Properties

Label 7938.2.a.cd.1.4
Level $7938$
Weight $2$
Character 7938.1
Self dual yes
Analytic conductor $63.385$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7938,2,Mod(1,7938)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7938, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7938.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7938 = 2 \cdot 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7938.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,4,0,0,0,-4,0,0,-16,0,0,0,0,4,0,0,0,0,0,16,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3852491245\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 16x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 882)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.44572\) of defining polynomial
Character \(\chi\) \(=\) 7938.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +3.44572 q^{5} -1.00000 q^{8} -3.44572 q^{10} -4.00000 q^{11} -4.24264 q^{13} +1.00000 q^{16} -1.41421 q^{17} -6.27415 q^{19} +3.44572 q^{20} +4.00000 q^{22} +8.74597 q^{23} +6.87298 q^{25} +4.24264 q^{26} -1.12702 q^{29} +5.47723 q^{31} -1.00000 q^{32} +1.41421 q^{34} +5.74597 q^{37} +6.27415 q^{38} -3.44572 q^{40} -5.65685 q^{41} +1.12702 q^{43} -4.00000 q^{44} -8.74597 q^{46} +4.06301 q^{47} -6.87298 q^{50} -4.24264 q^{52} -12.6190 q^{53} -13.7829 q^{55} +1.12702 q^{58} +8.30565 q^{59} +6.27415 q^{61} -5.47723 q^{62} +1.00000 q^{64} -14.6190 q^{65} -6.87298 q^{67} -1.41421 q^{68} +9.87298 q^{71} +4.42227 q^{73} -5.74597 q^{74} -6.27415 q^{76} -1.87298 q^{79} +3.44572 q^{80} +5.65685 q^{82} +2.64880 q^{83} -4.87298 q^{85} -1.12702 q^{86} +4.00000 q^{88} -7.07107 q^{89} +8.74597 q^{92} -4.06301 q^{94} -21.6190 q^{95} +15.0175 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 4 q^{8} - 16 q^{11} + 4 q^{16} + 16 q^{22} + 4 q^{23} + 12 q^{25} - 20 q^{29} - 4 q^{32} - 8 q^{37} + 20 q^{43} - 16 q^{44} - 4 q^{46} - 12 q^{50} - 4 q^{53} + 20 q^{58} + 4 q^{64}+ \cdots - 40 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.44572 1.54097 0.770486 0.637457i \(-0.220013\pi\)
0.770486 + 0.637457i \(0.220013\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −3.44572 −1.08963
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) −4.24264 −1.17670 −0.588348 0.808608i \(-0.700222\pi\)
−0.588348 + 0.808608i \(0.700222\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.41421 −0.342997 −0.171499 0.985184i \(-0.554861\pi\)
−0.171499 + 0.985184i \(0.554861\pi\)
\(18\) 0 0
\(19\) −6.27415 −1.43939 −0.719694 0.694291i \(-0.755718\pi\)
−0.719694 + 0.694291i \(0.755718\pi\)
\(20\) 3.44572 0.770486
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 8.74597 1.82366 0.911830 0.410568i \(-0.134669\pi\)
0.911830 + 0.410568i \(0.134669\pi\)
\(24\) 0 0
\(25\) 6.87298 1.37460
\(26\) 4.24264 0.832050
\(27\) 0 0
\(28\) 0 0
\(29\) −1.12702 −0.209282 −0.104641 0.994510i \(-0.533369\pi\)
−0.104641 + 0.994510i \(0.533369\pi\)
\(30\) 0 0
\(31\) 5.47723 0.983739 0.491869 0.870669i \(-0.336314\pi\)
0.491869 + 0.870669i \(0.336314\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.41421 0.242536
\(35\) 0 0
\(36\) 0 0
\(37\) 5.74597 0.944631 0.472316 0.881430i \(-0.343418\pi\)
0.472316 + 0.881430i \(0.343418\pi\)
\(38\) 6.27415 1.01780
\(39\) 0 0
\(40\) −3.44572 −0.544816
\(41\) −5.65685 −0.883452 −0.441726 0.897150i \(-0.645634\pi\)
−0.441726 + 0.897150i \(0.645634\pi\)
\(42\) 0 0
\(43\) 1.12702 0.171868 0.0859342 0.996301i \(-0.472613\pi\)
0.0859342 + 0.996301i \(0.472613\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) −8.74597 −1.28952
\(47\) 4.06301 0.592651 0.296326 0.955087i \(-0.404239\pi\)
0.296326 + 0.955087i \(0.404239\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −6.87298 −0.971987
\(51\) 0 0
\(52\) −4.24264 −0.588348
\(53\) −12.6190 −1.73335 −0.866673 0.498877i \(-0.833746\pi\)
−0.866673 + 0.498877i \(0.833746\pi\)
\(54\) 0 0
\(55\) −13.7829 −1.85848
\(56\) 0 0
\(57\) 0 0
\(58\) 1.12702 0.147985
\(59\) 8.30565 1.08130 0.540652 0.841246i \(-0.318178\pi\)
0.540652 + 0.841246i \(0.318178\pi\)
\(60\) 0 0
\(61\) 6.27415 0.803322 0.401661 0.915788i \(-0.368433\pi\)
0.401661 + 0.915788i \(0.368433\pi\)
\(62\) −5.47723 −0.695608
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −14.6190 −1.81326
\(66\) 0 0
\(67\) −6.87298 −0.839669 −0.419834 0.907601i \(-0.637912\pi\)
−0.419834 + 0.907601i \(0.637912\pi\)
\(68\) −1.41421 −0.171499
\(69\) 0 0
\(70\) 0 0
\(71\) 9.87298 1.17171 0.585854 0.810417i \(-0.300759\pi\)
0.585854 + 0.810417i \(0.300759\pi\)
\(72\) 0 0
