Properties

Label 795.2.m.a.158.1
Level $795$
Weight $2$
Character 795.158
Analytic conductor $6.348$
Analytic rank $0$
Dimension $40$
CM discriminant -159
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [795,2,Mod(158,795)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("795.158"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(795, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 795 = 3 \cdot 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 795.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.34810696069\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 158.1
Character \(\chi\) \(=\) 795.158
Dual form 795.2.m.a.317.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.96968 + 1.96968i) q^{2} +(-1.22474 - 1.22474i) q^{3} -5.75926i q^{4} +(2.19865 + 0.407360i) q^{5} +4.82471 q^{6} +(2.79770 - 2.79770i) q^{7} +(7.40454 + 7.40454i) q^{8} +3.00000i q^{9} +(-5.13300 + 3.52826i) q^{10} +(-7.05363 + 7.05363i) q^{12} +(2.99303 + 2.99303i) q^{13} +11.0212i q^{14} +(-2.19387 - 3.19170i) q^{15} -17.6506 q^{16} +(-5.90903 - 5.90903i) q^{18} +(2.34609 - 12.6626i) q^{20} -6.85295 q^{21} +(5.77550 + 5.77550i) q^{23} -18.1373i q^{24} +(4.66812 + 1.79128i) q^{25} -11.7906 q^{26} +(3.67423 - 3.67423i) q^{27} +(-16.1127 - 16.1127i) q^{28} +(10.6078 + 1.96539i) q^{30} +(19.9569 - 19.9569i) q^{32} +(7.29084 - 5.01150i) q^{35} +17.2778 q^{36} +(-1.49035 + 1.49035i) q^{37} -7.33140i q^{39} +(13.2637 + 19.2963i) q^{40} -12.5768 q^{41} +(13.4981 - 13.4981i) q^{42} +(9.25416 + 9.25416i) q^{43} +(-1.22208 + 6.59595i) q^{45} -22.7517 q^{46} +(21.6175 + 21.6175i) q^{48} -8.65429i q^{49} +(-12.7229 + 5.66643i) q^{50} +(17.2377 - 17.2377i) q^{52} +(-5.14782 - 5.14782i) q^{53} +14.4741i q^{54} +41.4314 q^{56} +(-18.3818 + 12.6351i) q^{60} +(8.39311 + 8.39311i) q^{63} +43.3161i q^{64} +(5.36139 + 7.79987i) q^{65} -14.1470i q^{69} +(-4.48957 + 24.2316i) q^{70} +13.3708 q^{71} +(-22.2136 + 22.2136i) q^{72} -5.87103i q^{74} +(-3.52339 - 7.91112i) q^{75} +(14.4405 + 14.4405i) q^{78} +(-38.8074 - 7.19014i) q^{80} -9.00000 q^{81} +(24.7722 - 24.7722i) q^{82} +(-3.82177 - 3.82177i) q^{83} +39.4679i q^{84} -36.4554 q^{86} +(-10.5848 - 15.3990i) q^{90} +16.7472 q^{91} +(33.2626 - 33.2626i) q^{92} -48.8842 q^{96} +(-2.13252 + 2.13252i) q^{97} +(17.0462 + 17.0462i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 160 q^{16} + 240 q^{36} + 20 q^{40} + 60 q^{42} - 140 q^{52} - 180 q^{60} + 220 q^{70} - 360 q^{81} + 260 q^{82}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/795\mathbb{Z}\right)^\times\).

\(n\) \(266\) \(637\) \(691\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.96968 + 1.96968i −1.39277 + 1.39277i −0.573724 + 0.819049i \(0.694502\pi\)
−0.819049 + 0.573724i \(0.805498\pi\)
\(3\) −1.22474 1.22474i −0.707107 0.707107i
\(4\) 5.75926i 2.87963i
\(5\) 2.19865 + 0.407360i 0.983266 + 0.182177i
\(6\) 4.82471 1.96968
\(7\) 2.79770 2.79770i 1.05743 1.05743i 0.0591855 0.998247i \(-0.481150\pi\)
0.998247 0.0591855i \(-0.0188504\pi\)
\(8\) 7.40454 + 7.40454i 2.61790 + 2.61790i
\(9\) 3.00000i 1.00000i
\(10\) −5.13300 + 3.52826i −1.62320 + 1.11573i
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) −7.05363 + 7.05363i −2.03621 + 2.03621i
\(13\) 2.99303 + 2.99303i 0.830118 + 0.830118i 0.987533 0.157415i \(-0.0503159\pi\)
−0.157415 + 0.987533i \(0.550316\pi\)
\(14\) 11.0212i 2.94553i
\(15\) −2.19387 3.19170i −0.566455 0.824092i
\(16\) −17.6506 −4.41265
\(17\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) −5.90903 5.90903i −1.39277 1.39277i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 2.34609 12.6626i 0.524602 2.83144i
\(21\) −6.85295 −1.49544
\(22\) 0 0
\(23\) 5.77550 + 5.77550i 1.20427 + 1.20427i 0.972854 + 0.231420i \(0.0743373\pi\)
0.231420 + 0.972854i \(0.425663\pi\)
\(24\) 18.1373i 3.70227i
\(25\) 4.66812 + 1.79128i 0.933623 + 0.358257i
\(26\) −11.7906 −2.31233
\(27\) 3.67423 3.67423i 0.707107 0.707107i
\(28\) −16.1127 16.1127i −3.04502 3.04502i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 10.6078 + 1.96539i 1.93672 + 0.358830i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 19.9569 19.9569i 3.52791 3.52791i
\(33\) 0 0
\(34\) 0 0
\(35\) 7.29084 5.01150i 1.23238 0.847097i
\(36\) 17.2778 2.87963
\(37\) −1.49035 + 1.49035i −0.245012 + 0.245012i −0.818920 0.573908i \(-0.805427\pi\)
0.573908 + 0.818920i \(0.305427\pi\)
\(38\) 0 0
\(39\) 7.33140i 1.17396i
\(40\) 13.2637 + 19.2963i 2.09717 + 3.05101i
\(41\) −12.5768 −1.96416 −0.982080 0.188465i \(-0.939649\pi\)
−0.982080 + 0.188465i \(0.939649\pi\)
