.0671420i
\(232\) −1.00362 0.365286i −0.0658906 0.0239822i
\(233\) 3.75562 1.36693i 0.246039 0.0895508i −0.216057 0.976381i \(-0.569320\pi\)
0.462096 + 0.886830i \(0.347098\pi\)
\(234\) 2.19946 1.84557i 0.143783 0.120649i
\(235\) 2.94204 + 5.09576i 0.191917 + 0.332411i
\(236\) 2.60926 4.51938i 0.169849 0.294186i
\(237\) 0.761448 + 4.31839i 0.0494614 + 0.280509i
\(238\) −1.02799 5.83005i −0.0666350 0.377906i
\(239\) −12.2290 + 21.1812i −0.791025 + 1.37010i 0.134308 + 0.990940i \(0.457119\pi\)
−0.925333 + 0.379156i \(0.876214\pi\)
\(240\) −0.390275 0.675977i −0.0251922 0.0436341i
\(241\) 5.61168 4.70876i 0.361480 0.303318i −0.443900 0.896076i \(-0.646406\pi\)
0.805380 + 0.592758i \(0.201961\pi\)
\(242\) −7.96824 + 2.90020i −0.512218 + 0.186432i
\(243\) −0.939693 0.342020i −0.0602813 0.0219406i
\(244\) −5.18386 4.34978i −0.331863 0.278466i
\(245\) 0.135541 0.768692i 0.00865941 0.0491099i
\(246\) 0.260002 0.0165771
\(247\) −11.4454 5.06301i −0.728254 0.322152i
\(248\) 5.17409 0.328555
\(249\) 1.92805 10.9345i 0.122185 0.692948i
\(250\) 5.61507 + 4.71160i 0.355128 + 0.297988i
\(251\) 10.0048 + 3.64145i 0.631498 + 0.229846i 0.637883 0.770133i \(-0.279810\pi\)
−0.00638522 + 0.999980i \(0.502032\pi\)
\(252\) 0.939693 0.342020i 0.0591951 0.0215452i
\(253\) −3.38040 + 2.83649i −0.212524 + 0.178329i
\(254\) 3.24077 + 5.61317i 0.203344 + 0.352202i
\(255\) 2.31042 4.00177i 0.144684 0.250601i
\(256\) 0.173648 + 0.984808i 0.0108530 + 0.0615505i
\(257\) −1.71950 9.75178i −0.107260 0.608299i −0.990294 0.138990i \(-0.955614\pi\)
0.883034 0.469309i \(-0.155497\pi\)
\(258\) 0.417513 0.723155i 0.0259933 0.0450216i
\(259\) −0.959739 1.66232i −0.0596353 0.103291i
\(260\) −1.71679 + 1.44056i −0.106471 + 0.0893398i
\(261\) 1.00362 0.365286i 0.0621223 0.0226107i
\(262\) −17.6126 6.41046i −1.08811 0.396040i
\(263\) −9.97471 8.36978i −0.615067 0.516103i 0.281181 0.959655i \(-0.409274\pi\)
−0.896249 + 0.443552i \(0.853718\pi\)
\(264\) 0.275679 1.56345i 0.0169668 0.0962238i
\(265\) 4.93713 0.303285
\(266\) −3.14277 3.02043i −0.192696 0.185194i
\(267\) 6.82588 0.417737
\(268\) 1.35802 7.70172i 0.0829543 0.470457i
\(269\) 21.2042 + 17.7924i 1.29284 + 1.08482i 0.991335 + 0.131357i \(0.0419334\pi\)
0.301505 + 0.953465i \(0.402511\pi\)
\(270\) 0.733478 + 0.266964i 0.0446380 + 0.0162469i
\(271\) 2.48263 0.903602i 0.150809 0.0548899i −0.265513 0.964107i \(-0.585541\pi\)
0.416322 + 0.909217i \(0.363319\pi\)
\(272\) −4.53497 + 3.80529i −0.274973 + 0.230730i
\(273\) −1.43560 2.48653i −0.0868864 0.150492i
\(274\) 2.18983 3.79290i 0.132292 0.229137i
\(275\) 1.21043 + 6.86471i 0.0729919 + 0.413957i
\(276\) 0.482671 + 2.73737i 0.0290534 + 0.164770i
\(277\) 7.08684 12.2748i 0.425807 0.737519i −0.570689 0.821167i \(-0.693324\pi\)
0.996495 + 0.0836476i \(0.0266570\pi\)
\(278\) 0.300572 + 0.520607i 0.0180271 + 0.0312239i
\(279\) −3.96358 + 3.32584i −0.237294 + 0.199113i
\(280\) −0.733478 + 0.266964i −0.0438337 + 0.0159541i
\(281\) −13.7786 5.01500i −0.821962 0.299170i −0.103407 0.994639i \(-0.532974\pi\)
−0.718556 + 0.695469i \(0.755197\pi\)
\(282\) 5.77472 + 4.84557i 0.343880 + 0.288549i
\(283\) −4.14626 + 23.5146i −0.246469 + 1.39780i 0.570586 + 0.821238i \(0.306716\pi\)
−0.817055 + 0.576560i \(0.804395\pi\)
\(284\) −2.36814 −0.140523
\(285\) −0.363745 3.38284i −0.0215464 0.200382i
\(286\) −4.55823 −0.269534
\(287\) 0.0451489 0.256052i 0.00266506 0.0151143i
\(288\) −0.766044 0.642788i −0.0451396 0.0378766i
\(289\) −16.9579 6.17218i −0.997524 0.363069i
\(290\) −0.783373 + 0.285124i −0.0460012 + 0.0167431i
\(291\) 7.79162 6.53794i 0.456753 0.383261i
\(292\) −4.44500 7.69897i −0.260124 0.450548i
\(293\) 9.73190 16.8561i 0.568543 0.984746i −0.428167 0.903700i \(-0.640840\pi\)
0.996710 0.0810464i \(-0.0258262\pi\)
\(294\) −0.173648 0.984808i −0.0101274 0.0574352i
\(295\) −0.707325 4.01144i −0.0411821 0.233555i
\(296\) −0.959739 + 1.66232i −0.0557837 + 0.0966202i
\(297\) 0.793785 + 1.37488i 0.0460601 + 0.0797784i
\(298\) −15.0186 + 12.6021i −0.870002 + 0.730019i
\(299\) 7.49946 2.72958i 0.433705 0.157856i
\(300\) 4.12595 + 1.50172i 0.238212 + 0.0867020i
\(301\) −0.639668 0.536745i −0.0368698 0.0309375i
\(302\) −2.57047 + 14.5778i −0.147914 + 0.838860i
\(303\) 13.2885 0.763404
\(304\) −1.04438 + 4.23193i −0.0598993 + 0.242718i
\(305\) −5.28202 −0.302448
\(306\) 1.02799 5.83005i 0.0587666 0.333282i
\(307\) −19.2538 16.1559i −1.09887 0.922063i −0.101523 0.994833i \(-0.532372\pi\)
−0.997349 + 0.0727699i \(0.976816\pi\)
\(308\) −1.49183 0.542981i −0.0850048 0.0309392i
\(309\) −5.37078 + 1.95480i −0.305533 + 0.111205i
\(310\) 3.09378 2.59599i 0.175715 0.147442i
\(311\) −6.51118 11.2777i −0.369215 0.639500i 0.620228 0.784422i \(-0.287040\pi\)
−0.989443 + 0.144922i \(0.953707\pi\)
\(312\) −1.43560 + 2.48653i −0.0812748 + 0.140772i
\(313\) −0.600614 3.40625i −0.0339487 0.192533i 0.963117 0.269083i \(-0.0867206\pi\)
−0.997066 + 0.0765502i \(0.975609\pi\)
\(314\) 2.40323 + 13.6294i 0.135622 + 0.769152i
\(315\) 0.390275 0.675977i 0.0219895 0.0380870i
\(316\) −2.19250 3.79753i −0.123338 0.213628i
\(317\) 5.61174 4.70881i 0.315186 0.264473i −0.471445 0.881895i \(-0.656268\pi\)
0.786632 + 0.617422i \(0.211823\pi\)
\(318\) 5.94373 2.16334i 0.333308 0.121314i
\(319\) −1.59331 0.579918i −0.0892083 0.0324692i
\(320\) 0.597936 + 0.501728i 0.0334257 + 0.0280475i
\(321\) 0.0141625 0.0803194i 0.000790473 0.00448299i
\(322\) 2.77959 0.154901
\(323\) −24.7879 + 7.17211i −1.37923 + 0.399067i
\(324\) 1.00000 0.0555556
\(325\) 2.18913 12.4152i 0.121431 0.688669i
\(326\) 8.29097 + 6.95695i 0.459194 + 0.385310i