\(73\) 4.42227 0.517587 0.258794 0.965933i \(-0.416675\pi\)
0.258794 + 0.965933i \(0.416675\pi\)
\(74\) −5.74597 −0.667955
\(75\) 0 0
\(76\) −6.27415 −0.719694
\(77\) 0 0
\(78\) 0 0
\(79\) −1.87298 −0.210727 −0.105364 0.994434i \(-0.533601\pi\)
−0.105364 + 0.994434i \(0.533601\pi\)
\(80\) 3.44572 0.385243
\(81\) 0 0
\(82\) 5.65685 0.624695
\(83\) 2.64880 0.290743 0.145372 0.989377i \(-0.453562\pi\)
0.145372 + 0.989377i \(0.453562\pi\)
\(84\) 0 0
\(85\) −4.87298 −0.528549
\(86\) −1.12702 −0.121529
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) −7.07107 −0.749532 −0.374766 0.927119i \(-0.622277\pi\)
−0.374766 + 0.927119i \(0.622277\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 8.74597 0.911830
\(93\) 0 0
\(94\) −4.06301 −0.419068
\(95\) −21.6190 −2.21806
\(96\) 0 0
\(97\) 15.0175 1.52479 0.762396 0.647111i \(-0.224023\pi\)
0.762396 + 0.647111i \(0.224023\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 6.87298 0.687298
\(101\) 13.3452 1.32790 0.663949 0.747778i \(-0.268879\pi\)
0.663949 + 0.747778i \(0.268879\pi\)
\(102\) 0 0
\(103\) 3.88338 0.382641 0.191321 0.981528i \(-0.438723\pi\)
0.191321 + 0.981528i \(0.438723\pi\)
\(104\) 4.24264 0.416025
\(105\) 0 0
\(106\) 12.6190 1.22566
\(107\) −0.254033 −0.0245583 −0.0122792 0.999925i \(-0.503909\pi\)
−0.0122792 + 0.999925i \(0.503909\pi\)
\(108\) 0 0
\(109\) 16.8730 1.61614 0.808069 0.589087i \(-0.200513\pi\)
0.808069 + 0.589087i \(0.200513\pi\)
\(110\) 13.7829 1.31415
\(111\) 0 0
\(112\) 0 0
\(113\) −3.87298 −0.364340 −0.182170 0.983267i \(-0.558312\pi\)
−0.182170 + 0.983267i \(0.558312\pi\)
\(114\) 0 0
\(115\) 30.1361 2.81021
\(116\) −1.12702 −0.104641
\(117\) 0 0
\(118\) −8.30565 −0.764597
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −6.27415 −0.568035
\(123\) 0 0
\(124\) 5.47723 0.491869
\(125\) 6.45378 0.577243
\(126\) 0 0
\(127\) −0.745967 −0.0661938 −0.0330969 0.999452i \(-0.510537\pi\)
−0.0330969 + 0.999452i \(0.510537\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 14.6190 1.28217
\(131\) −13.3452 −1.16598 −0.582988 0.812480i \(-0.698117\pi\)
−0.582988 + 0.812480i \(0.698117\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.87298 0.593735
\(135\) 0 0
\(136\) 1.41421 0.121268
\(137\) 15.4919 1.32357 0.661783 0.749696i \(-0.269800\pi\)
0.661783 + 0.749696i \(0.269800\pi\)
\(138\) 0 0
\(139\) 19.8774 1.68598 0.842989 0.537930i \(-0.180794\pi\)
0.842989 + 0.537930i \(0.180794\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −9.87298 −0.828522
\(143\) 16.9706 1.41915
\(144\) 0 0
\(145\) −3.88338 −0.322497
\(146\) −4.42227 −0.365990
\(147\) 0 0
\(148\) 5.74597 0.472316
\(149\) 15.7460 1.28996 0.644980 0.764200i \(-0.276866\pi\)
0.644980 + 0.764200i \(0.276866\pi\)
\(150\) 0 0
\(151\) 11.0000 0.895167 0.447584 0.894242i \(-0.352285\pi\)
0.447584 + 0.894242i \(0.352285\pi\)
\(152\) 6.27415 0.508900
\(153\) 0 0
\(154\) 0 0
\(155\) 18.8730 1.51591
\(156\) 0 0
\(157\) 11.9310 0.952198 0.476099 0.879392i \(-0.342050\pi\)
0.476099 + 0.879392i \(0.342050\pi\)
\(158\) 1.87298 0.149007
\(159\) 0 0
\(160\) −3.44572 −0.272408
\(161\) 0 0
\(162\) 0 0
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) −5.65685 −0.441726
\(165\) 0 0
\(166\) −2.64880 −0.205587
\(167\) −9.54024 −0.738246 −0.369123 0.929381i \(-0.620342\pi\)
−0.369123 + 0.929381i \(0.620342\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 4.87298 0.373741
\(171\) 0 0
\(172\) 1.12702 0.0859342
\(173\) −12.7279 −0.967686 −0.483843 0.875155i \(-0.660759\pi\)
−0.483843 + 0.875155i \(0.660759\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 0 0
\(178\) 7.07107 0.529999
\(179\) 6.87298 0.513711 0.256855 0.966450i \(-0.417314\pi\)
0.256855 + 0.966450i \(0.417314\pi\)
\(180\) 0 0
\(181\) −13.3452 −0.991942 −0.495971 0.868339i \(-0.665188\pi\)
−0.495971 + 0.868339i \(0.665188\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −8.74597 −0.644761
\(185\) 19.7990 1.45565
\(186\) 0 0
\(187\) 5.65685 0.413670
\(188\) 4.06301 0.296326
\(189\) 0 0
\(190\) 21.6190 1.56840
\(191\) 6.12702 0.443335 0.221668 0.975122i \(-0.428850\pi\)
0.221668 + 0.975122i \(0.428850\pi\)
\(192\) 0 0
\(193\) 23.8730 1.71841 0.859207 0.511627i \(-0.170957\pi\)
0.859207 + 0.511627i \(0.170957\pi\)
\(194\) −15.0175 −1.07819
\(195\) 0 0
\(196\) 0 0
\(197\) −16.6190 −1.18405 −0.592026 0.805919i \(-0.701672\pi\)
−0.592026 + 0.805919i \(0.701672\pi\)
\(198\) 0 0
\(199\) 12.1890 0.864058 0.432029 0.901860i \(-0.357798\pi\)
0.432029 + 0.901860i \(0.357798\pi\)
\(200\) −6.87298 −0.485993
\(201\) 0 0
\(202\) −13.3452 −0.938966