\(42\) 13.4981 13.4981i 2.08280 2.08280i
\(43\) 9.25416 + 9.25416i 1.41125 + 1.41125i 0.751410 + 0.659835i \(0.229374\pi\)
0.659835 + 0.751410i \(0.270626\pi\)
\(44\) 0 0
\(45\) −1.22208 + 6.59595i −0.182177 + 0.983266i
\(46\) −22.7517 −3.35456
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 21.6175 + 21.6175i 3.12021 + 3.12021i
\(49\) 8.65429i 1.23633i
\(50\) −12.7229 + 5.66643i −1.79929 + 0.801355i
\(51\) 0 0
\(52\) 17.2377 17.2377i 2.39043 2.39043i
\(53\) −5.14782 5.14782i −0.707107 0.707107i
\(54\) 14.4741i 1.96968i
\(55\) 0 0
\(56\) 41.4314 5.53650
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) −18.3818 + 12.6351i −2.37308 + 1.63118i
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 8.39311 + 8.39311i 1.05743 + 1.05743i
\(64\) 43.3161i 5.41452i
\(65\) 5.36139 + 7.79987i 0.664998 + 0.967455i
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 14.1470i 1.70310i
\(70\) −4.48957 + 24.2316i −0.536607 + 2.89624i
\(71\) 13.3708 1.58682 0.793410 0.608688i \(-0.208304\pi\)
0.793410 + 0.608688i \(0.208304\pi\)
\(72\) −22.2136 + 22.2136i −2.61790 + 2.61790i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 5.87103i 0.682493i
\(75\) −3.52339 7.91112i −0.406846 0.913497i
\(76\) 0 0
\(77\) 0 0
\(78\) 14.4405 + 14.4405i 1.63507 + 1.63507i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −38.8074 7.19014i −4.33880 0.803882i
\(81\) −9.00000 −1.00000
\(82\) 24.7722 24.7722i 2.73563 2.73563i
\(83\) −3.82177 3.82177i −0.419494 0.419494i 0.465536 0.885029i \(-0.345862\pi\)
−0.885029 + 0.465536i \(0.845862\pi\)
\(84\) 39.4679i 4.30630i
\(85\) 0 0
\(86\) −36.4554 −3.93109
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −10.5848 15.3990i −1.11573 1.62320i
\(91\) 16.7472 1.75559
\(92\) 33.2626 33.2626i 3.46787 3.46787i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −48.8842 −4.98922
\(97\) −2.13252 + 2.13252i −0.216524 + 0.216524i −0.807032 0.590508i \(-0.798928\pi\)
0.590508 + 0.807032i \(0.298928\pi\)
\(98\) 17.0462 + 17.0462i 1.72192 + 1.72192i
\(99\) 0 0
\(100\) 10.3165 26.8849i 1.03165 2.68849i
\(101\) 0.497671 0.0495201 0.0247601 0.999693i \(-0.492118\pi\)
0.0247601 + 0.999693i \(0.492118\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 44.3240i 4.34633i
\(105\) −15.0672 2.79162i −1.47041 0.272434i
\(106\) 20.2791 1.96968
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) −21.1609 21.1609i −2.03621 2.03621i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 3.65060 0.346500
\(112\) −49.3811 + 49.3811i −4.66608 + 4.66608i
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 10.3456 + 15.0510i 0.964731 + 1.40351i
\(116\) 0 0
\(117\) −8.97910 + 8.97910i −0.830118 + 0.830118i
\(118\) 0 0
\(119\) 0 0
\(120\) 7.38842 39.8776i 0.674468 3.64031i
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 15.4033 + 15.4033i 1.38887 + 1.38887i
\(124\) 0 0
\(125\) 9.53385 + 5.84001i 0.852734 + 0.522346i
\(126\) −33.0635 −2.94553
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) −45.4050 45.4050i −4.01328 4.01328i
\(129\) 22.6680i 1.99580i
\(130\) −25.9234 4.80303i −2.27364 0.421253i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 9.57509 6.58162i 0.824092 0.566455i
\(136\) 0 0
\(137\) 5.38651 5.38651i 0.460200 0.460200i −0.438521 0.898721i \(-0.644497\pi\)
0.898721 + 0.438521i \(0.144497\pi\)
\(138\) 27.8651 + 27.8651i 2.37203 + 2.37203i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) −28.8625 41.9899i −2.43933 3.54879i
\(141\) 0 0
\(142\) −26.3361 + 26.3361i −2.21008 + 2.21008i
\(143\) 0 0
\(144\) 52.9517i 4.41265i
\(145\) 0 0
\(146\) 0 0
\(147\) −10.5993 + 10.5993i −0.874215 + 0.874215i
\(148\) 8.58333 + 8.58333i 0.705546 + 0.705546i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 22.5223 + 8.64241i 1.83894 + 0.705650i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −42.2235 −3.38058
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 12.6095i 1.00000i
\(160\) 52.0078 35.7486i 4.11158 2.82617i
\(161\) 32.3163 2.54688
\(162\) 17.7271 17.7271i 1.39277 1.39277i
\(163\) −10.6095 10.6095i −0.831002 0.831002i 0.156652 0.987654i \(-0.449930\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 72.4329i 5.65606i
\(165\) 0 0
\(166\) 15.0553 1.16852
\(167\) 15.8868 15.8868i 1.22936 1.22936i 0.265151 0.964207i \(-0.414578\pi\)
0.964207 0.265151i \(-0.0854219\pi\)
\(168\) −50.7429 50.7429i −3.91490 3.91490i
\(169\) 4.91649i 0.378192i
\(170\) 0 0
\(171\) 0 0
\(172\) 53.2971 53.2971i 4.06387 4.06387i
\(173\) 9.24491 + 9.24491i 0.702878 + 0.702878i 0.965027 0.262149i \(-0.0844313\pi\)
−0.262149 + 0.965027i \(0.584431\pi\)