\(327\) −1.95078 0.710024i −0.107878 0.0392644i
\(328\) −0.244322 + 0.0889260i −0.0134904 + 0.00491012i
\(329\) 5.77472 4.84557i 0.318371 0.267145i
\(330\) −0.619589 1.07316i −0.0341073 0.0590755i
\(331\) −10.7027 + 18.5377i −0.588275 + 1.01892i 0.406183 + 0.913792i \(0.366859\pi\)
−0.994458 + 0.105131i \(0.966474\pi\)
\(332\) 1.92805 + 10.9345i 0.105816 + 0.600111i
\(333\) −0.333314 1.89032i −0.0182655 0.103589i
\(334\) −2.81570 + 4.87693i −0.154068 + 0.266854i
\(335\) −3.05216 5.28649i −0.166757 0.288832i
\(336\) −0.766044 + 0.642788i −0.0417912 + 0.0350669i
\(337\) −15.1711 + 5.52183i −0.826423 + 0.300794i −0.720390 0.693569i \(-0.756037\pi\)
−0.106033 + 0.994363i \(0.533815\pi\)
\(338\) −4.46939 1.62673i −0.243103 0.0884822i
\(339\) −0.963076 0.808117i −0.0523071 0.0438909i
\(340\) −0.802402 + 4.55065i −0.0435163 + 0.246793i
\(341\) 8.21423 0.444826
\(342\) −1.92019 3.91316i −0.103832 0.211600i
\(343\) −1.00000 −0.0539949
\(344\) −0.145001 + 0.822341i −0.00781793 + 0.0443377i
\(345\) 1.66202 + 1.39460i 0.0894802 + 0.0750828i
\(346\) 16.4608 + 5.99125i 0.884940 + 0.322092i
\(347\) 4.16625 1.51639i 0.223656 0.0814042i −0.227762 0.973717i \(-0.573141\pi\)
0.451418 + 0.892313i \(0.350918\pi\)
\(348\) −0.818155 + 0.686514i −0.0438577 + 0.0368010i
\(349\) −8.74412 15.1453i −0.468062 0.810707i 0.531272 0.847202i \(-0.321714\pi\)
−0.999334 + 0.0364940i \(0.988381\pi\)
\(350\) 2.19537 3.80249i 0.117347 0.203252i
\(351\) −0.498578 2.82758i −0.0266121 0.150925i
\(352\) 0.275679 + 1.56345i 0.0146937 + 0.0833322i
\(353\) −5.90895 + 10.2346i −0.314502 + 0.544733i −0.979331 0.202262i \(-0.935171\pi\)
0.664830 + 0.746995i \(0.268504\pi\)
\(354\) −2.60926 4.51938i −0.138681 0.240202i
\(355\) −1.41600 + 1.18816i −0.0751532 + 0.0630610i
\(356\) −6.41423 + 2.33459i −0.339954 + 0.123733i
\(357\) −5.56297 2.02475i −0.294423 0.107161i
\(358\) −8.72584 7.32185i −0.461175 0.386972i
\(359\) −4.89230 + 27.7456i −0.258206 + 1.46436i 0.529503 + 0.848308i \(0.322379\pi\)
−0.787708 + 0.616048i \(0.788733\pi\)
\(360\) −0.780550 −0.0411386
\(361\) −11.6257 + 15.0281i −0.611879 + 0.790951i
\(362\) 6.77914 0.356304
\(363\) −1.47247 + 8.35080i −0.0772847 + 0.438303i
\(364\) 2.19946 + 1.84557i 0.115283 + 0.0967341i
\(365\) −6.52062 2.37331i −0.341305 0.124225i
\(366\) −6.35895 + 2.31447i −0.332387 + 0.120979i
\(367\) −13.3950 + 11.2397i −0.699213 + 0.586710i −0.921550 0.388260i \(-0.873076\pi\)
0.222336 + 0.974970i \(0.428632\pi\)
\(368\) −1.38980 2.40720i −0.0724482 0.125484i
\(369\) 0.130001 0.225168i 0.00676759 0.0117218i
\(370\) 0.260168 + 1.47549i 0.0135255 + 0.0767069i
\(371\) −1.09836 6.22909i −0.0570238 0.323398i
\(372\) 2.58705 4.48090i 0.134132 0.232324i
\(373\) −17.9160 31.0314i −0.927654 1.60674i −0.787236 0.616652i \(-0.788489\pi\)
−0.140419 0.990092i \(-0.544845\pi\)
\(374\) −7.19959 + 6.04117i −0.372282 + 0.312381i
\(375\) 6.88790 2.50699i 0.355689 0.129460i
\(376\) −7.08375 2.57827i −0.365316 0.132964i
\(377\) 2.34909 + 1.97112i 0.120984 + 0.101518i
\(378\) 0.173648 0.984808i 0.00893150 0.0506530i
\(379\) −26.4928 −1.36084 −0.680422 0.732820i \(-0.738204\pi\)
−0.680422 + 0.732820i \(0.738204\pi\)
\(380\) 1.49881 + 3.05442i 0.0768872 + 0.156689i
\(381\) 6.48153 0.332059
\(382\) −0.126529 + 0.717580i −0.00647378 + 0.0367146i
\(383\) 2.70089 + 2.26632i 0.138009 + 0.115803i 0.709179 0.705028i \(-0.249066\pi\)
−0.571170 + 0.820832i \(0.693510\pi\)
\(384\) 0.939693 + 0.342020i 0.0479535 + 0.0174536i
\(385\) −1.16445 + 0.423824i −0.0593457 + 0.0216001i
\(386\) −2.53275 + 2.12523i −0.128913 + 0.108171i
\(387\) −0.417513 0.723155i −0.0212234 0.0367600i
\(388\) −5.08562 + 8.80855i −0.258183 + 0.447186i
\(389\) −1.98526 11.2590i −0.100657 0.570853i −0.992866 0.119232i \(-0.961957\pi\)
0.892210 0.451622i \(-0.149154\pi\)
\(390\) 0.389165 + 2.20707i 0.0197062 + 0.111759i
\(391\) 8.22758 14.2506i 0.416087 0.720683i
\(392\) 0.500000 + 0.866025i 0.0252538 + 0.0437409i
\(393\) −14.3579 + 12.0477i −0.724262 + 0.607728i
\(394\) 19.5097 7.10096i 0.982886 0.357741i
\(395\) −3.21630 1.17064i −0.161830 0.0589012i
\(396\) −1.21615 1.02047i −0.0611138 0.0512806i
\(397\) −5.22009 + 29.6046i −0.261989 + 1.48581i 0.515485 + 0.856899i \(0.327612\pi\)
−0.777474 + 0.628915i \(0.783499\pi\)
\(398\) −21.0649 −1.05589
\(399\) −4.18715 + 1.21151i −0.209620 + 0.0606513i
\(400\) −4.39074 −0.219537
\(401\) 3.24643 18.4114i 0.162119 0.919421i −0.789867 0.613278i \(-0.789850\pi\)
0.951986 0.306143i \(-0.0990385\pi\)
\(402\) −5.99087 5.02694i −0.298798 0.250721i
\(403\) −13.9599 5.08100i −0.695393 0.253102i
\(404\) −12.4871 + 4.54493i −0.621256 + 0.226119i
\(405\) 0.597936 0.501728i 0.0297117 0.0249311i
\(406\) 0.534013 + 0.924938i 0.0265026 + 0.0459039i
\(407\) −1.52365 + 2.63904i −0.0755246 + 0.130813i
\(408\) 1.02799 + 5.83005i 0.0508933 + 0.288630i
\(409\) 1.28619 + 7.29434i 0.0635979 + 0.360682i 0.999954 + 0.00962915i \(0.00306510\pi\)
−0.936356 + 0.351053i \(0.885824\pi\)
\(410\) −0.101472 + 0.175755i −0.00501137 + 0.00867994i
\(411\) −2.18983 3.79290i −0.108016 0.187090i
\(412\) 4.37830 3.67383i 0.215703 0.180997i
\(413\) −4.90381 + 1.78484i −0.241301 + 0.0878263i
\(414\) 2.61196 + 0.950677i 0.128371 + 0.0467232i
\(415\) 6.63902 + 5.57080i 0.325897 + 0.273460i
\(416\) 0.498578 2.82758i 0.0244448 0.138633i
\(417\) 0.601145 0.0294382
\(418\) −1.65803 + 6.71849i −0.0810967 + 0.328612i
\(419\) 30.5420 1.49208 0.746038 0.665903i \(-0.231954\pi\)
0.746038 + 0.665903i \(0.231954\pi\)
\(420\) −0.135541 + 0.768692i −0.00661373 + 0.0375083i
\(421\) −11.0839 9.30050i −0.540196 0.453278i 0.331409 0.943487i \(-0.392476\pi\)