\(203\) 0 0
\(204\) 0 0
\(205\) −19.4919 −1.36138
\(206\) −3.88338 −0.270568
\(207\) 0 0
\(208\) −4.24264 −0.294174
\(209\) 25.0966 1.73597
\(210\) 0 0
\(211\) 20.6190 1.41947 0.709734 0.704470i \(-0.248815\pi\)
0.709734 + 0.704470i \(0.248815\pi\)
\(212\) −12.6190 −0.866673
\(213\) 0 0
\(214\) 0.254033 0.0173654
\(215\) 3.88338 0.264845
\(216\) 0 0
\(217\) 0 0
\(218\) −16.8730 −1.14278
\(219\) 0 0
\(220\) −13.7829 −0.929241
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) −22.4478 −1.50322 −0.751608 0.659611i \(-0.770721\pi\)
−0.751608 + 0.659611i \(0.770721\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.87298 0.257627
\(227\) −10.3372 −0.686101 −0.343051 0.939317i \(-0.611460\pi\)
−0.343051 + 0.939317i \(0.611460\pi\)
\(228\) 0 0
\(229\) 13.3452 0.881877 0.440938 0.897537i \(-0.354646\pi\)
0.440938 + 0.897537i \(0.354646\pi\)
\(230\) −30.1361 −1.98712
\(231\) 0 0
\(232\) 1.12702 0.0739923
\(233\) −7.25403 −0.475228 −0.237614 0.971360i \(-0.576365\pi\)
−0.237614 + 0.971360i \(0.576365\pi\)
\(234\) 0 0
\(235\) 14.0000 0.913259
\(236\) 8.30565 0.540652
\(237\) 0 0
\(238\) 0 0
\(239\) 15.0000 0.970269 0.485135 0.874439i \(-0.338771\pi\)
0.485135 + 0.874439i \(0.338771\pi\)
\(240\) 0 0
\(241\) −23.6824 −1.52552 −0.762758 0.646684i \(-0.776155\pi\)
−0.762758 + 0.646684i \(0.776155\pi\)
\(242\) −5.00000 −0.321412
\(243\) 0 0
\(244\) 6.27415 0.401661
\(245\) 0 0
\(246\) 0 0
\(247\) 26.6190 1.69372
\(248\) −5.47723 −0.347804
\(249\) 0 0
\(250\) −6.45378 −0.408173
\(251\) −9.46183 −0.597225 −0.298613 0.954374i \(-0.596524\pi\)
−0.298613 + 0.954374i \(0.596524\pi\)
\(252\) 0 0
\(253\) −34.9839 −2.19942
\(254\) 0.745967 0.0468061
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −3.00806 −0.187637 −0.0938187 0.995589i \(-0.529907\pi\)
−0.0938187 + 0.995589i \(0.529907\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −14.6190 −0.906629
\(261\) 0 0
\(262\) 13.3452 0.824470
\(263\) 17.6190 1.08643 0.543216 0.839593i \(-0.317207\pi\)
0.543216 + 0.839593i \(0.317207\pi\)
\(264\) 0 0
\(265\) −43.4814 −2.67104
\(266\) 0 0
\(267\) 0 0
\(268\) −6.87298 −0.419834
\(269\) 2.03151 0.123863 0.0619316 0.998080i \(-0.480274\pi\)
0.0619316 + 0.998080i \(0.480274\pi\)
\(270\) 0 0
\(271\) 7.07107 0.429537 0.214768 0.976665i \(-0.431100\pi\)
0.214768 + 0.976665i \(0.431100\pi\)
\(272\) −1.41421 −0.0857493
\(273\) 0 0
\(274\) −15.4919 −0.935902
\(275\) −27.4919 −1.65783
\(276\) 0 0
\(277\) 14.3649 0.863104 0.431552 0.902088i \(-0.357966\pi\)
0.431552 + 0.902088i \(0.357966\pi\)
\(278\) −19.8774 −1.19217
\(279\) 0 0
\(280\) 0 0
\(281\) −8.74597 −0.521741 −0.260870 0.965374i \(-0.584009\pi\)
−0.260870 + 0.965374i \(0.584009\pi\)
\(282\) 0 0
\(283\) 5.03956 0.299571 0.149785 0.988719i \(-0.452142\pi\)
0.149785 + 0.988719i \(0.452142\pi\)
\(284\) 9.87298 0.585854
\(285\) 0 0
\(286\) −16.9706 −1.00349
\(287\) 0 0
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 3.88338 0.228040
\(291\) 0 0
\(292\) 4.42227 0.258794
\(293\) 0.796921 0.0465566 0.0232783 0.999729i \(-0.492590\pi\)
0.0232783 + 0.999729i \(0.492590\pi\)
\(294\) 0 0
\(295\) 28.6190 1.66626
\(296\) −5.74597 −0.333978
\(297\) 0 0
\(298\) −15.7460 −0.912139
\(299\) −37.1060 −2.14590
\(300\) 0 0
\(301\) 0 0
\(302\) −11.0000 −0.632979
\(303\) 0 0
\(304\) −6.27415 −0.359847
\(305\) 21.6190 1.23790
\(306\) 0 0
\(307\) 14.2205 0.811609 0.405805 0.913960i \(-0.366991\pi\)
0.405805 + 0.913960i \(0.366991\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −18.8730 −1.07191
\(311\) 1.41421 0.0801927 0.0400963 0.999196i \(-0.487234\pi\)
0.0400963 + 0.999196i \(0.487234\pi\)
\(312\) 0 0
\(313\) 15.7360 0.889450 0.444725 0.895667i \(-0.353301\pi\)
0.444725 + 0.895667i \(0.353301\pi\)
\(314\) −11.9310 −0.673305
\(315\) 0 0
\(316\) −1.87298 −0.105364
\(317\) −24.6190 −1.38274 −0.691369 0.722502i \(-0.742992\pi\)
−0.691369 + 0.722502i \(0.742992\pi\)
\(318\) 0 0
\(319\) 4.50807 0.252403
\(320\) 3.44572 0.192622
\(321\) 0 0
\(322\) 0 0
\(323\) 8.87298 0.493706
\(324\) 0 0
\(325\) −29.1596 −1.61748
\(326\) −10.0000 −0.553849
\(327\) 0 0
\(328\) 5.65685 0.312348
\(329\) 0 0
\(330\) 0 0
\(331\) 20.3649 1.11936 0.559679 0.828710i \(-0.310925\pi\)
0.559679 + 0.828710i \(0.310925\pi\)
\(332\) 2.64880 0.145372
\(333\) 0 0
\(334\) 9.54024 0.522019
\(335\) −23.6824 −1.29391
\(336\) 0 0
\(337\) 15.7460 0.857737 0.428869 0.903367i \(-0.358912\pi\)
0.428869 + 0.903367i \(0.358912\pi\)
\(338\) −5.00000 −0.271964
\(339\) 0 0
\(340\) −4.87298 −0.264275
\(341\) −21.9089 −1.18643
\(342\) 0 0