\(174\) 0 0
\(175\) 18.0715 8.04853i 1.36608 0.608411i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.5029i 1.60720i −0.595168 0.803602i \(-0.702914\pi\)
0.595168 0.803602i \(-0.297086\pi\)
\(180\) 37.9878 + 7.03828i 2.83144 + 0.524602i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) −32.9867 + 32.9867i −2.44513 + 2.44513i
\(183\) 0 0
\(184\) 85.5298i 6.30534i
\(185\) −3.88387 + 2.66965i −0.285548 + 0.196277i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 20.5588i 1.49544i
\(190\) 0 0
\(191\) 16.3133 1.18039 0.590193 0.807262i \(-0.299052\pi\)
0.590193 + 0.807262i \(0.299052\pi\)
\(192\) 53.0512 53.0512i 3.82864 3.82864i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 8.40075i 0.603139i
\(195\) 2.98652 16.1192i 0.213869 1.15432i
\(196\) −49.8423 −3.56017
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 15.3216i 1.08612i −0.839695 0.543058i \(-0.817266\pi\)
0.839695 0.543058i \(-0.182734\pi\)
\(200\) 21.3016 + 47.8289i 1.50625 + 3.38201i
\(201\) 0 0
\(202\) −0.980252 + 0.980252i −0.0689703 + 0.0689703i
\(203\) 0 0
\(204\) 0 0
\(205\) −27.6519 5.12327i −1.93129 0.357825i
\(206\) 0 0
\(207\) −17.3265 + 17.3265i −1.20427 + 1.20427i
\(208\) −52.8288 52.8288i −3.66302 3.66302i
\(209\) 0 0
\(210\) 35.1762 24.1790i 2.42739 1.66851i
\(211\) −17.7329 −1.22078 −0.610392 0.792099i \(-0.708988\pi\)
−0.610392 + 0.792099i \(0.708988\pi\)
\(212\) −29.6476 + 29.6476i −2.03621 + 2.03621i
\(213\) −16.3758 16.3758i −1.12205 1.12205i
\(214\) 0 0
\(215\) 16.5769 + 24.1164i 1.13053 + 1.64473i
\(216\) 54.4120 3.70227
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −7.19051 + 7.19051i −0.482596 + 0.482596i
\(223\) −20.6095 20.6095i −1.38012 1.38012i −0.844396 0.535720i \(-0.820040\pi\)
−0.535720 0.844396i \(-0.679960\pi\)
\(224\) 111.667i 7.46106i
\(225\) −5.37385 + 14.0043i −0.358257 + 0.933623i
\(226\) 0 0
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 11.2153i 0.741129i −0.928807 0.370564i \(-0.879164\pi\)
0.928807 0.370564i \(-0.120836\pi\)
\(230\) −50.0231 9.26815i −3.29842 0.611123i
\(231\) 0 0
\(232\) 0 0
\(233\) −4.90428 4.90428i −0.321290 0.321290i 0.527972 0.849262i \(-0.322953\pi\)
−0.849262 + 0.527972i \(0.822953\pi\)
\(234\) 35.3719i 2.31233i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.2428i 0.856605i −0.903635 0.428302i \(-0.859112\pi\)
0.903635 0.428302i \(-0.140888\pi\)
\(240\) 38.7231 + 56.3353i 2.49957 + 3.63643i
\(241\) −10.3812 −0.668712 −0.334356 0.942447i \(-0.608519\pi\)
−0.334356 + 0.942447i \(0.608519\pi\)
\(242\) −21.6665 + 21.6665i −1.39277 + 1.39277i
\(243\) 11.0227 + 11.0227i 0.707107 + 0.707107i
\(244\) 0 0
\(245\) 3.52541 19.0277i 0.225230 1.21564i
\(246\) −60.6792 −3.86876
\(247\) 0 0
\(248\) 0 0
\(249\) 9.36138i 0.593254i
\(250\) −30.2815 + 7.27569i −1.91517 + 0.460155i
\(251\) −30.0191 −1.89479 −0.947396 0.320064i \(-0.896295\pi\)
−0.947396 + 0.320064i \(0.896295\pi\)
\(252\) 48.3381 48.3381i 3.04502 3.04502i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 92.2344 5.76465
\(257\) −20.7959 + 20.7959i −1.29721 + 1.29721i −0.366987 + 0.930226i \(0.619611\pi\)
−0.930226 + 0.366987i \(0.880389\pi\)
\(258\) 44.6486 + 44.6486i 2.77970 + 2.77970i
\(259\) 8.33913i 0.518168i
\(260\) 44.9215 30.8776i 2.78591 1.91495i
\(261\) 0 0
\(262\) 0 0
\(263\) 22.2383 + 22.2383i 1.37127 + 1.37127i 0.858559 + 0.512714i \(0.171360\pi\)
0.512714 + 0.858559i \(0.328640\pi\)
\(264\) 0 0
\(265\) −9.22123 13.4153i −0.566455 0.824092i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) −5.89618 + 31.8235i −0.358830 + 1.93672i
\(271\) −1.84286 −0.111946 −0.0559729 0.998432i \(-0.517826\pi\)
−0.0559729 + 0.998432i \(0.517826\pi\)
\(272\) 0 0
\(273\) −20.5111 20.5111i −1.24139 1.24139i
\(274\) 21.2194i 1.28191i
\(275\) 0 0
\(276\) −81.4764 −4.90430
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 91.0931 + 16.8775i 5.44385 + 1.00862i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 77.0058i 4.56946i
\(285\) 0 0
\(286\) 0 0
\(287\) −35.1860 + 35.1860i −2.07697 + 2.07697i
\(288\) 59.8707 + 59.8707i 3.52791 + 3.52791i
\(289\) 17.0000i 1.00000i
\(290\) 0 0
\(291\) 5.22358 0.306212
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 41.7544i 2.43517i
\(295\) 0 0
\(296\) −22.0707 −1.28284
\(297\) 0 0
\(298\) 0 0
\(299\) 34.5725i 1.99938i
\(300\) −45.5622 + 20.2921i −2.63053 + 1.17157i
\(301\) 51.7808 2.98459
\(302\) 0 0
\(303\) −0.609520 0.609520i −0.0350160 0.0350160i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −20.9418 + 20.9418i −1.19521 + 1.19521i −0.219626 + 0.975584i \(0.570484\pi\)