−0.871605 + 0.490209i \(0.836921\pi\)
\(422\) 22.8345 + 8.31108i 1.11157 + 0.404577i
\(423\) 7.08375 2.57827i 0.344424 0.125360i
\(424\) −4.84537 + 4.06575i −0.235312 + 0.197450i
\(425\) −12.9966 22.5107i −0.630426 1.09193i
\(426\) −1.18407 + 2.05087i −0.0573683 + 0.0993648i
\(427\) 1.17509 + 6.66424i 0.0568664 + 0.322505i
\(428\) 0.0141625 + 0.0803194i 0.000684569 + 0.00388239i
\(429\) −2.27911 + 3.94754i −0.110037 + 0.190589i
\(430\) 0.325890 + 0.564459i 0.0157158 + 0.0272206i
\(431\) −4.64156 + 3.89473i −0.223576 + 0.187603i −0.747695 0.664043i \(-0.768839\pi\)
0.524119 + 0.851645i \(0.324395\pi\)
\(432\) −0.939693 + 0.342020i −0.0452110 + 0.0164555i
\(433\) −28.8443 10.4985i −1.38617 0.504524i −0.462126 0.886814i \(-0.652913\pi\)
−0.924042 + 0.382290i \(0.875136\pi\)
\(434\) −3.96358 3.32584i −0.190258 0.159646i
\(435\) −0.144761 + 0.820983i −0.00694078 + 0.0393631i
\(436\) 2.07597 0.0994211
\(437\) −1.29532 12.0465i −0.0619637 0.576264i
\(438\) −8.89000 −0.424781
\(439\) −5.72285 + 32.4559i −0.273137 + 1.54903i 0.471682 + 0.881769i \(0.343647\pi\)
−0.744819 + 0.667266i \(0.767464\pi\)
\(440\) 0.949266 + 0.796528i 0.0452545 + 0.0379730i
\(441\) −0.939693 0.342020i −0.0447473 0.0162867i
\(442\) 15.9724 5.81347i 0.759728 0.276519i
\(443\) −3.02720 + 2.54013i −0.143827 + 0.120685i −0.711862 0.702319i \(-0.752148\pi\)
0.568036 + 0.823004i \(0.307704\pi\)
\(444\) 0.959739 + 1.66232i 0.0455472 + 0.0788900i
\(445\) −2.66397 + 4.61414i −0.126284 + 0.218731i
\(446\) 2.94624 + 16.7090i 0.139509 + 0.791192i
\(447\) 3.40443 + 19.3075i 0.161024 + 0.913213i
\(448\) 0.500000 0.866025i 0.0236228 0.0409159i
\(449\) 0.667755 + 1.15659i 0.0315133 + 0.0545826i 0.881352 0.472460i \(-0.156634\pi\)
−0.849839 + 0.527043i \(0.823301\pi\)
\(450\) 3.36350 2.82231i 0.158557 0.133045i
\(451\) −0.387878 + 0.141176i −0.0182645 + 0.00664773i
\(452\) 1.18139 + 0.429990i 0.0555678 + 0.0202250i
\(453\) 11.3395 + 9.51501i 0.532778 + 0.447054i
\(454\) −4.07274 + 23.0977i −0.191143 + 1.08403i
\(455\) 2.24111 0.105065
\(456\) 3.14277 + 3.02043i 0.147174 + 0.141444i
\(457\) 16.7969 0.785726 0.392863 0.919597i \(-0.371485\pi\)
0.392863 + 0.919597i \(0.371485\pi\)
\(458\) −0.583844 + 3.31114i −0.0272812 + 0.154719i
\(459\) −4.53497 3.80529i −0.211674 0.177616i
\(460\) −2.03877 0.742052i −0.0950581 0.0345983i
\(461\) 25.7024 9.35492i 1.19708 0.435702i 0.334877 0.942262i \(-0.391305\pi\)
0.862205 + 0.506560i \(0.169083\pi\)
\(462\) −1.21615 + 1.02047i −0.0565804 + 0.0474766i
\(463\) −7.22492 12.5139i −0.335770 0.581571i 0.647862 0.761758i \(-0.275663\pi\)
−0.983633 + 0.180186i \(0.942330\pi\)
\(464\) 0.534013 0.924938i 0.0247909 0.0429391i
\(465\) −0.701303 3.97728i −0.0325221 0.184442i
\(466\) 0.694011 + 3.93593i 0.0321494 + 0.182328i
\(467\) −15.0439 + 26.0567i −0.696147 + 1.20576i 0.273646 + 0.961831i \(0.411770\pi\)
−0.969793 + 0.243931i \(0.921563\pi\)
\(468\) 1.43560 + 2.48653i 0.0663606 + 0.114940i
\(469\) −5.99087 + 5.02694i −0.276633 + 0.232122i
\(470\) −5.52922 + 2.01247i −0.255044 + 0.0928284i
\(471\) 13.0050 + 4.73344i 0.599240 + 0.218105i
\(472\) 3.99762 + 3.35440i 0.184005 + 0.154399i
\(473\) −0.230199 + 1.30552i −0.0105846 + 0.0600280i
\(474\) −4.38501 −0.201410
\(475\) −17.5028 7.74255i −0.803082 0.355252i
\(476\) 5.91999 0.271342
\(477\) 1.09836 6.22909i 0.0502903 0.285210i
\(478\) −18.7358 15.7212i −0.856957 0.719073i
\(479\) −24.4633 8.90390i −1.11775 0.406830i −0.283923 0.958847i \(-0.591636\pi\)
−0.833832 + 0.552018i \(0.813858\pi\)
\(480\) 0.733478 0.266964i 0.0334785 0.0121852i
\(481\) 4.22182 3.54253i 0.192499 0.161525i
\(482\) 3.66276 + 6.34409i 0.166834 + 0.288966i
\(483\) 1.38980 2.40720i 0.0632380 0.109531i
\(484\) −1.47247 8.35080i −0.0669305 0.379582i
\(485\) 1.37862 + 7.81855i 0.0625999 + 0.355022i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) −18.9094 32.7521i −0.856867 1.48414i −0.874902 0.484301i \(-0.839074\pi\)
0.0180343 0.999837i \(-0.494259\pi\)
\(488\) 5.18386 4.34978i 0.234662 0.196905i
\(489\) 10.1704 3.70171i 0.459920 0.167397i
\(490\) 0.733478 + 0.266964i 0.0331351 + 0.0120602i
\(491\) 0.573546 + 0.481262i 0.0258838 + 0.0217191i 0.655638 0.755076i \(-0.272400\pi\)
−0.629754 + 0.776795i \(0.716844\pi\)
\(492\) −0.0451489 + 0.256052i −0.00203547 + 0.0115437i
\(493\) 6.32270 0.284760
\(494\) 6.97357 10.3924i 0.313756 0.467574i
\(495\) −1.23918 −0.0556969
\(496\) −0.898472 + 5.09549i −0.0403426 + 0.228794i
\(497\) 1.81410 + 1.52221i 0.0813734 + 0.0682804i
\(498\) 10.4336 + 3.79753i 0.467542 + 0.170171i
\(499\) 8.37311 3.04756i 0.374832 0.136428i −0.147733 0.989027i \(-0.547198\pi\)
0.522565 + 0.852600i \(0.324975\pi\)
\(500\) −5.61507 + 4.71160i −0.251113 + 0.210709i
\(501\) 2.81570 + 4.87693i 0.125796 + 0.217885i
\(502\) −5.32345 + 9.22048i −0.237597 + 0.411530i
\(503\) 3.02210 + 17.1392i 0.134749 + 0.764198i 0.975034 + 0.222054i \(0.0712761\pi\)
−0.840286 + 0.542144i \(0.817613\pi\)
\(504\) 0.173648 + 0.984808i 0.00773490 + 0.0438668i
\(505\) −5.18617 + 8.98271i −0.230781 + 0.399725i
\(506\) −2.20640 3.82160i −0.0980864 0.169891i
\(507\) −3.64348 + 3.05724i −0.161813 + 0.135777i
\(508\) −6.09065 + 2.21682i −0.270229 + 0.0983553i
\(509\) −4.42069 1.60900i −0.195944 0.0713177i 0.242184 0.970230i \(-0.422136\pi\)
−0.438128 + 0.898913i \(0.644358\pi\)
\(510\) 3.53977 + 2.97022i 0.156744 + 0.131524i
\(511\) −1.54373 + 8.75494i −0.0682907 + 0.387296i
\(512\) −1.00000 −0.0441942
\(513\) −4.34900 0.293645i −0.192013 0.0129648i
\(514\) 9.90221 0.436768
\(515\) 0.774681 4.39343i 0.0341365 0.193598i
\(516\) 0.639668 + 0.536745i 0.0281598 + 0.0236289i