\(343\) 0 0
\(344\) −1.12702 −0.0607647
\(345\) 0 0
\(346\) 12.7279 0.684257
\(347\) −7.74597 −0.415825 −0.207913 0.978147i \(-0.566667\pi\)
−0.207913 + 0.978147i \(0.566667\pi\)
\(348\) 0 0
\(349\) −16.4317 −0.879567 −0.439784 0.898104i \(-0.644945\pi\)
−0.439784 + 0.898104i \(0.644945\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) −3.88338 −0.206692 −0.103346 0.994645i \(-0.532955\pi\)
−0.103346 + 0.994645i \(0.532955\pi\)
\(354\) 0 0
\(355\) 34.0195 1.80557
\(356\) −7.07107 −0.374766
\(357\) 0 0
\(358\) −6.87298 −0.363248
\(359\) −18.2379 −0.962560 −0.481280 0.876567i \(-0.659828\pi\)
−0.481280 + 0.876567i \(0.659828\pi\)
\(360\) 0 0
\(361\) 20.3649 1.07184
\(362\) 13.3452 0.701409
\(363\) 0 0
\(364\) 0 0
\(365\) 15.2379 0.797588
\(366\) 0 0
\(367\) 6.89144 0.359730 0.179865 0.983691i \(-0.442434\pi\)
0.179865 + 0.983691i \(0.442434\pi\)
\(368\) 8.74597 0.455915
\(369\) 0 0
\(370\) −19.7990 −1.02930
\(371\) 0 0
\(372\) 0 0
\(373\) −1.12702 −0.0583547 −0.0291774 0.999574i \(-0.509289\pi\)
−0.0291774 + 0.999574i \(0.509289\pi\)
\(374\) −5.65685 −0.292509
\(375\) 0 0
\(376\) −4.06301 −0.209534
\(377\) 4.78153 0.246261
\(378\) 0 0
\(379\) 26.3649 1.35427 0.677137 0.735857i \(-0.263220\pi\)
0.677137 + 0.735857i \(0.263220\pi\)
\(380\) −21.6190 −1.10903
\(381\) 0 0
\(382\) −6.12702 −0.313485
\(383\) 12.9076 0.659545 0.329773 0.944060i \(-0.393028\pi\)
0.329773 + 0.944060i \(0.393028\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −23.8730 −1.21510
\(387\) 0 0
\(388\) 15.0175 0.762396
\(389\) −13.1270 −0.665566 −0.332783 0.943003i \(-0.607988\pi\)
−0.332783 + 0.943003i \(0.607988\pi\)
\(390\) 0 0
\(391\) −12.3687 −0.625510
\(392\) 0 0
\(393\) 0 0
\(394\) 16.6190 0.837251
\(395\) −6.45378 −0.324725
\(396\) 0 0
\(397\) 7.07107 0.354887 0.177443 0.984131i \(-0.443217\pi\)
0.177443 + 0.984131i \(0.443217\pi\)
\(398\) −12.1890 −0.610981
\(399\) 0 0
\(400\) 6.87298 0.343649
\(401\) 3.87298 0.193408 0.0967038 0.995313i \(-0.469170\pi\)
0.0967038 + 0.995313i \(0.469170\pi\)
\(402\) 0 0
\(403\) −23.2379 −1.15756
\(404\) 13.3452 0.663949
\(405\) 0 0
\(406\) 0 0
\(407\) −22.9839 −1.13927
\(408\) 0 0
\(409\) 23.1435 1.14437 0.572186 0.820124i \(-0.306096\pi\)
0.572186 + 0.820124i \(0.306096\pi\)
\(410\) 19.4919 0.962638
\(411\) 0 0
\(412\) 3.88338 0.191321
\(413\) 0 0
\(414\) 0 0
\(415\) 9.12702 0.448028
\(416\) 4.24264 0.208013
\(417\) 0 0
\(418\) −25.0966 −1.22751
\(419\) 31.3707 1.53256 0.766280 0.642506i \(-0.222105\pi\)
0.766280 + 0.642506i \(0.222105\pi\)
\(420\) 0 0
\(421\) −12.8730 −0.627391 −0.313695 0.949524i \(-0.601567\pi\)
−0.313695 + 0.949524i \(0.601567\pi\)
\(422\) −20.6190 −1.00371
\(423\) 0 0
\(424\) 12.6190 0.612830
\(425\) −9.71987 −0.471483
\(426\) 0 0
\(427\) 0 0
\(428\) −0.254033 −0.0122792
\(429\) 0 0
\(430\) −3.88338 −0.187273
\(431\) 21.4919 1.03523 0.517615 0.855614i \(-0.326820\pi\)
0.517615 + 0.855614i \(0.326820\pi\)
\(432\) 0 0
\(433\) −29.6985 −1.42722 −0.713609 0.700544i \(-0.752941\pi\)
−0.713609 + 0.700544i \(0.752941\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 16.8730 0.808069
\(437\) −54.8735 −2.62495
\(438\) 0 0
\(439\) −10.9545 −0.522827 −0.261414 0.965227i \(-0.584189\pi\)
−0.261414 + 0.965227i \(0.584189\pi\)
\(440\) 13.7829 0.657073
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) 14.3649 0.682498 0.341249 0.939973i \(-0.389150\pi\)
0.341249 + 0.939973i \(0.389150\pi\)
\(444\) 0 0
\(445\) −24.3649 −1.15501
\(446\) 22.4478 1.06293
\(447\) 0 0
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 22.6274 1.06548
\(452\) −3.87298 −0.182170
\(453\) 0 0
\(454\) 10.3372 0.485147
\(455\) 0 0
\(456\) 0 0
\(457\) 26.1270 1.22217 0.611085 0.791565i \(-0.290733\pi\)
0.611085 + 0.791565i \(0.290733\pi\)
\(458\) −13.3452 −0.623581
\(459\) 0 0
\(460\) 30.1361 1.40511
\(461\) −28.3627 −1.32098 −0.660491 0.750834i \(-0.729652\pi\)
−0.660491 + 0.750834i \(0.729652\pi\)
\(462\) 0 0
\(463\) −1.61895 −0.0752390 −0.0376195 0.999292i \(-0.511977\pi\)
−0.0376195 + 0.999292i \(0.511977\pi\)
\(464\) −1.12702 −0.0523204
\(465\) 0 0
\(466\) 7.25403 0.336037
\(467\) −6.19574 −0.286705 −0.143352 0.989672i \(-0.545788\pi\)
−0.143352 + 0.989672i \(0.545788\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −14.0000 −0.645772
\(471\) 0 0
\(472\) −8.30565 −0.382299
\(473\) −4.50807 −0.207281
\(474\) 0 0
\(475\) −43.1221 −1.97858
\(476\) 0 0
\(477\) 0 0
\(478\) −15.0000 −0.686084
\(479\) −3.88338 −0.177436 −0.0887182 0.996057i \(-0.528277\pi\)
−0.0887182 + 0.996057i \(0.528277\pi\)
\(480\) 0 0