−0.975584 + 0.219626i \(0.929516\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 54.2856 54.2856i 3.07332 3.07332i
\(313\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(314\) 0 0
\(315\) 15.0345 + 21.8725i 0.847097 + 1.23238i
\(316\) 0 0
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) −24.8367 24.8367i −1.39277 1.39277i
\(319\) 0 0
\(320\) −17.6453 + 95.2370i −0.986400 + 5.32391i
\(321\) 0 0
\(322\) −63.6526 + 63.6526i −3.54722 + 3.54722i
\(323\) 0 0
\(324\) 51.8334i 2.87963i
\(325\) 8.61045 + 19.3332i 0.477622 + 1.07241i
\(326\) 41.7947 2.31479
\(327\) 0 0
\(328\) −93.1251 93.1251i −5.14197 5.14197i
\(329\) 0 0
\(330\) 0 0
\(331\) −20.8647 −1.14683 −0.573415 0.819265i \(-0.694382\pi\)
−0.573415 + 0.819265i \(0.694382\pi\)
\(332\) −22.0106 + 22.0106i −1.20799 + 1.20799i
\(333\) −4.47106 4.47106i −0.245012 0.245012i
\(334\) 62.5838i 3.42443i
\(335\) 0 0
\(336\) 120.958 6.59883
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) −9.68390 9.68390i −0.526735 0.526735i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −4.62821 4.62821i −0.249900 0.249900i
\(344\) 137.045i 7.38900i
\(345\) 5.76293 31.1043i 0.310266 1.67460i
\(346\) −36.4190 −1.95790
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) −19.7420 + 51.4480i −1.05525 + 2.75001i
\(351\) 21.9942 1.17396
\(352\) 0 0
\(353\) −10.2956 10.2956i −0.547981 0.547981i 0.377875 0.925856i \(-0.376655\pi\)
−0.925856 + 0.377875i \(0.876655\pi\)
\(354\) 0 0
\(355\) 29.3977 + 5.44672i 1.56027 + 0.289082i
\(356\) 0 0
\(357\) 0 0
\(358\) 42.3538 + 42.3538i 2.23847 + 2.23847i
\(359\) 37.7377i 1.99172i −0.0909056 0.995860i \(-0.528976\pi\)
0.0909056 0.995860i \(-0.471024\pi\)
\(360\) −57.8889 + 39.7910i −3.05101 + 2.09717i
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −13.4722 13.4722i −0.707107 0.707107i
\(364\) 96.4517i 5.05544i
\(365\) 0 0
\(366\) 0 0
\(367\) 18.3840 18.3840i 0.959638 0.959638i −0.0395781 0.999216i \(-0.512601\pi\)
0.999216 + 0.0395781i \(0.0126014\pi\)
\(368\) −101.941 101.941i −5.31404 5.31404i
\(369\) 37.7303i 1.96416i
\(370\) 2.39162 12.9083i 0.124335 0.671072i
\(371\) −28.8041 −1.49544
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) −4.52402 18.8291i −0.233619 0.972328i
\(376\) 0 0
\(377\) 0 0
\(378\) 40.4943 + 40.4943i 2.08280 + 2.08280i
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −32.1319 + 32.1319i −1.64401 + 1.64401i
\(383\) 11.8346 + 11.8346i 0.604722 + 0.604722i 0.941562 0.336840i \(-0.109358\pi\)
−0.336840 + 0.941562i \(0.609358\pi\)
\(384\) 111.219i 5.67563i
\(385\) 0 0
\(386\) 0 0
\(387\) −27.7625 + 27.7625i −1.41125 + 1.41125i
\(388\) 12.2817 + 12.2817i 0.623511 + 0.623511i
\(389\) 5.27555i 0.267481i −0.991016 0.133741i \(-0.957301\pi\)
0.991016 0.133741i \(-0.0426989\pi\)
\(390\) 25.8671 + 37.6321i 1.30983 + 1.90557i
\(391\) 0 0
\(392\) 64.0810 64.0810i 3.23658 3.23658i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) 30.1785 + 30.1785i 1.51271 + 1.51271i
\(399\) 0 0
\(400\) −82.3950 31.6172i −4.11975 1.58086i
\(401\) −36.6493 −1.83018 −0.915089 0.403251i \(-0.867880\pi\)
−0.915089 + 0.403251i \(0.867880\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 2.86622i 0.142600i
\(405\) −19.7878 3.66624i −0.983266 0.182177i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 38.6752i 1.91237i 0.292767 + 0.956184i \(0.405424\pi\)
−0.292767 + 0.956184i \(0.594576\pi\)
\(410\) 64.5565 44.3741i 3.18822 2.19148i
\(411\) −13.1942 −0.650821
\(412\) 0 0
\(413\) 0 0
\(414\) 68.2552i 3.35456i
\(415\) −6.84589 9.95957i −0.336052 0.488896i
\(416\) 119.463 5.85717
\(417\) 0 0
\(418\) 0 0
\(419\) 36.6416i 1.79006i 0.446008 + 0.895029i \(0.352845\pi\)
−0.446008 + 0.895029i \(0.647155\pi\)
\(420\) −16.0776 + 86.7761i −0.784509 + 4.23424i
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 34.9281 34.9281i 1.70028 1.70028i
\(423\) 0 0
\(424\) 76.2344i 3.70227i
\(425\) 0 0
\(426\) 64.5101 3.12552
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −80.1527 14.8505i −3.86530 0.716153i
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −64.8524 + 64.8524i −3.12021 + 3.12021i
\(433\) −29.3163 29.3163i −1.40885 1.40885i −0.765946 0.642905i \(-0.777729\pi\)
−0.642905 0.765946i \(-0.722271\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 37.0317i 1.76743i 0.468027 + 0.883714i \(0.344965\pi\)
−0.468027 + 0.883714i \(0.655035\pi\)
\(440\) 0 0
\(441\) 25.9629 1.23633
\(442\) 0 0
\(443\) 29.7475 + 29.7475i 1.41335 + 1.41335i 0.731410 + 0.681938i \(0.238863\pi\)
0.681938 + 0.731410i \(0.261137\pi\)
\(444\) 21.0248i 0.997792i
