Properties

Label 2646.2.e.r.1549.4
Level $2646$
Weight $2$
Character 2646.1549
Analytic conductor $21.128$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(1549,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.1549"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,0,8,0,0,0,-8,0,0,16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.3317760000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1549.4
Root \(1.72286 + 0.178197i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1549
Dual form 2646.2.e.r.2125.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(1.72286 + 2.98408i) q^{5} -1.00000 q^{8} +(-1.72286 - 2.98408i) q^{10} +(2.00000 - 3.46410i) q^{11} +(-2.12132 + 3.67423i) q^{13} +1.00000 q^{16} +(-0.707107 - 1.22474i) q^{17} +(-3.13707 + 5.43357i) q^{19} +(1.72286 + 2.98408i) q^{20} +(-2.00000 + 3.46410i) q^{22} +(-4.37298 - 7.57423i) q^{23} +(-3.43649 + 5.95218i) q^{25} +(2.12132 - 3.67423i) q^{26} +(0.563508 + 0.976025i) q^{29} -5.47723 q^{31} -1.00000 q^{32} +(0.707107 + 1.22474i) q^{34} +(-2.87298 + 4.97615i) q^{37} +(3.13707 - 5.43357i) q^{38} +(-1.72286 - 2.98408i) q^{40} +(-2.82843 + 4.89898i) q^{41} +(-0.563508 - 0.976025i) q^{43} +(2.00000 - 3.46410i) q^{44} +(4.37298 + 7.57423i) q^{46} -4.06301 q^{47} +(3.43649 - 5.95218i) q^{50} +(-2.12132 + 3.67423i) q^{52} +(6.30948 + 10.9283i) q^{53} +13.7829 q^{55} +(-0.563508 - 0.976025i) q^{58} -8.30565 q^{59} -6.27415 q^{61} +5.47723 q^{62} +1.00000 q^{64} -14.6190 q^{65} -6.87298 q^{67} +(-0.707107 - 1.22474i) q^{68} +9.87298 q^{71} +(2.21113 + 3.82980i) q^{73} +(2.87298 - 4.97615i) q^{74} +(-3.13707 + 5.43357i) q^{76} -1.87298 q^{79} +(1.72286 + 2.98408i) q^{80} +(2.82843 - 4.89898i) q^{82} +(1.32440 + 2.29393i) q^{83} +(2.43649 - 4.22013i) q^{85} +(0.563508 + 0.976025i) q^{86} +(-2.00000 + 3.46410i) q^{88} +(-3.53553 + 6.12372i) q^{89} +(-4.37298 - 7.57423i) q^{92} +4.06301 q^{94} -21.6190 q^{95} +(7.50873 + 13.0055i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 8 q^{8} + 16 q^{11} + 8 q^{16} - 16 q^{22} - 4 q^{23} - 12 q^{25} + 20 q^{29} - 8 q^{32} + 8 q^{37} - 20 q^{43} + 16 q^{44} + 4 q^{46} + 12 q^{50} + 4 q^{53} - 20 q^{58} + 8 q^{64}+ \cdots - 80 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.72286 + 2.98408i 0.770486 + 1.33452i 0.937297 + 0.348532i \(0.113320\pi\)
−0.166810 + 0.985989i \(0.553347\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.72286 2.98408i −0.544816 0.943649i
\(11\) 2.00000 3.46410i 0.603023 1.04447i −0.389338 0.921095i \(-0.627296\pi\)
0.992361 0.123371i \(-0.0393705\pi\)
\(12\) 0 0
\(13\) −2.12132 + 3.67423i −0.588348 + 1.01905i 0.406100 + 0.913828i \(0.366888\pi\)
−0.994449 + 0.105221i \(0.966445\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.707107 1.22474i −0.171499 0.297044i 0.767445 0.641114i \(-0.221528\pi\)
−0.938944 + 0.344070i \(0.888194\pi\)
\(18\) 0 0
\(19\) −3.13707 + 5.43357i −0.719694 + 1.24655i 0.241427 + 0.970419i \(0.422385\pi\)
−0.961121 + 0.276128i \(0.910949\pi\)
\(20\) 1.72286 + 2.98408i 0.385243 + 0.667261i
\(21\) 0 0
\(22\) −2.00000 + 3.46410i −0.426401 + 0.738549i