\(481\) −24.3781 −1.11154
\(482\) 23.6824 1.07870
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 51.7460 2.34966
\(486\) 0 0
\(487\) −0.491933 −0.0222916 −0.0111458 0.999938i \(-0.503548\pi\)
−0.0111458 + 0.999938i \(0.503548\pi\)
\(488\) −6.27415 −0.284017
\(489\) 0 0
\(490\) 0 0
\(491\) −1.74597 −0.0787944 −0.0393972 0.999224i \(-0.512544\pi\)
−0.0393972 + 0.999224i \(0.512544\pi\)
\(492\) 0 0
\(493\) 1.59384 0.0717830
\(494\) −26.6190 −1.19764
\(495\) 0 0
\(496\) 5.47723 0.245935
\(497\) 0 0
\(498\) 0 0
\(499\) −29.7460 −1.33161 −0.665806 0.746125i \(-0.731912\pi\)
−0.665806 + 0.746125i \(0.731912\pi\)
\(500\) 6.45378 0.288622
\(501\) 0 0
\(502\) 9.46183 0.422302
\(503\) 3.88338 0.173152 0.0865758 0.996245i \(-0.472408\pi\)
0.0865758 + 0.996245i \(0.472408\pi\)
\(504\) 0 0
\(505\) 45.9839 2.04626
\(506\) 34.9839 1.55522
\(507\) 0 0
\(508\) −0.745967 −0.0330969
\(509\) −22.8070 −1.01090 −0.505452 0.862855i \(-0.668674\pi\)
−0.505452 + 0.862855i \(0.668674\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 3.00806 0.132680
\(515\) 13.3810 0.589640
\(516\) 0 0
\(517\) −16.2520 −0.714764
\(518\) 0 0
\(519\) 0 0
\(520\) 14.6190 0.641083
\(521\) −1.41421 −0.0619578 −0.0309789 0.999520i \(-0.509862\pi\)
−0.0309789 + 0.999520i \(0.509862\pi\)
\(522\) 0 0
\(523\) 18.2836 0.799484 0.399742 0.916628i \(-0.369100\pi\)
0.399742 + 0.916628i \(0.369100\pi\)
\(524\) −13.3452 −0.582988
\(525\) 0 0
\(526\) −17.6190 −0.768223
\(527\) −7.74597 −0.337420
\(528\) 0 0
\(529\) 53.4919 2.32574
\(530\) 43.4814 1.88871
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) −0.875328 −0.0378437
\(536\) 6.87298 0.296868
\(537\) 0 0
\(538\) −2.03151 −0.0875844
\(539\) 0 0
\(540\) 0 0
\(541\) −38.1109 −1.63851 −0.819257 0.573426i \(-0.805614\pi\)
−0.819257 + 0.573426i \(0.805614\pi\)
\(542\) −7.07107 −0.303728
\(543\) 0 0
\(544\) 1.41421 0.0606339
\(545\) 58.1396 2.49043
\(546\) 0 0
\(547\) −32.9839 −1.41029 −0.705144 0.709064i \(-0.749118\pi\)
−0.705144 + 0.709064i \(0.749118\pi\)
\(548\) 15.4919 0.661783
\(549\) 0 0
\(550\) 27.4919 1.17226
\(551\) 7.07107 0.301238
\(552\) 0 0
\(553\) 0 0
\(554\) −14.3649 −0.610307
\(555\) 0 0
\(556\) 19.8774 0.842989
\(557\) −26.6190 −1.12788 −0.563941 0.825815i \(-0.690715\pi\)
−0.563941 + 0.825815i \(0.690715\pi\)
\(558\) 0 0
\(559\) −4.78153 −0.202237
\(560\) 0 0
\(561\) 0 0
\(562\) 8.74597 0.368926
\(563\) 21.6509 0.912475 0.456238 0.889858i \(-0.349197\pi\)
0.456238 + 0.889858i \(0.349197\pi\)
\(564\) 0 0
\(565\) −13.3452 −0.561437
\(566\) −5.03956 −0.211829
\(567\) 0 0
\(568\) −9.87298 −0.414261
\(569\) 23.4919 0.984833 0.492417 0.870360i \(-0.336114\pi\)
0.492417 + 0.870360i \(0.336114\pi\)
\(570\) 0 0
\(571\) 31.4919 1.31790 0.658948 0.752188i \(-0.271002\pi\)
0.658948 + 0.752188i \(0.271002\pi\)
\(572\) 16.9706 0.709575
\(573\) 0 0
\(574\) 0 0
\(575\) 60.1109 2.50680
\(576\) 0 0
\(577\) 24.2213 1.00834 0.504172 0.863603i \(-0.331798\pi\)
0.504172 + 0.863603i \(0.331798\pi\)
\(578\) 15.0000 0.623918
\(579\) 0 0
\(580\) −3.88338 −0.161249
\(581\) 0 0
\(582\) 0 0
\(583\) 50.4758 2.09049
\(584\) −4.42227 −0.182995
\(585\) 0 0
\(586\) −0.796921 −0.0329205
\(587\) −8.56369 −0.353461 −0.176731 0.984259i \(-0.556552\pi\)
−0.176731 + 0.984259i \(0.556552\pi\)
\(588\) 0 0
\(589\) −34.3649 −1.41598
\(590\) −28.6190 −1.17822
\(591\) 0 0
\(592\) 5.74597 0.236158
\(593\) −33.7615 −1.38642 −0.693209 0.720736i \(-0.743804\pi\)
−0.693209 + 0.720736i \(0.743804\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 15.7460 0.644980
\(597\) 0 0
\(598\) 37.1060 1.51738
\(599\) 45.2379 1.84837 0.924185 0.381945i \(-0.124745\pi\)
0.924185 + 0.381945i \(0.124745\pi\)
\(600\) 0 0
\(601\) −4.78153 −0.195043 −0.0975213 0.995233i \(-0.531091\pi\)
−0.0975213 + 0.995233i \(0.531091\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 11.0000 0.447584
\(605\) 17.2286 0.700442
\(606\) 0 0
\(607\) 26.6904 1.08333 0.541666 0.840594i \(-0.317794\pi\)
0.541666 + 0.840594i \(0.317794\pi\)
\(608\) 6.27415 0.254450
\(609\) 0 0
\(610\) −21.6190 −0.875326
\(611\) −17.2379 −0.697371
\(612\) 0 0
\(613\) 26.6190 1.07513 0.537565 0.843223i \(-0.319344\pi\)
0.537565 + 0.843223i \(0.319344\pi\)
\(614\) −14.2205 −0.573894
\(615\) 0 0
\(616\) 0 0
\(617\) 12.2540 0.493329 0.246664 0.969101i \(-0.420665\pi\)
0.246664 + 0.969101i \(0.420665\pi\)
\(618\) 0 0
\(619\) −37.9029 −1.52345 −0.761723 0.647902i \(-0.775646\pi\)
−0.761723 + 0.647902i \(0.775646\pi\)
\(620\) 18.8730 0.757957
\(621\) 0 0
\(622\) −1.41421 −0.0567048
\(623\) 0 0
\(624\) 0 0