\(517\) −11.2459 4.09319i −0.494596 0.180018i
\(518\) 1.80372 0.656500i 0.0792509 0.0288450i
\(519\) 13.4190 11.2599i 0.589028 0.494254i
\(520\) −1.12056 1.94086i −0.0491397 0.0851124i
\(521\) 6.52037 11.2936i 0.285662 0.494782i −0.687107 0.726556i \(-0.741120\pi\)
0.972770 + 0.231774i \(0.0744530\pi\)
\(522\) 0.185461 + 1.05180i 0.00811740 + 0.0460360i
\(523\) 0.391954 + 2.22288i 0.0171390 + 0.0971999i 0.992177 0.124837i \(-0.0398407\pi\)
−0.975038 + 0.222037i \(0.928730\pi\)
\(524\) 9.37147 16.2319i 0.409395 0.709092i
\(525\) −2.19537 3.80249i −0.0958138 0.165954i
\(526\) 9.97471 8.36978i 0.434918 0.364940i
\(527\) −28.7833 + 10.4763i −1.25382 + 0.456353i
\(528\) 1.49183 + 0.542981i 0.0649235 + 0.0236302i
\(529\) −11.7005 9.81784i −0.508715 0.426863i
\(530\) −0.857323 + 4.86212i −0.0372397 + 0.211197i
\(531\) −5.21852 −0.226465
\(532\) 3.52028 2.57054i 0.152623 0.111447i
\(533\) 0.746517 0.0323353
\(534\) −1.18530 + 6.72218i −0.0512930 + 0.290897i
\(535\) 0.0487668 + 0.0409202i 0.00210837 + 0.00176913i
\(536\) 7.34889 + 2.67478i 0.317424 + 0.115533i
\(537\) −10.7038 + 3.89587i −0.461904 + 0.168119i
\(538\) −21.2042 + 17.7924i −0.914176 + 0.767085i
\(539\) 0.793785 + 1.37488i 0.0341907 + 0.0592201i
\(540\) −0.390275 + 0.675977i −0.0167948 + 0.0290894i
\(541\) −7.53564 42.7367i −0.323982 1.83740i −0.516732 0.856147i \(-0.672852\pi\)
0.192750 0.981248i \(-0.438260\pi\)
\(542\) 0.458771 + 2.60182i 0.0197059 + 0.111758i
\(543\) 3.38957 5.87091i 0.145460 0.251945i
\(544\) −2.95999 5.12686i −0.126909 0.219812i
\(545\) 1.24130 1.04157i 0.0531714 0.0446161i
\(546\) 2.69804 0.982007i 0.115466 0.0420260i
\(547\) 7.79298 + 2.83641i 0.333204 + 0.121276i 0.503204 0.864168i \(-0.332155\pi\)
−0.170000 + 0.985444i \(0.554377\pi\)
\(548\) 3.35501 + 2.81519i 0.143319 + 0.120259i
\(549\) −1.17509 + 6.66424i −0.0501514 + 0.284423i
\(550\) −6.97061 −0.297228
\(551\) 3.75975 2.74540i 0.160171 0.116958i
\(552\) −2.77959 −0.118307
\(553\) −0.761448 + 4.31839i −0.0323801 + 0.183637i
\(554\) 10.8577 + 9.11066i 0.461298 + 0.387075i
\(555\) 1.40789 + 0.512431i 0.0597618 + 0.0217515i
\(556\) −0.564891 + 0.205604i −0.0239567 + 0.00871954i
\(557\) 2.75532 2.31199i 0.116747 0.0979621i −0.582545 0.812798i \(-0.697943\pi\)
0.699292 + 0.714836i \(0.253499\pi\)
\(558\) −2.58705 4.48090i −0.109518 0.189691i
\(559\) 1.19876 2.07632i 0.0507023 0.0878189i
\(560\) −0.135541 0.768692i −0.00572766 0.0324832i
\(561\) 1.63201 + 9.25561i 0.0689037 + 0.390772i
\(562\) 7.33144 12.6984i 0.309258 0.535651i
\(563\) −1.31378 2.27553i −0.0553691 0.0959022i 0.837012 0.547184i \(-0.184300\pi\)
−0.892381 + 0.451282i \(0.850967\pi\)
\(564\) −5.77472 + 4.84557i −0.243160 + 0.204035i
\(565\) 0.922133 0.335629i 0.0387944 0.0141200i
\(566\) −22.4374 8.16653i −0.943113 0.343265i
\(567\) −0.766044 0.642788i −0.0321708 0.0269945i
\(568\) 0.411223 2.33216i 0.0172545 0.0978552i
\(569\) −6.04517 −0.253427 −0.126713 0.991939i \(-0.540443\pi\)
−0.126713 + 0.991939i \(0.540443\pi\)
\(570\) 3.39461 + 0.229205i 0.142185 + 0.00960034i
\(571\) 45.3237 1.89674 0.948370 0.317168i \(-0.102732\pi\)
0.948370 + 0.317168i \(0.102732\pi\)
\(572\) 0.791528 4.48898i 0.0330954 0.187694i
\(573\) 0.558178 + 0.468367i 0.0233182 + 0.0195663i
\(574\) 0.244322 + 0.0889260i 0.0101978 + 0.00371170i
\(575\) 11.4685 4.17418i 0.478268 0.174075i
\(576\) 0.766044 0.642788i 0.0319185 0.0267828i
\(577\) 7.56422 + 13.1016i 0.314902 + 0.545427i 0.979417 0.201848i \(-0.0646949\pi\)
−0.664514 + 0.747276i \(0.731362\pi\)
\(578\) 9.02312 15.6285i 0.375312 0.650060i
\(579\) 0.574127 + 3.25604i 0.0238599 + 0.135316i
\(580\) −0.144761 0.820983i −0.00601089 0.0340895i
\(581\) 5.55161 9.61567i 0.230320 0.398925i
\(582\) 5.08562 + 8.80855i 0.210806 + 0.365126i
\(583\) −7.69237 + 6.45466i −0.318585 + 0.267325i
\(584\) 8.35387 3.04056i 0.345686 0.125819i
\(585\) 2.10596 + 0.766506i 0.0870707 + 0.0316911i
\(586\) 14.9101 + 12.5111i 0.615932 + 0.516828i
\(587\) −2.22739 + 12.6322i −0.0919343 + 0.521385i 0.903709 + 0.428146i \(0.140833\pi\)
−0.995644 + 0.0932390i \(0.970278\pi\)
\(588\) 1.00000 0.0412393
\(589\) −12.5668 + 18.7277i −0.517808 + 0.771663i
\(590\) 4.07332 0.167696
\(591\) 3.60525 20.4464i 0.148300 0.841052i
\(592\) −1.47041 1.23382i −0.0604333 0.0507095i
\(593\) 37.5322 + 13.6606i 1.54126 + 0.560974i 0.966348 0.257238i \(-0.0828124\pi\)
0.574916 + 0.818212i \(0.305035\pi\)
\(594\) −1.49183 + 0.542981i −0.0612104 + 0.0222788i
\(595\) 3.53977 2.97022i 0.145117 0.121767i
\(596\) −9.80268 16.9787i −0.401533 0.695476i
\(597\) −10.5325 + 18.2427i −0.431065 + 0.746626i
\(598\) 1.38584 + 7.85952i 0.0566714 + 0.321400i
\(599\) −3.07578 17.4436i −0.125673 0.712727i −0.980906 0.194483i \(-0.937697\pi\)
0.855233 0.518244i \(-0.173414\pi\)
\(600\) −2.19537 + 3.80249i −0.0896256 + 0.155236i
\(601\) −1.40927 2.44092i −0.0574852 0.0995673i 0.835851 0.548957i \(-0.184975\pi\)
−0.893336 + 0.449390i \(0.851642\pi\)
\(602\) 0.639668 0.536745i 0.0260709 0.0218761i
\(603\) −7.34889 + 2.67478i −0.299270 + 0.108925i
\(604\) −13.9100 5.06283i −0.565990 0.206004i
\(605\) −5.07027 4.25447i −0.206136 0.172969i
\(606\) −2.30752 + 13.0866i −0.0937367 + 0.531607i
\(607\) −19.3696 −0.786189 −0.393095 0.919498i \(-0.628595\pi\)
−0.393095 + 0.919498i \(0.628595\pi\)
\(608\) −3.98629 1.76338i −0.161665 0.0715145i
\(609\) 1.06803 0.0432786
\(610\) 0.917214 5.20178i 0.0371369 0.210614i
\(611\) 16.5804 + 13.9126i 0.670770 + 0.562843i
\(612\) 5.56297 + 2.02475i 0.224870 + 0.0818459i
\(613\) 29.7954 10.8446i 1.20342 0.438010i 0.339006 0.940784i \(-0.389909\pi\)