\(23\) −4.37298 7.57423i −0.911830 1.57934i −0.811477 0.584384i \(-0.801336\pi\)
−0.100353 0.994952i \(-0.531997\pi\)
\(24\) 0 0
\(25\) −3.43649 + 5.95218i −0.687298 + 1.19044i
\(26\) 2.12132 3.67423i 0.416025 0.720577i
\(27\) 0 0
\(28\) 0 0
\(29\) 0.563508 + 0.976025i 0.104641 + 0.181243i 0.913591 0.406633i \(-0.133297\pi\)
−0.808951 + 0.587877i \(0.799964\pi\)
\(30\) 0 0
\(31\) −5.47723 −0.983739 −0.491869 0.870669i \(-0.663686\pi\)
−0.491869 + 0.870669i \(0.663686\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0.707107 + 1.22474i 0.121268 + 0.210042i
\(35\) 0 0
\(36\) 0 0
\(37\) −2.87298 + 4.97615i −0.472316 + 0.818075i −0.999498 0.0316775i \(-0.989915\pi\)
0.527183 + 0.849752i \(0.323248\pi\)
\(38\) 3.13707 5.43357i 0.508900 0.881442i
\(39\) 0 0
\(40\) −1.72286 2.98408i −0.272408 0.471825i
\(41\) −2.82843 + 4.89898i −0.441726 + 0.765092i −0.997818 0.0660290i \(-0.978967\pi\)
0.556092 + 0.831121i \(0.312300\pi\)
\(42\) 0 0
\(43\) −0.563508 0.976025i −0.0859342 0.148842i 0.819855 0.572572i \(-0.194054\pi\)
−0.905789 + 0.423729i \(0.860721\pi\)
\(44\) 2.00000 3.46410i 0.301511 0.522233i
\(45\) 0 0
\(46\) 4.37298 + 7.57423i 0.644761 + 1.11676i
\(47\) −4.06301 −0.592651 −0.296326 0.955087i \(-0.595761\pi\)
−0.296326 + 0.955087i \(0.595761\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 3.43649 5.95218i 0.485993 0.841765i
\(51\) 0 0
\(52\) −2.12132 + 3.67423i −0.294174 + 0.509525i
\(53\) 6.30948 + 10.9283i 0.866673 + 1.50112i 0.865376 + 0.501123i \(0.167079\pi\)
0.00129674 + 0.999999i \(0.499587\pi\)
\(54\) 0 0
\(55\) 13.7829 1.85848
\(56\) 0 0
\(57\) 0 0
\(58\) −0.563508 0.976025i −0.0739923 0.128158i
\(59\) −8.30565 −1.08130 −0.540652 0.841246i \(-0.681822\pi\)
−0.540652 + 0.841246i \(0.681822\pi\)
\(60\) 0 0
\(61\) −6.27415 −0.803322 −0.401661 0.915788i \(-0.631567\pi\)
−0.401661 + 0.915788i \(0.631567\pi\)
\(62\) 5.47723 0.695608
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −14.6190 −1.81326
\(66\) 0 0
\(67\) −6.87298 −0.839669 −0.419834 0.907601i \(-0.637912\pi\)
−0.419834 + 0.907601i \(0.637912\pi\)
\(68\) −0.707107 1.22474i −0.0857493 0.148522i
\(69\) 0 0
\(70\) 0 0
\(71\) 9.87298 1.17171 0.585854 0.810417i \(-0.300759\pi\)
0.585854 + 0.810417i \(0.300759\pi\)
\(72\) 0 0
\(73\) 2.21113 + 3.82980i 0.258794 + 0.448244i 0.965919 0.258844i \(-0.0833417\pi\)
−0.707125 + 0.707088i \(0.750008\pi\)
\(74\) 2.87298 4.97615i 0.333978 0.578466i
\(75\) 0 0
\(76\) −3.13707 + 5.43357i −0.359847 + 0.623273i
\(77\) 0 0
\(78\) 0 0
\(79\) −1.87298 −0.210727 −0.105364 0.994434i \(-0.533601\pi\)
−0.105364 + 0.994434i \(0.533601\pi\)
\(80\) 1.72286 + 2.98408i 0.192622 + 0.333630i
\(81\) 0 0
\(82\) 2.82843 4.89898i 0.312348 0.541002i
\(83\) 1.32440 + 2.29393i 0.145372 + 0.251791i 0.929512 0.368793i \(-0.120229\pi\)
−0.784140 + 0.620584i \(0.786896\pi\)
\(84\) 0 0
\(85\) 2.43649 4.22013i 0.264275 0.457737i
\(86\) 0.563508 + 0.976025i 0.0607647 + 0.105247i
\(87\) 0 0
\(88\) −2.00000 + 3.46410i −0.213201 + 0.369274i
\(89\) −3.53553 + 6.12372i −0.374766 + 0.649113i −0.990292 0.139003i \(-0.955610\pi\)
0.615526 + 0.788116i \(0.288944\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.37298 7.57423i −0.455915 0.789668i