\(625\) −12.1270 −0.485081
\(626\) −15.7360 −0.628936
\(627\) 0 0
\(628\) 11.9310 0.476099
\(629\) −8.12602 −0.324006
\(630\) 0 0
\(631\) −4.38105 −0.174407 −0.0872034 0.996191i \(-0.527793\pi\)
−0.0872034 + 0.996191i \(0.527793\pi\)
\(632\) 1.87298 0.0745033
\(633\) 0 0
\(634\) 24.6190 0.977743
\(635\) −2.57039 −0.102003
\(636\) 0 0
\(637\) 0 0
\(638\) −4.50807 −0.178476
\(639\) 0 0
\(640\) −3.44572 −0.136204
\(641\) −17.1109 −0.675839 −0.337920 0.941175i \(-0.609723\pi\)
−0.337920 + 0.941175i \(0.609723\pi\)
\(642\) 0 0
\(643\) 3.52413 0.138978 0.0694890 0.997583i \(-0.477863\pi\)
0.0694890 + 0.997583i \(0.477863\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −8.87298 −0.349103
\(647\) 5.47723 0.215332 0.107666 0.994187i \(-0.465662\pi\)
0.107666 + 0.994187i \(0.465662\pi\)
\(648\) 0 0
\(649\) −33.2226 −1.30410
\(650\) 29.1596 1.14373
\(651\) 0 0
\(652\) 10.0000 0.391630
\(653\) 14.5081 0.567745 0.283872 0.958862i \(-0.408381\pi\)
0.283872 + 0.958862i \(0.408381\pi\)
\(654\) 0 0
\(655\) −45.9839 −1.79674
\(656\) −5.65685 −0.220863
\(657\) 0 0
\(658\) 0 0
\(659\) −29.1270 −1.13463 −0.567314 0.823502i \(-0.692017\pi\)
−0.567314 + 0.823502i \(0.692017\pi\)
\(660\) 0 0
\(661\) −46.2086 −1.79730 −0.898652 0.438661i \(-0.855453\pi\)
−0.898652 + 0.438661i \(0.855453\pi\)
\(662\) −20.3649 −0.791505
\(663\) 0 0
\(664\) −2.64880 −0.102793
\(665\) 0 0
\(666\) 0 0
\(667\) −9.85685 −0.381659
\(668\) −9.54024 −0.369123
\(669\) 0 0
\(670\) 23.6824 0.914930
\(671\) −25.0966 −0.968843
\(672\) 0 0
\(673\) 14.2379 0.548831 0.274415 0.961611i \(-0.411516\pi\)
0.274415 + 0.961611i \(0.411516\pi\)
\(674\) −15.7460 −0.606512
\(675\) 0 0
\(676\) 5.00000 0.192308
\(677\) −12.7279 −0.489174 −0.244587 0.969627i \(-0.578652\pi\)
−0.244587 + 0.969627i \(0.578652\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 4.87298 0.186870
\(681\) 0 0
\(682\) 21.9089 0.838935
\(683\) −7.74597 −0.296391 −0.148196 0.988958i \(-0.547347\pi\)
−0.148196 + 0.988958i \(0.547347\pi\)
\(684\) 0 0
\(685\) 53.3809 2.03958
\(686\) 0 0
\(687\) 0 0
\(688\) 1.12702 0.0429671
\(689\) 53.5377 2.03962
\(690\) 0 0
\(691\) 17.0490 0.648573 0.324287 0.945959i \(-0.394876\pi\)
0.324287 + 0.945959i \(0.394876\pi\)
\(692\) −12.7279 −0.483843
\(693\) 0 0
\(694\) 7.74597 0.294033
\(695\) 68.4919 2.59805
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) 16.4317 0.621948
\(699\) 0 0
\(700\) 0 0
\(701\) 16.2540 0.613906 0.306953 0.951725i \(-0.400690\pi\)
0.306953 + 0.951725i \(0.400690\pi\)
\(702\) 0 0
\(703\) −36.0510 −1.35969
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) 3.88338 0.146153
\(707\) 0 0
\(708\) 0 0
\(709\) −52.7298 −1.98031 −0.990155 0.139974i \(-0.955298\pi\)
−0.990155 + 0.139974i \(0.955298\pi\)
\(710\) −34.0195 −1.27673
\(711\) 0 0
\(712\) 7.07107 0.264999
\(713\) 47.9036 1.79401
\(714\) 0 0
\(715\) 58.4758 2.18687
\(716\) 6.87298 0.256855
\(717\) 0 0
\(718\) 18.2379 0.680632
\(719\) 23.5027 0.876504 0.438252 0.898852i \(-0.355598\pi\)
0.438252 + 0.898852i \(0.355598\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −20.3649 −0.757904
\(723\) 0 0
\(724\) −13.3452 −0.495971
\(725\) −7.74597 −0.287678
\(726\) 0 0
\(727\) 3.36731 0.124887 0.0624434 0.998049i \(-0.480111\pi\)
0.0624434 + 0.998049i \(0.480111\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −15.2379 −0.563980
\(731\) −1.59384 −0.0589504
\(732\) 0 0
\(733\) −37.0276 −1.36765 −0.683823 0.729648i \(-0.739684\pi\)
−0.683823 + 0.729648i \(0.739684\pi\)
\(734\) −6.89144 −0.254368
\(735\) 0 0
\(736\) −8.74597 −0.322381
\(737\) 27.4919 1.01268
\(738\) 0 0
\(739\) −30.0000 −1.10357 −0.551784 0.833987i \(-0.686053\pi\)
−0.551784 + 0.833987i \(0.686053\pi\)
\(740\) 19.7990 0.727825
\(741\) 0 0
\(742\) 0 0
\(743\) 12.2540 0.449557 0.224778 0.974410i \(-0.427834\pi\)
0.224778 + 0.974410i \(0.427834\pi\)
\(744\) 0 0
\(745\) 54.2562 1.98779
\(746\) 1.12702 0.0412630
\(747\) 0 0
\(748\) 5.65685 0.206835
\(749\) 0 0
\(750\) 0 0
\(751\) −13.0000 −0.474377 −0.237188 0.971464i \(-0.576226\pi\)
−0.237188 + 0.971464i \(0.576226\pi\)
\(752\) 4.06301 0.148163
\(753\) 0 0
\(754\) −4.78153 −0.174133
\(755\) 37.9029 1.37943
\(756\) 0 0
\(757\) 31.2379 1.13536 0.567680 0.823249i \(-0.307841\pi\)
0.567680 + 0.823249i \(0.307841\pi\)
\(758\) −26.3649 −0.957617
\(759\) 0 0
\(760\) 21.6190 0.784202
\(761\) 30.5738 1.10830 0.554150 0.832417i \(-0.313043\pi\)
0.554150 + 0.832417i \(0.313043\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 6.12702 0.221668
\(765\) 0 0
\(766\) −12.9076 −0.466369
\(767\) −35.2379 −1.27237