0.864418 + 0.502774i \(0.167687\pi\)
\(614\) 19.2538 16.1559i 0.777020 0.651997i
\(615\) 0.101472 + 0.175755i 0.00409176 + 0.00708714i
\(616\) 0.793785 1.37488i 0.0319825 0.0553953i
\(617\) 8.17398 + 46.3570i 0.329072 + 1.86626i 0.479359 + 0.877619i \(0.340869\pi\)
−0.150287 + 0.988642i \(0.548020\pi\)
\(618\) −0.992480 5.62863i −0.0399234 0.226417i
\(619\) 8.16699 14.1456i 0.328259 0.568562i −0.653907 0.756575i \(-0.726871\pi\)
0.982167 + 0.188013i \(0.0602047\pi\)
\(620\) 2.01932 + 3.49757i 0.0810979 + 0.140466i
\(621\) 2.12929 1.78669i 0.0854456 0.0716974i
\(622\) 12.2370 4.45391i 0.490660 0.178586i
\(623\) 6.41423 + 2.33459i 0.256981 + 0.0935333i
\(624\) −2.19946 1.84557i −0.0880491 0.0738819i
\(625\) 2.81871 15.9857i 0.112748 0.639428i
\(626\) 3.45880 0.138241
\(627\) 4.98937 + 4.79514i 0.199256 + 0.191499i
\(628\) −13.8397 −0.552262
\(629\) 1.97321 11.1906i 0.0786771 0.446200i
\(630\) 0.597936 + 0.501728i 0.0238224 + 0.0199893i
\(631\) 17.0322 + 6.19920i 0.678040 + 0.246786i 0.658006 0.753013i \(-0.271400\pi\)
0.0200341 + 0.999799i \(0.493623\pi\)
\(632\) 4.12056 1.49976i 0.163907 0.0596573i
\(633\) 18.6149 15.6197i 0.739874 0.620828i
\(634\) 3.66280 + 6.34416i 0.145468 + 0.251959i
\(635\) −2.52958 + 4.38137i −0.100383 + 0.173869i
\(636\) 1.09836 + 6.22909i 0.0435527 + 0.247000i
\(637\) −0.498578 2.82758i −0.0197544 0.112033i
\(638\) 0.847783 1.46840i 0.0335640 0.0581346i
\(639\) 1.18407 + 2.05087i 0.0468410 + 0.0811310i
\(640\) −0.597936 + 0.501728i −0.0236355 + 0.0198325i
\(641\) 16.4986 6.00502i 0.651657 0.237184i 0.00502702 0.999987i \(-0.498400\pi\)
0.646630 + 0.762803i \(0.276178\pi\)
\(642\) 0.0766399 + 0.0278946i 0.00302474 + 0.00110091i
\(643\) 31.4975 + 26.4295i 1.24214 + 1.04228i 0.997354 + 0.0727025i \(0.0231624\pi\)
0.244787 + 0.969577i \(0.421282\pi\)
\(644\) −0.482671 + 2.73737i −0.0190199 + 0.107867i
\(645\) 0.651781 0.0256638
\(646\) −2.75878 25.6567i −0.108543 1.00945i
\(647\) −6.81556 −0.267947 −0.133974 0.990985i \(-0.542774\pi\)
−0.133974 + 0.990985i \(0.542774\pi\)
\(648\) −0.173648 + 0.984808i −0.00682154 + 0.0386869i
\(649\) 6.34650 + 5.32535i 0.249122 + 0.209038i
\(650\) 11.8464 + 4.31174i 0.464654 + 0.169120i
\(651\) −4.86206 + 1.76964i −0.190559 + 0.0693578i
\(652\) −8.29097 + 6.95695i −0.324699 + 0.272455i
\(653\) 7.75131 + 13.4257i 0.303332 + 0.525387i 0.976889 0.213749i \(-0.0685675\pi\)
−0.673556 + 0.739136i \(0.735234\pi\)
\(654\) 1.03799 1.79785i 0.0405885 0.0703013i
\(655\) −2.54044 14.4076i −0.0992632 0.562950i
\(656\) −0.0451489 0.256052i −0.00176277 0.00999716i
\(657\) −4.44500 + 7.69897i −0.173416 + 0.300365i
\(658\) 3.76918 + 6.52842i 0.146938 + 0.254504i
\(659\) 11.4732 9.62719i 0.446934 0.375022i −0.391363 0.920236i \(-0.627996\pi\)
0.838297 + 0.545215i \(0.183552\pi\)
\(660\) 1.16445 0.423824i 0.0453260 0.0164973i
\(661\) 5.36645 + 1.95323i 0.208731 + 0.0759718i 0.444270 0.895893i \(-0.353463\pi\)
−0.235539 + 0.971865i \(0.575685\pi\)
\(662\) −16.3975 13.7592i −0.637308 0.534765i
\(663\) 2.95158 16.7392i 0.114630 0.650097i
\(664\) −11.1032 −0.430889
\(665\) 0.815191 3.30324i 0.0316117 0.128094i
\(666\) 1.91948 0.0743782
\(667\) −0.515506 + 2.92358i −0.0199605 + 0.113201i
\(668\) −4.31390 3.61979i −0.166910 0.140054i
\(669\) 15.9435 + 5.80296i 0.616412 + 0.224356i
\(670\) 5.73618 2.08780i 0.221608 0.0806587i
\(671\) 8.22974 6.90557i 0.317706 0.266587i
\(672\) −0.500000 0.866025i −0.0192879 0.0334077i
\(673\) −24.2014 + 41.9180i −0.932894 + 1.61582i −0.154547 + 0.987985i \(0.549392\pi\)
−0.778347 + 0.627834i \(0.783942\pi\)
\(674\) −2.80351 15.8995i −0.107987 0.612425i
\(675\) −0.762444 4.32404i −0.0293465 0.166432i
\(676\) 2.37811 4.11901i 0.0914659 0.158424i
\(677\) −17.3402 30.0341i −0.666437 1.15430i −0.978894 0.204371i \(-0.934485\pi\)
0.312457 0.949932i \(-0.398848\pi\)
\(678\) 0.963076 0.808117i 0.0369867 0.0310355i
\(679\) 9.55783 3.47877i 0.366796 0.133503i
\(680\) −4.34218 1.58042i −0.166515 0.0606065i
\(681\) 17.9668 + 15.0759i 0.688490 + 0.577711i
\(682\) −1.42639 + 8.08944i −0.0546192 + 0.309761i
\(683\) −0.661766 −0.0253218 −0.0126609 0.999920i \(-0.504030\pi\)
−0.0126609 + 0.999920i \(0.504030\pi\)
\(684\) 4.18715 1.21151i 0.160100 0.0463232i
\(685\) 3.41855 0.130616
\(686\) 0.173648 0.984808i 0.00662992 0.0376001i
\(687\) 2.57561 + 2.16119i 0.0982657 + 0.0824547i
\(688\) −0.784669 0.285596i −0.0299152 0.0108882i
\(689\) 17.0656 6.21138i 0.650148 0.236635i
\(690\) −1.66202 + 1.39460i −0.0632720 + 0.0530915i
\(691\) 21.6688 + 37.5315i 0.824321 + 1.42777i 0.902437 + 0.430822i \(0.141776\pi\)
−0.0781153 + 0.996944i \(0.524890\pi\)
\(692\) −8.75863 + 15.1704i −0.332953 + 0.576691i
\(693\) 0.275679 + 1.56345i 0.0104722 + 0.0593906i
\(694\) 0.769893 + 4.36628i 0.0292247 + 0.165742i
\(695\) −0.234612 + 0.406360i −0.00889934 + 0.0154141i
\(696\) −0.534013 0.924938i −0.0202417 0.0350597i
\(697\) 1.17910 0.989385i 0.0446617 0.0374756i
\(698\) 16.4336 5.98133i 0.622020 0.226397i
\(699\) 3.75562 + 1.36693i 0.142051 + 0.0517022i
\(700\) 3.36350 + 2.82231i 0.127128 + 0.106673i
\(701\) −1.12315 + 6.36971i −0.0424208 + 0.240580i −0.998644 0.0520577i \(-0.983422\pi\)
0.956223 + 0.292638i \(0.0945331\pi\)
\(702\) 2.87120 0.108366
\(703\) −3.68577 7.51123i −0.139011 0.283291i
\(704\) −1.58757 −0.0598338
\(705\) −1.02176 + 5.79468i −0.0384817 + 0.218240i
\(706\) −9.05304 7.59640i −0.340716 0.285894i
\(707\) 12.4871 + 4.54493i 0.469625 + 0.170930i
\(708\) 4.90381 1.78484i 0.184296 0.0670784i
\(709\) 6.45803 5.41893i 0.242536 0.203512i −0.513414 0.858141i \(-0.671620\pi\)
0.755950 + 0.654629i \(0.227175\pi\)