\(445\) 0 0
\(446\) 81.1882 3.84437
\(447\) 0 0
\(448\) 121.186 + 121.186i 5.72549 + 5.72549i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) −16.9993 38.1688i −0.801355 1.79929i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 36.8213 + 6.82215i 1.72621 + 0.319827i
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 22.0906 + 22.0906i 1.03222 + 1.03222i
\(459\) 0 0
\(460\) 86.6826 59.5829i 4.04160 2.77807i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 19.3197 0.894968
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 51.7130 + 51.7130i 2.39043 + 2.39043i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15.4434 15.4434i 0.707107 0.707107i
\(478\) 26.0840 + 26.0840i 1.19306 + 1.19306i
\(479\) 43.7250i 1.99785i −0.0463783 0.998924i \(-0.514768\pi\)
0.0463783 0.998924i \(-0.485232\pi\)
\(480\) −107.479 19.9135i −4.90573 0.908921i
\(481\) −8.92135 −0.406778
\(482\) 20.4476 20.4476i 0.931364 0.931364i
\(483\) −39.5792 39.5792i −1.80091 1.80091i
\(484\) 63.3519i 2.87963i
\(485\) −5.55736 + 3.81996i −0.252347 + 0.173455i
\(486\) −43.4224 −1.96968
\(487\) 13.5192 13.5192i 0.612613 0.612613i −0.331013 0.943626i \(-0.607390\pi\)
0.943626 + 0.331013i \(0.107390\pi\)
\(488\) 0 0
\(489\) 25.9879i 1.17521i
\(490\) 30.5346 + 44.4225i 1.37941 + 2.00680i
\(491\) −21.9788 −0.991888 −0.495944 0.868354i \(-0.665178\pi\)
−0.495944 + 0.868354i \(0.665178\pi\)
\(492\) 88.7118 88.7118i 3.99944 3.99944i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 37.4075 37.4075i 1.67795 1.67795i
\(498\) −18.4389 18.4389i −0.826267 0.826267i
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 33.6341 54.9080i 1.50416 2.45556i
\(501\) −38.9146 −1.73857
\(502\) 59.1280 59.1280i 2.63901 2.63901i
\(503\) 2.02153 + 2.02153i 0.0901353 + 0.0901353i 0.750737 0.660601i \(-0.229699\pi\)
−0.660601 + 0.750737i \(0.729699\pi\)
\(504\) 124.294i 5.53650i
\(505\) 1.09420 + 0.202731i 0.0486915 + 0.00902142i
\(506\) 0 0
\(507\) 6.02145 6.02145i 0.267422 0.267422i
\(508\) 0 0
\(509\) 7.33912i 0.325301i 0.986684 + 0.162650i \(0.0520043\pi\)
−0.986684 + 0.162650i \(0.947996\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −90.8619 + 90.8619i −4.01557 + 4.01557i
\(513\) 0 0
\(514\) 81.9225i 3.61345i
\(515\) 0 0
\(516\) −130.551 −5.74718
\(517\) 0 0
\(518\) −16.4254 16.4254i −0.721691 0.721691i
\(519\) 22.6453i 0.994019i
\(520\) −18.0558 + 97.4530i −0.791801 + 4.27360i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −9.44191 9.44191i −0.412866 0.412866i 0.469870 0.882736i \(-0.344301\pi\)
−0.882736 + 0.469870i \(0.844301\pi\)
\(524\) 0 0
\(525\) −31.9903 12.2756i −1.39617 0.535750i
\(526\) −87.6047 −3.81974
\(527\) 0 0
\(528\) 0 0
\(529\) 43.7127i 1.90055i
\(530\) 44.5866 + 8.26088i 1.93672 + 0.358830i
\(531\) 0 0
\(532\) 0 0
\(533\) −37.6427 37.6427i −1.63048 1.63048i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −26.3356 + 26.3356i −1.13646 + 1.13646i
\(538\) 0 0
\(539\) 0 0
\(540\) −37.9053 55.1455i −1.63118 2.37308i
\(541\) 32.2974 1.38857 0.694287 0.719698i \(-0.255720\pi\)
0.694287 + 0.719698i \(0.255720\pi\)
\(542\) 3.62984 3.62984i 0.155915 0.155915i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 80.8005 3.45794
\(547\) 32.9139 32.9139i 1.40730 1.40730i 0.633801 0.773496i \(-0.281494\pi\)
0.773496 0.633801i \(-0.218506\pi\)
\(548\) −31.0223 31.0223i −1.32521 1.32521i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 104.752 104.752i 4.45855 4.45855i
\(553\) 0 0
\(554\) 0 0
\(555\) 8.02640 + 1.48711i 0.340702 + 0.0631243i
\(556\) 0 0
\(557\) −13.8571 + 13.8571i −0.587143 + 0.587143i −0.936857 0.349714i \(-0.886279\pi\)
0.349714 + 0.936857i \(0.386279\pi\)
\(558\) 0 0
\(559\) 55.3960i 2.34300i
\(560\) −128.688 + 88.4558i −5.43804 + 3.73794i
\(561\) 0 0
\(562\) 0 0
\(563\) 5.85719 + 5.85719i 0.246851 + 0.246851i 0.819677 0.572826i \(-0.194153\pi\)
−0.572826 + 0.819677i \(0.694153\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −25.1793 + 25.1793i −1.05743 + 1.05743i
\(568\) 99.0044 + 99.0044i 4.15413 + 4.15413i
\(569\) 14.5208i 0.608742i −0.952554 0.304371i \(-0.901554\pi\)
0.952554 0.304371i \(-0.0984463\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −19.9796 19.9796i −0.834659 0.834659i
\(574\) 138.610i 5.78548i
\(575\) 16.6151 + 37.3062i 0.692899 + 1.55578i
\(576\) −129.948 −5.41452
\(577\) −25.5750 + 25.5750i −1.06470 + 1.06470i −0.0669435 + 0.997757i \(0.521325\pi\)
−0.997757 + 0.0669435i \(0.978675\pi\)
\(578\) 33.4845 + 33.4845i 1.39277 + 1.39277i
\(579\) 0 0
\(580\) 0 0
\(581\) −21.3844 −0.887173