\(768\) 0 0
\(769\) −1.23458 −0.0445203 −0.0222601 0.999752i \(-0.507086\pi\)
−0.0222601 + 0.999752i \(0.507086\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 23.8730 0.859207
\(773\) 2.03151 0.0730682 0.0365341 0.999332i \(-0.488368\pi\)
0.0365341 + 0.999332i \(0.488368\pi\)
\(774\) 0 0
\(775\) 37.6449 1.35224
\(776\) −15.0175 −0.539096
\(777\) 0 0
\(778\) 13.1270 0.470626
\(779\) 35.4919 1.27163
\(780\) 0 0
\(781\) −39.4919 −1.41313
\(782\) 12.3687 0.442303
\(783\) 0 0
\(784\) 0 0
\(785\) 41.1109 1.46731
\(786\) 0 0
\(787\) 12.3687 0.440895 0.220448 0.975399i \(-0.429248\pi\)
0.220448 + 0.975399i \(0.429248\pi\)
\(788\) −16.6190 −0.592026
\(789\) 0 0
\(790\) 6.45378 0.229615
\(791\) 0 0
\(792\) 0 0
\(793\) −26.6190 −0.945267
\(794\) −7.07107 −0.250943
\(795\) 0 0
\(796\) 12.1890 0.432029
\(797\) 20.5959 0.729545 0.364772 0.931097i \(-0.381147\pi\)
0.364772 + 0.931097i \(0.381147\pi\)
\(798\) 0 0
\(799\) −5.74597 −0.203278
\(800\) −6.87298 −0.242997
\(801\) 0 0
\(802\) −3.87298 −0.136760
\(803\) −17.6891 −0.624234
\(804\) 0 0
\(805\) 0 0
\(806\) 23.2379 0.818520
\(807\) 0 0
\(808\) −13.3452 −0.469483
\(809\) −46.7298 −1.64293 −0.821467 0.570256i \(-0.806844\pi\)
−0.821467 + 0.570256i \(0.806844\pi\)
\(810\) 0 0
\(811\) −3.00806 −0.105627 −0.0528136 0.998604i \(-0.516819\pi\)
−0.0528136 + 0.998604i \(0.516819\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 22.9839 0.805584
\(815\) 34.4572 1.20698
\(816\) 0 0
\(817\) −7.07107 −0.247385
\(818\) −23.1435 −0.809193
\(819\) 0 0
\(820\) −19.4919 −0.680688
\(821\) 9.49193 0.331271 0.165635 0.986187i \(-0.447033\pi\)
0.165635 + 0.986187i \(0.447033\pi\)
\(822\) 0 0
\(823\) −6.25403 −0.218002 −0.109001 0.994042i \(-0.534765\pi\)
−0.109001 + 0.994042i \(0.534765\pi\)
\(824\) −3.88338 −0.135284
\(825\) 0 0
\(826\) 0 0
\(827\) −48.8730 −1.69948 −0.849740 0.527202i \(-0.823241\pi\)
−0.849740 + 0.527202i \(0.823241\pi\)
\(828\) 0 0
\(829\) −10.6180 −0.368779 −0.184389 0.982853i \(-0.559031\pi\)
−0.184389 + 0.982853i \(0.559031\pi\)
\(830\) −9.12702 −0.316803
\(831\) 0 0
\(832\) −4.24264 −0.147087
\(833\) 0 0
\(834\) 0 0
\(835\) −32.8730 −1.13762
\(836\) 25.0966 0.867984
\(837\) 0 0
\(838\) −31.3707 −1.08368
\(839\) −25.7923 −0.890449 −0.445224 0.895419i \(-0.646876\pi\)
−0.445224 + 0.895419i \(0.646876\pi\)
\(840\) 0 0
\(841\) −27.7298 −0.956201
\(842\) 12.8730 0.443632
\(843\) 0 0
\(844\) 20.6190 0.709734
\(845\) 17.2286 0.592682
\(846\) 0 0
\(847\) 0 0
\(848\) −12.6190 −0.433337
\(849\) 0 0
\(850\) 9.71987 0.333389
\(851\) 50.2540 1.72269
\(852\) 0 0
\(853\) −18.1267 −0.620648 −0.310324 0.950631i \(-0.600438\pi\)
−0.310324 + 0.950631i \(0.600438\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.254033 0.00868268
\(857\) −25.8151 −0.881827 −0.440914 0.897550i \(-0.645345\pi\)
−0.440914 + 0.897550i \(0.645345\pi\)
\(858\) 0 0
\(859\) 30.5738 1.04317 0.521583 0.853201i \(-0.325342\pi\)
0.521583 + 0.853201i \(0.325342\pi\)
\(860\) 3.88338 0.132422
\(861\) 0 0
\(862\) −21.4919 −0.732018
\(863\) 43.8730 1.49345 0.746727 0.665131i \(-0.231624\pi\)
0.746727 + 0.665131i \(0.231624\pi\)
\(864\) 0 0
\(865\) −43.8569 −1.49118
\(866\) 29.6985 1.00920
\(867\) 0 0
\(868\) 0 0
\(869\) 7.49193 0.254146
\(870\) 0 0
\(871\) 29.1596 0.988035
\(872\) −16.8730 −0.571391
\(873\) 0 0
\(874\) 54.8735 1.85612
\(875\) 0 0
\(876\) 0 0
\(877\) 31.1270 1.05108 0.525542 0.850767i \(-0.323862\pi\)
0.525542 + 0.850767i \(0.323862\pi\)
\(878\) 10.9545 0.369695
\(879\) 0 0
\(880\) −13.7829 −0.464621
\(881\) −26.6904 −0.899223 −0.449612 0.893224i \(-0.648438\pi\)
−0.449612 + 0.893224i \(0.648438\pi\)
\(882\) 0 0
\(883\) 35.4919 1.19440 0.597199 0.802093i \(-0.296280\pi\)
0.597199 + 0.802093i \(0.296280\pi\)
\(884\) 6.00000 0.201802
\(885\) 0 0
\(886\) −14.3649 −0.482599
\(887\) −7.76677 −0.260783 −0.130391 0.991463i \(-0.541623\pi\)
−0.130391 + 0.991463i \(0.541623\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 24.3649 0.816714
\(891\) 0 0
\(892\) −22.4478 −0.751608
\(893\) −25.4919 −0.853055
\(894\) 0 0
\(895\) 23.6824 0.791614
\(896\) 0 0
\(897\) 0 0
\(898\) 9.00000 0.300334
\(899\) −6.17292 −0.205879
\(900\) 0 0
\(901\) 17.8459 0.594533
\(902\) −22.6274 −0.753411
\(903\) 0 0
\(904\) 3.87298 0.128814
\(905\) −45.9839 −1.52856
\(906\) 0 0
\(907\) 18.6190 0.618232 0.309116 0.951024i \(-0.399967\pi\)
0.309116 + 0.951024i \(0.399967\pi\)
\(908\) −10.3372 −0.343051
\(909\) 0 0
\(910\) 0 0
\(911\) 38.7460 1.28371 0.641856 0.766826i \(-0.278165\pi\)
0.641856 + 0.766826i \(0.278165\pi\)