\(710\) −0.924225 1.60081i −0.0346856 0.0600771i
\(711\) −2.19250 + 3.79753i −0.0822253 + 0.142418i
\(712\) −1.18530 6.72218i −0.0444211 0.251924i
\(713\) −2.49739 14.1634i −0.0935279 0.530423i
\(714\) 2.95999 5.12686i 0.110775 0.191868i
\(715\) −1.77896 3.08125i −0.0665294 0.115232i
\(716\) 8.72584 7.32185i 0.326100 0.273630i
\(717\) −22.9829 + 8.36510i −0.858313 + 0.312400i
\(718\) −26.4745 9.63594i −0.988021 0.359610i
\(719\) −0.135147 0.113402i −0.00504012 0.00422916i 0.640264 0.768155i \(-0.278825\pi\)
−0.645304 + 0.763926i \(0.723269\pi\)
\(720\) 0.135541 0.768692i 0.00505132 0.0286475i
\(721\) −5.71546 −0.212855
\(722\) −12.7810 14.0587i −0.475659 0.523210i
\(723\) 7.32553 0.272439
\(724\) −1.17719 + 6.67615i −0.0437497 + 0.248117i
\(725\) 3.59231 + 3.01430i 0.133415 + 0.111948i
\(726\) −7.96824 2.90020i −0.295729 0.107637i
\(727\) −0.901959 + 0.328286i −0.0334518 + 0.0121755i −0.358692 0.933456i \(-0.616777\pi\)
0.325240 + 0.945631i \(0.394555\pi\)
\(728\) −2.19946 + 1.84557i −0.0815176 + 0.0684014i
\(729\) −0.500000 0.866025i −0.0185185 0.0320750i
\(730\) 3.46955 6.00943i 0.128414 0.222419i
\(731\) −0.858403 4.86825i −0.0317492 0.180059i
\(732\) −1.17509 6.66424i −0.0434324 0.246317i
\(733\) −13.4886 + 23.3629i −0.498212 + 0.862928i −0.999998 0.00206366i \(-0.999343\pi\)
0.501786 + 0.864992i \(0.332676\pi\)
\(734\) −8.74296 15.1433i −0.322709 0.558948i
\(735\) 0.597936 0.501728i 0.0220552 0.0185065i
\(736\) 2.61196 0.950677i 0.0962783 0.0350424i
\(737\) 11.6669 + 4.24640i 0.429755 + 0.156418i
\(738\) 0.199173 + 0.167126i 0.00733167 + 0.00615200i
\(739\) −8.08057 + 45.8272i −0.297249 + 1.68578i 0.360672 + 0.932693i \(0.382548\pi\)
−0.657920 + 0.753088i \(0.728564\pi\)
\(740\) −1.49825 −0.0550767
\(741\) −5.51326 11.2355i −0.202535 0.412745i
\(742\) 6.32518 0.232205
\(743\) −0.736056 + 4.17438i −0.0270033 + 0.153143i −0.995328 0.0965509i \(-0.969219\pi\)
0.968325 + 0.249694i \(0.0803301\pi\)
\(744\) 3.96358 + 3.32584i 0.145312 + 0.121931i
\(745\) −14.3801 5.23392i −0.526846 0.191756i
\(746\) 33.6710 12.2553i 1.23278 0.448697i
\(747\) 8.50556 7.13701i 0.311202 0.261130i
\(748\) −4.69920 8.13925i −0.171820 0.297600i
\(749\) 0.0407792 0.0706317i 0.00149004 0.00258083i
\(750\) 1.27283 + 7.21859i 0.0464773 + 0.263586i
\(751\) −8.68924 49.2791i −0.317075 1.79822i −0.560343 0.828261i \(-0.689331\pi\)
0.243268 0.969959i \(-0.421781\pi\)
\(752\) 3.76918 6.52842i 0.137448 0.238067i
\(753\) 5.32345 + 9.22048i 0.193997 + 0.336013i
\(754\) −2.34909 + 1.97112i −0.0855486 + 0.0717838i
\(755\) −10.8575 + 3.95179i −0.395144 + 0.143821i
\(756\) 0.939693 + 0.342020i 0.0341763 + 0.0124392i
\(757\) 4.93409 + 4.14020i 0.179333 + 0.150478i 0.728035 0.685540i \(-0.240434\pi\)
−0.548703 + 0.836018i \(0.684878\pi\)
\(758\) 4.60043 26.0903i 0.167095 0.947643i
\(759\) −4.41280 −0.160174
\(760\) −3.26828 + 0.945643i −0.118553 + 0.0343021i
\(761\) −33.4665 −1.21316 −0.606580 0.795022i \(-0.707459\pi\)
−0.606580 + 0.795022i \(0.707459\pi\)
\(762\) −1.12551 + 6.38307i −0.0407728 + 0.231234i
\(763\) −1.59029 1.33441i −0.0575723 0.0483089i
\(764\) −0.684707 0.249213i −0.0247718 0.00901621i
\(765\) 4.34218 1.58042i 0.156992 0.0571403i
\(766\) −2.70089 + 2.26632i −0.0975872 + 0.0818854i
\(767\) −7.49171 12.9760i −0.270510 0.468537i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) 0.318945 + 1.80883i 0.0115015 + 0.0652281i 0.990018 0.140939i \(-0.0450121\pi\)
−0.978517 + 0.206167i \(0.933901\pi\)
\(770\) −0.215181 1.22035i −0.00775459 0.0439784i
\(771\) 4.95111 8.57557i 0.178310 0.308842i
\(772\) −1.65313 2.86331i −0.0594975 0.103053i
\(773\) 20.4715 17.1776i 0.736307 0.617835i −0.195536 0.980697i \(-0.562645\pi\)
0.931843 + 0.362861i \(0.118200\pi\)
\(774\) 0.784669 0.285596i 0.0282043 0.0102655i
\(775\) −21.3480 7.77005i −0.766844 0.279108i
\(776\) −7.79162 6.53794i −0.279703 0.234698i
\(777\) 0.333314 1.89032i 0.0119576 0.0678147i
\(778\) 11.4327 0.409881
\(779\) 0.271541 1.10031i 0.00972896 0.0394228i
\(780\) −2.24111 −0.0802448
\(781\) 0.652845 3.70247i 0.0233606 0.132485i
\(782\) 12.6054 + 10.5772i 0.450768 + 0.378239i
\(783\) 1.00362 + 0.365286i 0.0358663 + 0.0130543i
\(784\) −0.939693 + 0.342020i −0.0335605 + 0.0122150i
\(785\) −8.27523 + 6.94375i −0.295356 + 0.247833i
\(786\) −9.37147 16.2319i −0.334269 0.578971i
\(787\) −3.98441 + 6.90121i −0.142029 + 0.246001i −0.928261 0.371931i \(-0.878696\pi\)
0.786232 + 0.617932i \(0.212029\pi\)
\(788\) 3.60525 + 20.4464i 0.128432 + 0.728373i
\(789\) −2.26108 12.8232i −0.0804967 0.456520i
\(790\) 1.71136 2.96416i 0.0608874 0.105460i
\(791\) −0.628603 1.08877i −0.0223506 0.0387123i
\(792\) 1.21615 1.02047i 0.0432140 0.0362608i
\(793\) −18.2578 + 6.64529i −0.648353 + 0.235981i
\(794\) −28.2484 10.2816i −1.00250 0.364880i
\(795\) 3.78206 + 3.17352i 0.134136 + 0.112553i
\(796\) 3.65788 20.7449i 0.129650 0.735283i
\(797\) −14.4987 −0.513569 −0.256785 0.966469i \(-0.582663\pi\)
−0.256785 + 0.966469i \(0.582663\pi\)
\(798\) −0.466011 4.33392i −0.0164966 0.153419i
\(799\) 44.6270 1.57879
\(800\) 0.762444 4.32404i 0.0269565 0.152878i
\(801\) 5.22893 + 4.38759i 0.184755 + 0.155028i
\(802\) 17.5679 + 6.39421i 0.620346 + 0.225787i
\(803\) 13.2623 4.82710i 0.468018 0.170345i
\(804\) 5.99087 5.02694i 0.211282 0.177286i
\(805\) 1.08481 + 1.87894i 0.0382344 + 0.0662240i
\(806\) 7.42792 12.8655i 0.261637 0.453169i
\(807\) 4.80659 + 27.2595i 0.169200 + 0.959581i
\(808\) −2.30752 13.0866i −0.0811783 0.460385i
\(809\) −16.4939 + 28.5683i −0.579895 + 1.00441i 0.415596 + 0.909549i \(0.363573\pi\)
−0.995491 + 0.0948584i \(0.969760\pi\)