\(582\) −10.2888 + 10.2888i −0.426483 + 0.426483i
\(583\) 0 0
\(584\) 0 0
\(585\) −23.3996 + 16.0842i −0.967455 + 0.664998i
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 61.0441 + 61.0441i 2.51742 + 2.51742i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 26.3056 26.3056i 1.08115 1.08115i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −18.7650 + 18.7650i −0.768000 + 0.768000i
\(598\) −68.0967 68.0967i −2.78468 2.78468i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 32.4891 84.6672i 1.32636 3.45652i
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −101.991 + 101.991i −4.15686 + 4.15686i
\(603\) 0 0
\(604\) 0 0
\(605\) 24.1851 + 4.48096i 0.983266 + 0.182177i
\(606\) 2.40112 0.0975387
\(607\) 23.4974 23.4974i 0.953731 0.953731i −0.0452446 0.998976i \(-0.514407\pi\)
0.998976 + 0.0452446i \(0.0144067\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 82.4971i 3.32931i
\(615\) 27.5918 + 40.1412i 1.11261 + 1.61865i
\(616\) 0 0
\(617\) 9.79654 9.79654i 0.394394 0.394394i −0.481856 0.876250i \(-0.660037\pi\)
0.876250 + 0.481856i \(0.160037\pi\)
\(618\) 0 0
\(619\) 46.9540i 1.88724i 0.331029 + 0.943621i \(0.392604\pi\)
−0.331029 + 0.943621i \(0.607396\pi\)
\(620\) 0 0
\(621\) 42.4411 1.70310
\(622\) 0 0
\(623\) 0 0
\(624\) 129.404i 5.18029i
\(625\) 18.5826 + 16.7238i 0.743304 + 0.668953i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −72.6949 13.4687i −2.89624 0.536607i
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 21.7183 + 21.7183i 0.863225 + 0.863225i
\(634\) 0 0
\(635\) 0 0
\(636\) 72.6215 2.87963
\(637\) 25.9026 25.9026i 1.02630 1.02630i
\(638\) 0 0
\(639\) 40.1123i 1.58682i
\(640\) −81.3336 118.326i −3.21499 4.67724i
\(641\) −23.9972 −0.947833 −0.473917 0.880570i \(-0.657160\pi\)
−0.473917 + 0.880570i \(0.657160\pi\)
\(642\) 0 0
\(643\) 9.39048 + 9.39048i 0.370324 + 0.370324i 0.867595 0.497271i \(-0.165665\pi\)
−0.497271 + 0.867595i \(0.665665\pi\)
\(644\) 186.118i 7.33407i
\(645\) 9.23402 49.8389i 0.363589 1.96240i
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) −66.6408 66.6408i −2.61790 2.61790i
\(649\) 0 0
\(650\) −55.0400 21.1203i −2.15885 0.828408i
\(651\) 0 0
\(652\) −61.1030 + 61.1030i −2.39298 + 2.39298i
\(653\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 221.987 8.66714
\(657\) 0 0
\(658\) 0 0
\(659\) 51.3044i 1.99854i −0.0382670 0.999268i \(-0.512184\pi\)
0.0382670 0.999268i \(-0.487816\pi\)
\(660\) 0 0
\(661\) 50.4381 1.96181 0.980907 0.194477i \(-0.0623011\pi\)
0.980907 + 0.194477i \(0.0623011\pi\)
\(662\) 41.0968 41.0968i 1.59727 1.59727i
\(663\) 0 0
\(664\) 56.5969i 2.19638i
\(665\) 0 0
\(666\) 17.6131 0.682493
\(667\) 0 0
\(668\) −91.4963 91.4963i −3.54010 3.54010i
\(669\) 50.4828i 1.95178i
\(670\) 0 0
\(671\) 0 0
\(672\) −136.763 + 136.763i −5.27577 + 5.27577i
\(673\) 34.8841 + 34.8841i 1.34468 + 1.34468i 0.891332 + 0.453352i \(0.149772\pi\)
0.453352 + 0.891332i \(0.350228\pi\)
\(674\) 0 0
\(675\) 23.7333 10.5702i 0.913497 0.406846i
\(676\) 28.3154 1.08905
\(677\) −36.6779 + 36.6779i −1.40965 + 1.40965i −0.648038 + 0.761608i \(0.724410\pi\)
−0.761608 + 0.648038i \(0.775590\pi\)
\(678\) 0 0
\(679\) 11.9323i 0.457920i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 0 0
\(685\) 14.0373 9.64879i 0.536337 0.368661i
\(686\) 18.2322 0.696108
\(687\) −13.7359 + 13.7359i −0.524057 + 0.524057i
\(688\) −163.341 163.341i −6.22733 6.22733i
\(689\) 30.8152i 1.17396i
\(690\) 49.9144 + 72.6166i 1.90021 + 2.76447i
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 53.2439 53.2439i 2.02403 2.02403i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 12.0130i 0.454373i
\(700\) −46.3536 104.078i −1.75200 3.93379i
\(701\) −49.4095 −1.86617 −0.933086 0.359654i \(-0.882895\pi\)
−0.933086 + 0.359654i \(0.882895\pi\)
\(702\) −43.3215 + 43.3215i −1.63507 + 1.63507i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 40.5582 1.52643
\(707\) 1.39234 1.39234i 0.0523642 0.0523642i
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) −68.6322 + 47.1756i −2.57572 + 1.77047i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −123.841 −4.62815
\(717\) −16.2190 + 16.2190i −0.605711 + 0.605711i
\(718\) 74.3311 + 74.3311i 2.77401 + 2.77401i
\(719\) 11.2521i 0.419633i 0.977741 + 0.209816i \(0.0672866\pi\)
−0.977741 + 0.209816i \(0.932713\pi\)
\(720\) 21.5704 116.422i 0.803882 4.33880i
\(721\) 0 0
\(722\) 37.4239 37.4239i 1.39277 1.39277i
\(723\) 12.7143 + 12.7143i 0.472851 + 0.472851i
\(724\) 0 0
\(725\) 0 0
\(726\) 53.0718 1.96968
\(727\) 2.98358 2.98358i 0.110655 0.110655i −0.649611 0.760266i \(-0.725068\pi\)