\(912\) 0 0
\(913\) −10.5952 −0.350650
\(914\) −26.1270 −0.864205
\(915\) 0 0
\(916\) 13.3452 0.440938
\(917\) 0 0
\(918\) 0 0
\(919\) −0.635083 −0.0209495 −0.0104747 0.999945i \(-0.503334\pi\)
−0.0104747 + 0.999945i \(0.503334\pi\)
\(920\) −30.1361 −0.993559
\(921\) 0 0
\(922\) 28.3627 0.934075
\(923\) −41.8875 −1.37874
\(924\) 0 0
\(925\) 39.4919 1.29849
\(926\) 1.61895 0.0532020
\(927\) 0 0
\(928\) 1.12702 0.0369961
\(929\) 54.4358 1.78598 0.892991 0.450075i \(-0.148603\pi\)
0.892991 + 0.450075i \(0.148603\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −7.25403 −0.237614
\(933\) 0 0
\(934\) 6.19574 0.202731
\(935\) 19.4919 0.637454
\(936\) 0 0
\(937\) −45.2320 −1.47767 −0.738833 0.673889i \(-0.764623\pi\)
−0.738833 + 0.673889i \(0.764623\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 14.0000 0.456630
\(941\) −25.7139 −0.838249 −0.419124 0.907929i \(-0.637663\pi\)
−0.419124 + 0.907929i \(0.637663\pi\)
\(942\) 0 0
\(943\) −49.4747 −1.61112
\(944\) 8.30565 0.270326
\(945\) 0 0
\(946\) 4.50807 0.146570
\(947\) 57.6028 1.87184 0.935920 0.352213i \(-0.114571\pi\)
0.935920 + 0.352213i \(0.114571\pi\)
\(948\) 0 0
\(949\) −18.7621 −0.609044
\(950\) 43.1221 1.39907
\(951\) 0 0
\(952\) 0 0
\(953\) 59.4919 1.92713 0.963566 0.267469i \(-0.0861874\pi\)
0.963566 + 0.267469i \(0.0861874\pi\)
\(954\) 0 0
\(955\) 21.1120 0.683168
\(956\) 15.0000 0.485135
\(957\) 0 0
\(958\) 3.88338 0.125466
\(959\) 0 0
\(960\) 0 0
\(961\) −1.00000 −0.0322581
\(962\) 24.3781 0.785981
\(963\) 0 0
\(964\) −23.6824 −0.762758
\(965\) 82.2596 2.64803
\(966\) 0 0
\(967\) 60.4919 1.94529 0.972645 0.232298i \(-0.0746244\pi\)
0.972645 + 0.232298i \(0.0746244\pi\)
\(968\) −5.00000 −0.160706
\(969\) 0 0
\(970\) −51.7460 −1.66146
\(971\) −1.49262 −0.0479005 −0.0239502 0.999713i \(-0.507624\pi\)
−0.0239502 + 0.999713i \(0.507624\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0.491933 0.0157626
\(975\) 0 0
\(976\) 6.27415 0.200831
\(977\) −45.4919 −1.45542 −0.727708 0.685887i \(-0.759414\pi\)
−0.727708 + 0.685887i \(0.759414\pi\)
\(978\) 0 0
\(979\) 28.2843 0.903969
\(980\) 0 0
\(981\) 0 0
\(982\) 1.74597 0.0557160
\(983\) 9.89949 0.315745 0.157872 0.987460i \(-0.449537\pi\)
0.157872 + 0.987460i \(0.449537\pi\)
\(984\) 0 0
\(985\) −57.2642 −1.82459
\(986\) −1.59384 −0.0507583
\(987\) 0 0
\(988\) 26.6190 0.846862
\(989\) 9.85685 0.313430
\(990\) 0 0
\(991\) −11.7460 −0.373123 −0.186561 0.982443i \(-0.559734\pi\)
−0.186561 + 0.982443i \(0.559734\pi\)
\(992\) −5.47723 −0.173902
\(993\) 0 0
\(994\) 0 0
\(995\) 42.0000 1.33149
\(996\) 0 0
\(997\) −27.1281 −0.859155 −0.429578 0.903030i \(-0.641338\pi\)
−0.429578 + 0.903030i \(0.641338\pi\)
\(998\) 29.7460 0.941592
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7938.2.a.cd.1.4 4
3.2 odd 2 7938.2.a.cu.1.1 4
7.6 odd 2 inner 7938.2.a.cd.1.1 4
9.2 odd 6 882.2.f.p.589.4 yes 8
9.4 even 3 2646.2.f.s.883.1 8
9.5 odd 6 882.2.f.p.295.3 yes 8
9.7 even 3 2646.2.f.s.1765.1 8
21.20 even 2 7938.2.a.cu.1.4 4
63.2 odd 6 882.2.h.r.67.1 8
63.4 even 3 2646.2.h.s.667.4 8
63.5 even 6 882.2.e.t.655.2 8
63.11 odd 6 882.2.e.t.373.3 8
63.13 odd 6 2646.2.f.s.883.4 8
63.16 even 3 2646.2.h.s.361.4 8
63.20 even 6 882.2.f.p.589.1 yes 8
63.23 odd 6 882.2.e.t.655.3 8
63.25 even 3 2646.2.e.r.1549.1 8
63.31 odd 6 2646.2.h.s.667.1 8
63.32 odd 6 882.2.h.r.79.1 8
63.34 odd 6 2646.2.f.s.1765.4 8
63.38 even 6 882.2.e.t.373.2 8
63.40 odd 6 2646.2.e.r.2125.4 8
63.41 even 6 882.2.f.p.295.2 8
63.47 even 6 882.2.h.r.67.4 8
63.52 odd 6 2646.2.e.r.1549.4 8
63.58 even 3 2646.2.e.r.2125.1 8
63.59 even 6 882.2.h.r.79.4 8
63.61 odd 6 2646.2.h.s.361.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.t.373.2 8 63.38 even 6
882.2.e.t.373.3 8 63.11 odd 6
882.2.e.t.655.2 8 63.5 even 6
882.2.e.t.655.3 8 63.23 odd 6
882.2.f.p.295.2 8 63.41 even 6
882.2.f.p.295.3 yes 8 9.5 odd 6
882.2.f.p.589.1 yes 8 63.20 even 6
882.2.f.p.589.4 yes 8 9.2 odd 6
882.2.h.r.67.1 8 63.2 odd 6
882.2.h.r.67.4 8 63.47 even 6
882.2.h.r.79.1 8 63.32 odd 6
882.2.h.r.79.4 8 63.59 even 6
2646.2.e.r.1549.1 8 63.25 even 3
2646.2.e.r.1549.4 8 63.52 odd 6
2646.2.e.r.2125.1 8 63.58 even 3
2646.2.e.r.2125.4 8 63.40 odd 6
2646.2.f.s.883.1 8 9.4 even 3
2646.2.f.s.883.4 8 63.13 odd 6
2646.2.f.s.1765.1 8 9.7 even 3
2646.2.f.s.1765.4 8 63.34 odd 6
2646.2.h.s.361.1 8 63.61 odd 6
2646.2.h.s.361.4 8 63.16 even 3
2646.2.h.s.667.1 8 63.31 odd 6
2646.2.h.s.667.4 8 63.4 even 3
7938.2.a.cd.1.1 4 7.6 odd 2 inner
7938.2.a.cd.1.4 4 1.1 even 1 trivial
7938.2.a.cu.1.1 4 3.2 odd 2
7938.2.a.cu.1.4 4 21.20 even 2