\(810\) 0.390275 + 0.675977i 0.0137129 + 0.0237514i
\(811\) 19.4546 16.3244i 0.683144 0.573226i −0.233779 0.972290i \(-0.575109\pi\)
0.916923 + 0.399064i \(0.130665\pi\)
\(812\) −1.00362 + 0.365286i −0.0352200 + 0.0128190i
\(813\) 2.48263 + 0.903602i 0.0870695 + 0.0316907i
\(814\) −2.33437 1.95877i −0.0818196 0.0686548i
\(815\) −1.46697 + 8.31962i −0.0513859 + 0.291424i
\(816\) −5.91999 −0.207241
\(817\) −2.62430 2.52214i −0.0918126 0.0882384i
\(818\) −7.40687 −0.258975
\(819\) 0.498578 2.82758i 0.0174217 0.0988035i
\(820\) −0.155465 0.130450i −0.00542906 0.00455553i
\(821\) 28.1783 + 10.2560i 0.983428 + 0.357938i 0.783172 0.621805i \(-0.213600\pi\)
0.200256 + 0.979744i \(0.435823\pi\)
\(822\) 4.11553 1.49793i 0.143546 0.0522464i
\(823\) 12.4210 10.4225i 0.432970 0.363305i −0.400101 0.916471i \(-0.631025\pi\)
0.833071 + 0.553166i \(0.186581\pi\)
\(824\) 2.85773 + 4.94974i 0.0995538 + 0.172432i
\(825\) −3.48530 + 6.03672i −0.121343 + 0.210172i
\(826\) −0.906187 5.13924i −0.0315303 0.178817i
\(827\) 5.77989 + 32.7794i 0.200987 + 1.13985i 0.903631 + 0.428311i \(0.140891\pi\)
−0.702645 + 0.711541i \(0.747998\pi\)
\(828\) −1.38980 + 2.40720i −0.0482988 + 0.0836560i
\(829\) 23.2565 + 40.2814i 0.807730 + 1.39903i 0.914433 + 0.404738i \(0.132637\pi\)
−0.106702 + 0.994291i \(0.534029\pi\)
\(830\) −6.63902 + 5.57080i −0.230444 + 0.193365i
\(831\) 13.3189 4.84768i 0.462027 0.168164i
\(832\) 2.69804 + 0.982007i 0.0935378 + 0.0340450i
\(833\) −4.53497 3.80529i −0.157127 0.131846i
\(834\) −0.104388 + 0.592012i −0.00361465 + 0.0204997i
\(835\) −4.39559 −0.152116
\(836\) −6.32851 2.79949i −0.218876 0.0968224i
\(837\) −5.17409 −0.178843
\(838\) −5.30357 + 30.0780i −0.183209 + 1.03903i
\(839\) 12.6797 + 10.6396i 0.437753 + 0.367318i 0.834868 0.550451i \(-0.185544\pi\)
−0.397115 + 0.917769i \(0.629989\pi\)
\(840\) −0.733478 0.266964i −0.0253074 0.00921113i
\(841\) 26.1792 9.52845i 0.902731 0.328567i
\(842\) 11.0839 9.30050i 0.381976 0.320516i
\(843\) −7.33144 12.6984i −0.252508 0.437357i
\(844\) −12.1500 + 21.0444i −0.418220 + 0.724378i
\(845\) −0.644665 3.65607i −0.0221771 0.125773i
\(846\) 1.30902 + 7.42384i 0.0450051 + 0.255237i
\(847\) −4.23981 + 7.34357i −0.145682 + 0.252328i
\(848\) −3.16259 5.47777i −0.108604 0.188107i
\(849\) −18.2911 + 15.3481i −0.627749 + 0.526744i
\(850\) 24.4255 8.89017i 0.837789 0.304930i
\(851\) 5.01361 + 1.82480i 0.171864 + 0.0625535i
\(852\) −1.81410 1.52221i −0.0621500 0.0521500i
\(853\) −3.21007 + 18.2052i −0.109911 + 0.623334i 0.879234 + 0.476390i \(0.158055\pi\)
−0.989145 + 0.146944i \(0.953056\pi\)
\(854\) −6.76705 −0.231564
\(855\) 1.89580 2.82522i 0.0648351 0.0966204i
\(856\) −0.0815585 −0.00278761
\(857\) 5.56425 31.5564i 0.190071 1.07795i −0.729194 0.684307i \(-0.760105\pi\)
0.919265 0.393640i \(-0.128784\pi\)
\(858\) −3.49180 2.92997i −0.119208 0.100028i
\(859\) −30.8285 11.2207i −1.05185 0.382844i −0.242492 0.970153i \(-0.577965\pi\)
−0.809363 + 0.587309i \(0.800187\pi\)
\(860\) −0.612473 + 0.222922i −0.0208852 + 0.00760158i
\(861\) 0.199173 0.167126i 0.00678781 0.00569564i
\(862\) −3.02956 5.24735i −0.103187 0.178726i
\(863\) −17.4714 + 30.2613i −0.594733 + 1.03011i 0.398851 + 0.917016i \(0.369409\pi\)
−0.993584 + 0.113093i \(0.963924\pi\)
\(864\) −0.173648 0.984808i −0.00590763 0.0335038i
\(865\) 2.37431 + 13.4654i 0.0807289 + 0.457836i
\(866\) 15.3477 26.5830i 0.521537 0.903329i
\(867\) −9.02312 15.6285i −0.306441 0.530772i
\(868\) 3.96358 3.32584i 0.134533 0.112886i
\(869\) 6.54167 2.38097i 0.221911 0.0807690i
\(870\) −0.783373 0.285124i −0.0265588 0.00966662i
\(871\) −17.2010 14.4333i −0.582833 0.489055i
\(872\) −0.360489 + 2.04443i −0.0122077 + 0.0692333i
\(873\) 10.1712 0.344244
\(874\) 12.0884 + 0.816215i 0.408898 + 0.0276089i
\(875\) 7.32995 0.247797
\(876\) 1.54373 8.75494i 0.0521579 0.295802i
\(877\) −2.11587 1.77542i −0.0714478 0.0599518i 0.606364 0.795187i \(-0.292627\pi\)
−0.677812 + 0.735235i \(0.737072\pi\)
\(878\) −30.9690 11.2718i −1.04515 0.380405i
\(879\) 18.2900 6.65701i 0.616906 0.224535i
\(880\) −0.949266 + 0.796528i −0.0319997 + 0.0268510i
\(881\) 15.1768 + 26.2869i 0.511318 + 0.885629i 0.999914 + 0.0131190i \(0.00417601\pi\)
−0.488596 + 0.872510i \(0.662491\pi\)
\(882\) 0.500000 0.866025i 0.0168359 0.0291606i
\(883\) −4.94439 28.0411i −0.166392 0.943657i −0.947617 0.319407i \(-0.896516\pi\)
0.781225 0.624249i \(-0.214595\pi\)
\(884\) 2.95158 + 16.7392i 0.0992722 + 0.563001i
\(885\) 2.03666 3.52760i 0.0684616 0.118579i
\(886\) −1.97587 3.42230i −0.0663806 0.114974i
\(887\) −33.1083 + 27.7811i −1.11167 + 0.932799i −0.998154 0.0607371i \(-0.980655\pi\)
−0.113513 + 0.993536i \(0.536210\pi\)
\(888\) −1.80372 + 0.656500i −0.0605288 + 0.0220307i
\(889\) 6.09065 + 2.21682i 0.204274 + 0.0743496i
\(890\) −4.08144 3.42474i −0.136810 0.114797i
\(891\) −0.275679 + 1.56345i −0.00923558 + 0.0523776i
\(892\) −16.9667 −0.568088
\(893\) 26.5371 19.3776i 0.888031 0.648448i
\(894\) −19.6054 −0.655701
\(895\) 1.54392 8.75600i 0.0516075 0.292681i
\(896\) 0.766044 + 0.642788i 0.0255917 + 0.0214740i
\(897\) 7.49946 + 2.72958i 0.250400 + 0.0911381i
\(898\) −1.25497 + 0.456771i −0.0418788 + 0.0152427i
\(899\) 4.23321 3.55209i 0.141186 0.118469i
\(900\) 2.19537 + 3.80249i 0.0731790 + 0.126750i
\(901\) 18.7225 32.4283i 0.623737 1.08034i
\(902\) −0.0716770 0.406501i −0.00238658 0.0135350i
\(903\) −0.145001 0.822341i −0.00482533 0.0273658i
\(904\) −0.628603 + 1.08877i −0.0209070 + 0.0362121i
\(905\) 2.64573 + 4.58254i 0.0879471 + 0.152329i
\(906\) −11.3395 + 9.51501i −0.376731 + 0.316115i