0.760266 + 0.649611i \(0.225068\pi\)
\(728\) 124.006 + 124.006i 4.59595 + 4.59595i
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 8.78876 + 8.78876i 0.324620 + 0.324620i 0.850536 0.525916i \(-0.176277\pi\)
−0.525916 + 0.850536i \(0.676277\pi\)
\(734\) 72.4212i 2.67312i
\(735\) −27.6219 + 18.9864i −1.01885 + 0.700324i
\(736\) 230.522 8.49715
\(737\) 0 0
\(738\) 74.3165 + 74.3165i 2.73563 + 2.73563i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 15.3752 + 22.3682i 0.565205 + 0.822273i
\(741\) 0 0
\(742\) 56.7348 56.7348i 2.08280 2.08280i
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 11.4653 11.4653i 0.419494 0.419494i
\(748\) 0 0
\(749\) 0 0
\(750\) 45.9980 + 28.1763i 1.67961 + 1.02885i
\(751\) −52.5818 −1.91874 −0.959369 0.282153i \(-0.908951\pi\)
−0.959369 + 0.282153i \(0.908951\pi\)
\(752\) 0 0
\(753\) 36.7658 + 36.7658i 1.33982 + 1.33982i
\(754\) 0 0
\(755\) 0 0
\(756\) −118.404 −4.30630
\(757\) −36.2190 + 36.2190i −1.31640 + 1.31640i −0.399802 + 0.916602i \(0.630921\pi\)
−0.916602 + 0.399802i \(0.869079\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 39.4794 1.43113 0.715564 0.698547i \(-0.246170\pi\)
0.715564 + 0.698547i \(0.246170\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 93.9523i 3.39908i
\(765\) 0 0
\(766\) −46.6209 −1.68448
\(767\) 0 0
\(768\) −112.964 112.964i −4.07622 4.07622i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 50.9394 1.83454
\(772\) 0 0
\(773\) −17.6753 17.6753i −0.635735 0.635735i 0.313766 0.949500i \(-0.398409\pi\)
−0.949500 + 0.313766i \(0.898409\pi\)
\(774\) 109.366i 3.93109i
\(775\) 0 0
\(776\) −31.5806 −1.13368
\(777\) 10.2133 10.2133i 0.366400 0.366400i
\(778\) 10.3911 + 10.3911i 0.372540 + 0.372540i
\(779\) 0 0
\(780\) −92.8346 17.2002i −3.32401 0.615864i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 152.753i 5.45547i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 0 0
\(789\) 54.4725i 1.93927i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −5.13661 + 27.7239i −0.182177 + 0.983266i
\(796\) −88.2409 −3.12762
\(797\) −29.5970 + 29.5970i −1.04838 + 1.04838i −0.0496115 + 0.998769i \(0.515798\pi\)
−0.998769 + 0.0496115i \(0.984202\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 128.910 57.4126i 4.55764 2.02984i
\(801\) 0 0
\(802\) 72.1873 72.1873i 2.54902 2.54902i
\(803\) 0 0
\(804\) 0 0
\(805\) 71.0521 + 13.1643i 2.50426 + 0.463982i
\(806\) 0 0
\(807\) 0 0
\(808\) 3.68502 + 3.68502i 0.129639 + 0.129639i
\(809\) 25.7736i 0.906150i 0.891472 + 0.453075i \(0.149673\pi\)
−0.891472 + 0.453075i \(0.850327\pi\)
\(810\) 46.1970 31.7544i 1.62320 1.11573i
\(811\) −54.7052 −1.92096 −0.960479 0.278352i \(-0.910212\pi\)
−0.960479 + 0.278352i \(0.910212\pi\)
\(812\) 0 0
\(813\) 2.25703 + 2.25703i 0.0791576 + 0.0791576i
\(814\) 0 0
\(815\) −19.0047 27.6485i −0.665706 0.968485i
\(816\) 0 0
\(817\) 0 0
\(818\) −76.1778 76.1778i −2.66349 2.66349i
\(819\) 50.2417i 1.75559i
\(820\) −29.5062 + 159.254i −1.03040 + 5.56141i
\(821\) 49.4875 1.72712 0.863562 0.504242i \(-0.168228\pi\)
0.863562 + 0.504242i \(0.168228\pi\)
\(822\) 25.9883 25.9883i 0.906446 0.906446i
\(823\) −38.9000 38.9000i −1.35597 1.35597i −0.878827 0.477141i \(-0.841673\pi\)
−0.477141 0.878827i \(-0.658327\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −40.6549 + 40.6549i −1.41371 + 1.41371i −0.687956 + 0.725752i \(0.741492\pi\)
−0.725752 + 0.687956i \(0.758508\pi\)
\(828\) 99.7878 + 99.7878i 3.46787 + 3.46787i
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 33.1013 + 6.13293i 1.14896 + 0.212877i
\(831\) 0 0
\(832\) −129.647 + 129.647i −4.49469 + 4.49469i
\(833\) 0 0
\(834\) 0 0
\(835\) 41.4012 28.4579i 1.43275 0.984825i
\(836\) 0 0
\(837\) 0 0
\(838\) −72.1721 72.1721i −2.49314 2.49314i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) −90.8952 132.236i −3.13618 4.56259i
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 102.129i 3.51541i
\(845\) −2.00278 + 10.8096i −0.0688978 + 0.371863i
\(846\) 0 0
\(847\) 30.7747 30.7747i 1.05743 1.05743i
\(848\) 90.8619 + 90.8619i 3.12021 + 3.12021i
\(849\) 0 0
\(850\) 0 0
\(851\) −17.2151 −0.590124
\(852\) −94.3125 + 94.3125i −3.23109 + 3.23109i
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 56.3306i 1.92197i −0.276593 0.960987i \(-0.589205\pi\)
0.276593 0.960987i \(-0.410795\pi\)
\(860\) 138.893 95.4705i 4.73620 3.25552i
\(861\) 86.1878 2.93727
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 146.653i 4.98922i
\(865\) 16.5603 + 24.0923i 0.563068 + 0.819164i
\(866\) 115.487 3.92442
\(867\) −20.8207 + 20.8207i −0.707107 + 0.707107i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −6.39755 6.39755i −0.216524 0.216524i
\(874\) 0 0
\(875\) 43.0115 10.3343i 1.45405 0.349363i
\(876\) 0 0
\(877\) −12.1108 + 12.1108i −0.408951 + 0.408951i −0.881373 0.472422i \(-0.843380\pi\)
0.472422 + 0.881373i \(0.343380\pi\)
\(878\) −72.9406 72.9406i −2.46163 2.46163i
\(879\) 0 0
\(880\) 0 0
\(881\) −53.1853 −1.79186 −0.895930 0.444196i \(-0.853490\pi\)
−0.895930 + 0.444196i \(0.853490\pi\)
\(882\) −51.1385 + 51.1385i −1.72192 + 1.72192i
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −117.186 −3.93694
\(887\) −20.5913 + 20.5913i −0.691387 + 0.691387i −0.962537 0.271150i \(-0.912596\pi\)
0.271150 + 0.962537i \(0.412596\pi\)
\(888\) 27.0310 + 27.0310i 0.907102 + 0.907102i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −118.696 + 118.696i −3.97422 + 3.97422i
\(893\) 0 0
\(894\) 0 0
\(895\) 8.75942 47.2774i 0.292795 1.58031i
\(896\) −254.060 −8.48754
\(897\) 42.3425 42.3425i 1.41377 1.41377i
\(898\) 0 0
\(899\) 0 0
\(900\) 80.6547 + 30.9494i 2.68849 + 1.03165i
\(901\) 0 0
\(902\) 0 0
\(903\) −63.4182 63.4182i −2.11043 2.11043i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −21.3647 + 21.3647i −0.709404 + 0.709404i −0.966410 0.257006i \(-0.917264\pi\)
0.257006 + 0.966410i \(0.417264\pi\)
\(908\) 0 0
\(909\) 1.49301i 0.0495201i
\(910\) −85.9635 + 59.0887i −2.84966 + 1.95877i
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −64.5919 −2.13418
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) −34.8414 + 188.050i −1.14869 + 6.19982i
\(921\) 51.2967 1.69028
\(922\) 0 0
\(923\) 40.0192 + 40.0192i 1.31725 + 1.31725i
\(924\) 0 0
\(925\) −9.62678 + 4.28750i −0.316527 + 0.140972i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −28.2450 + 28.2450i −0.925197 + 0.925197i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −132.972 −4.34633
\(937\) 23.3549 23.3549i 0.762971 0.762971i −0.213888 0.976858i \(-0.568613\pi\)
0.976858 + 0.213888i \(0.0686126\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) −72.6370 72.6370i −2.36539 2.36539i
\(944\) 0 0
\(945\) 8.37485 45.2017i 0.272434 1.47041i
\(946\) 0 0
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 60.8372i 1.96968i
\(955\) 35.8671 + 6.64536i 1.16063 + 0.215039i
\(956\) −76.2687 −2.46671
\(957\) 0 0
\(958\) 86.1242 + 86.1242i 2.78255 + 2.78255i
\(959\) 30.1397i 0.973262i
\(960\) 138.252 95.0301i 4.46206 3.06708i
\(961\) 31.0000 1.00000
\(962\) 17.5722 17.5722i 0.566550 0.566550i
\(963\) 0 0
\(964\) 59.7881i 1.92565i
\(965\) 0 0
\(966\) 155.916 5.01653
\(967\) 43.2293 43.2293i 1.39016 1.39016i 0.565217 0.824942i \(-0.308793\pi\)
0.824942 0.565217i \(-0.191207\pi\)
\(968\) 81.4499 + 81.4499i 2.61790 + 2.61790i
\(969\) 0 0
\(970\) 3.42213 18.4703i 0.109878 0.593046i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 63.4826 63.4826i 2.03621 2.03621i
\(973\) 0 0
\(974\) 53.2569i 1.70646i
\(975\) 13.1326 34.2238i 0.420580 1.09604i
\(976\) 0 0
\(977\) 43.8979 43.8979i 1.40442 1.40442i 0.619128 0.785290i \(-0.287486\pi\)
0.785290 0.619128i \(-0.212514\pi\)
\(978\) −51.1878 51.1878i −1.63681 1.63681i
\(979\) 0 0
\(980\) −109.586 20.3038i −3.50059 0.648580i
\(981\) 0 0
\(982\) 43.2911 43.2911i 1.38147 1.38147i
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 228.109i 7.27185i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 106.895i 3.39905i
\(990\) 0 0
\(991\) 61.9911 1.96921 0.984606 0.174791i \(-0.0559250\pi\)
0.984606 + 0.174791i \(0.0559250\pi\)
\(992\) 0 0
\(993\) 25.5540 + 25.5540i 0.810931 + 0.810931i
\(994\) 147.361i 4.67402i
\(995\) 6.24139 33.6867i 0.197865 1.06794i
\(996\) 53.9147 1.70835
\(997\) −6.21904 + 6.21904i −0.196959 + 0.196959i −0.798695 0.601736i \(-0.794476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) 0 0
\(999\) 10.9518i 0.346500i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 795.2.m.a.158.1 40
3.2 odd 2 inner 795.2.m.a.158.20 yes 40
5.2 odd 4 inner 795.2.m.a.317.1 yes 40
15.2 even 4 inner 795.2.m.a.317.20 yes 40
53.52 even 2 inner 795.2.m.a.158.20 yes 40
159.158 odd 2 CM 795.2.m.a.158.1 40
265.52 odd 4 inner 795.2.m.a.317.20 yes 40
795.317 even 4 inner 795.2.m.a.317.1 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
795.2.m.a.158.1 40 1.1 even 1 trivial
795.2.m.a.158.1 40 159.158 odd 2 CM
795.2.m.a.158.20 yes 40 3.2 odd 2 inner
795.2.m.a.158.20 yes 40 53.52 even 2 inner
795.2.m.a.317.1 yes 40 5.2 odd 4 inner
795.2.m.a.317.1 yes 40 795.317 even 4 inner
795.2.m.a.317.20 yes 40 15.2 even 4 inner
795.2.m.a.317.20 yes 40 265.52 odd 4 inner