\(907\) 41.5739 15.1317i 1.38044 0.502439i 0.458128 0.888886i \(-0.348520\pi\)
0.922311 + 0.386448i \(0.126298\pi\)
\(908\) −22.0396 8.02174i −0.731408 0.266211i
\(909\) 10.1796 + 8.54167i 0.337635 + 0.283309i
\(910\) −0.389165 + 2.20707i −0.0129007 + 0.0731635i
\(911\) 40.3921 1.33825 0.669125 0.743150i \(-0.266669\pi\)
0.669125 + 0.743150i \(0.266669\pi\)
\(912\) −3.52028 + 2.57054i −0.116568 + 0.0851189i
\(913\) −17.6271 −0.583373
\(914\) −2.91675 + 16.5417i −0.0964776 + 0.547152i
\(915\) −4.04626 3.39522i −0.133765 0.112242i
\(916\) −3.15945 1.14995i −0.104391 0.0379953i
\(917\) −17.6126 + 6.41046i −0.581619 + 0.211692i
\(918\) 4.53497 3.80529i 0.149676 0.125593i
\(919\) −15.8501 27.4532i −0.522848 0.905598i −0.999647 0.0265861i \(-0.991536\pi\)
0.476799 0.879012i \(-0.341797\pi\)
\(920\) 1.08481 1.87894i 0.0357650 0.0619468i
\(921\) −4.36448 24.7522i −0.143815 0.815613i
\(922\) 4.74962 + 26.9364i 0.156420 + 0.887104i
\(923\) −3.39969 + 5.88844i −0.111902 + 0.193820i
\(924\) −0.793785 1.37488i −0.0261136 0.0452301i
\(925\) 6.45617 5.41737i 0.212277 0.178122i
\(926\) 13.5784 4.94213i 0.446214 0.162409i
\(927\) −5.37078 1.95480i −0.176400 0.0642042i
\(928\) 0.818155 + 0.686514i 0.0268573 + 0.0225359i
\(929\) −9.75681 + 55.3336i −0.320111 + 1.81544i 0.221903 + 0.975069i \(0.428773\pi\)
−0.542014 + 0.840369i \(0.682338\pi\)
\(930\) 4.03864 0.132432
\(931\) −4.34900 0.293645i −0.142533 0.00962384i
\(932\) −3.99665 −0.130915
\(933\) 2.26131 12.8245i 0.0740320 0.419856i
\(934\) −23.0485 19.3400i −0.754171 0.632825i
\(935\) −6.89351 2.50903i −0.225442 0.0820541i
\(936\) −2.69804 + 0.982007i −0.0881883 + 0.0320979i
\(937\) −0.133545 + 0.112057i −0.00436272 + 0.00366075i −0.644966 0.764211i \(-0.723129\pi\)
0.640604 + 0.767872i \(0.278684\pi\)
\(938\) −3.91026 6.77278i −0.127675 0.221139i
\(939\) 1.72940 2.99541i 0.0564368 0.0977514i
\(940\) −1.02176 5.79468i −0.0333261 0.189002i
\(941\) −4.68242 26.5553i −0.152642 0.865678i −0.960910 0.276862i \(-0.910705\pi\)
0.808267 0.588816i \(-0.200406\pi\)
\(942\) −6.91983 + 11.9855i −0.225460 + 0.390509i
\(943\) 0.361350 + 0.625877i 0.0117672 + 0.0203814i
\(944\) −3.99762 + 3.35440i −0.130112 + 0.109177i
\(945\) 0.733478 0.266964i 0.0238600 0.00868434i
\(946\) −1.24572 0.453404i −0.0405017 0.0147414i
\(947\) −18.4541 15.4849i −0.599679 0.503190i 0.291664 0.956521i \(-0.405791\pi\)
−0.891342 + 0.453331i \(0.850236\pi\)
\(948\) 0.761448 4.31839i 0.0247307 0.140255i
\(949\) −25.5249 −0.828575
\(950\) 10.6642 15.8924i 0.345994 0.515617i
\(951\) 7.32560 0.237549
\(952\) −1.02799 + 5.83005i −0.0333175 + 0.188953i
\(953\) 20.1716 + 16.9260i 0.653424 + 0.548288i 0.908108 0.418737i \(-0.137527\pi\)
−0.254684 + 0.967024i \(0.581971\pi\)
\(954\) 5.94373 + 2.16334i 0.192435 + 0.0700407i
\(955\) −0.534449 + 0.194523i −0.0172943 + 0.00629463i
\(956\) 18.7358 15.7212i 0.605960 0.508461i
\(957\) −0.847783 1.46840i −0.0274049 0.0474667i
\(958\) 13.0166 22.5455i 0.420548 0.728411i
\(959\) −0.760520 4.31312i −0.0245585 0.139278i
\(960\) 0.135541 + 0.768692i 0.00437457 + 0.0248094i
\(961\) 2.11438 3.66222i 0.0682059 0.118136i
\(962\) 2.75560 + 4.77284i 0.0888441 + 0.153882i
\(963\) 0.0624774 0.0524248i 0.00201331 0.00168936i
\(964\) −6.88374 + 2.50548i −0.221710 + 0.0806960i
\(965\) −2.42507 0.882654i −0.0780658 0.0284136i
\(966\) 2.12929 + 1.78669i 0.0685089 + 0.0574858i
\(967\) 1.76027 9.98296i 0.0566063 0.321030i −0.943335 0.331841i \(-0.892330\pi\)
0.999942 + 0.0108109i \(0.00344128\pi\)
\(968\) 8.47962 0.272545
\(969\) −23.5988 10.4392i −0.758102 0.335355i
\(970\) −7.93916 −0.254911
\(971\) −0.0343278 + 0.194683i −0.00110163 + 0.00624766i −0.985354 0.170523i \(-0.945454\pi\)
0.984252 + 0.176771i \(0.0565652\pi\)
\(972\) 0.766044 + 0.642788i 0.0245709 + 0.0206174i
\(973\) 0.564891 + 0.205604i 0.0181096 + 0.00659135i
\(974\) 35.5381 12.9348i 1.13871 0.414458i
\(975\) 9.65728 8.10342i 0.309280 0.259517i
\(976\) 3.38352 + 5.86044i 0.108304 + 0.187588i
\(977\) −27.3831 + 47.4289i −0.876062 + 1.51738i −0.0204346 + 0.999791i \(0.506505\pi\)
−0.855627 + 0.517593i \(0.826828\pi\)
\(978\) 1.87941 + 10.6587i 0.0600969 + 0.340826i
\(979\) −1.88175 10.6719i −0.0601410 0.341076i
\(980\) −0.390275 + 0.675977i −0.0124669 + 0.0215933i
\(981\) −1.03799 1.79785i −0.0331404 0.0574008i
\(982\) −0.573546 + 0.481262i −0.0183026 + 0.0153577i
\(983\) −16.5846 + 6.03629i −0.528966 + 0.192528i −0.592676 0.805441i \(-0.701929\pi\)
0.0637107 + 0.997968i \(0.479707\pi\)
\(984\) −0.244322 0.0889260i −0.00778870 0.00283486i
\(985\) 12.4142 + 10.4168i 0.395551 + 0.331906i
\(986\) −1.09793 + 6.22664i −0.0349651 + 0.198297i
\(987\) 7.53836 0.239949
\(988\) 9.02352 + 8.67224i 0.287076 + 0.275901i
\(989\) 2.32104 0.0738047
\(990\) 0.215181 1.22035i 0.00683890 0.0387853i
\(991\) 12.2944 + 10.3162i 0.390545 + 0.327706i 0.816825 0.576885i \(-0.195732\pi\)
−0.426280 + 0.904591i \(0.640176\pi\)
\(992\) −4.86206 1.76964i −0.154370 0.0561863i
\(993\) −20.1145 + 7.32110i −0.638316 + 0.232328i
\(994\) −1.81410 + 1.52221i −0.0575397 + 0.0482815i
\(995\) −8.22111 14.2394i −0.260627 0.451419i
\(996\) −5.55161 + 9.61567i −0.175910 + 0.304684i
\(997\) −1.49094 8.45553i −0.0472185 0.267789i 0.952054 0.305930i \(-0.0989675\pi\)
−0.999272 + 0.0381410i \(0.987856\pi\)
\(998\) 1.54729 + 8.77510i 0.0489785 + 0.277771i
\(999\) 0.959739 1.66232i 0.0303648 0.0525934i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 798.2.bo.d.169.1 yes 12
19.9 even 9 inner 798.2.bo.d.85.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
798.2.bo.d.85.1 12 19.9 even 9 inner
798.2.bo.d.169.1 yes 12 1.1 even 1 trivial