\(93\) 0 0
\(94\) 4.06301 0.419068
\(95\) −21.6190 −2.21806
\(96\) 0 0
\(97\) 7.50873 + 13.0055i 0.762396 + 1.32051i 0.941612 + 0.336699i \(0.109311\pi\)
−0.179216 + 0.983810i \(0.557356\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.43649 + 5.95218i −0.343649 + 0.595218i
\(101\) 6.67261 11.5573i 0.663949 1.14999i −0.315620 0.948886i \(-0.602212\pi\)
0.979569 0.201108i \(-0.0644542\pi\)
\(102\) 0 0
\(103\) 1.94169 + 3.36311i 0.191321 + 0.331377i 0.945688 0.325075i \(-0.105390\pi\)
−0.754368 + 0.656452i \(0.772056\pi\)
\(104\) 2.12132 3.67423i 0.208013 0.360288i
\(105\) 0 0
\(106\) −6.30948 10.9283i −0.612830 1.06145i
\(107\) 0.127017 0.219999i 0.0122792 0.0212681i −0.859821 0.510596i \(-0.829425\pi\)
0.872100 + 0.489328i \(0.162758\pi\)
\(108\) 0 0
\(109\) −8.43649 14.6124i −0.808069 1.39962i −0.914199 0.405265i \(-0.867179\pi\)
0.106130 0.994352i \(-0.466154\pi\)
\(110\) −13.7829 −1.31415
\(111\) 0 0
\(112\) 0 0
\(113\) 1.93649 3.35410i 0.182170 0.315527i −0.760449 0.649397i \(-0.775021\pi\)
0.942619 + 0.333870i \(0.108355\pi\)
\(114\) 0 0
\(115\) 15.0681 26.0987i 1.40511 2.43371i
\(116\) 0.563508 + 0.976025i 0.0523204 + 0.0906217i
\(117\) 0 0
\(118\) 8.30565 0.764597
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) 6.27415 0.568035
\(123\) 0 0
\(124\) −5.47723 −0.491869
\(125\) −6.45378 −0.577243
\(126\) 0 0
\(127\) −0.745967 −0.0661938 −0.0330969 0.999452i \(-0.510537\pi\)
−0.0330969 + 0.999452i \(0.510537\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 14.6190 1.28217
\(131\) −6.67261 11.5573i −0.582988 1.00977i −0.995123 0.0986425i \(-0.968550\pi\)
0.412135 0.911123i \(-0.364783\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.87298 0.593735
\(135\) 0 0
\(136\) 0.707107 + 1.22474i 0.0606339 + 0.105021i
\(137\) −7.74597 + 13.4164i −0.661783 + 1.14624i 0.318364 + 0.947968i \(0.396866\pi\)
−0.980147 + 0.198273i \(0.936467\pi\)
\(138\) 0 0
\(139\) 9.93870 17.2143i 0.842989 1.46010i −0.0443665 0.999015i \(-0.514127\pi\)
0.887356 0.461085i \(-0.152540\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −9.87298 −0.828522
\(143\) 8.48528 + 14.6969i 0.709575 + 1.22902i
\(144\) 0 0
\(145\) −1.94169 + 3.36311i −0.161249 + 0.279291i
\(146\) −2.21113 3.82980i −0.182995 0.316956i
\(147\) 0 0
\(148\) −2.87298 + 4.97615i −0.236158 + 0.409037i
\(149\) −7.87298 13.6364i −0.644980 1.11714i −0.984306 0.176469i \(-0.943532\pi\)
0.339326 0.940669i \(-0.389801\pi\)
\(150\) 0 0
\(151\) −5.50000 + 9.52628i −0.447584 + 0.775238i −0.998228 0.0595022i \(-0.981049\pi\)
0.550645 + 0.834740i \(0.314382\pi\)
\(152\) 3.13707 5.43357i 0.254450 0.440721i
\(153\) 0 0
\(154\) 0 0
\(155\) −9.43649 16.3445i −0.757957 1.31282i
\(156\) 0 0
\(157\) −11.9310 −0.952198 −0.476099 0.879392i \(-0.657950\pi\)
−0.476099 + 0.879392i \(0.657950\pi\)
\(158\) 1.87298 0.149007
\(159\) 0 0
\(160\) −1.72286 2.98408i −0.136204 0.235912i
\(161\) 0 0
\(162\) 0 0
\(163\) −5.00000 + 8.66025i −0.391630 + 0.678323i −0.992665 0.120900i \(-0.961422\pi\)
0.601035 + 0.799223i \(0.294755\pi\)
\(164\) −2.82843 + 4.89898i −0.220863 + 0.382546i
\(165\) 0 0
\(166\) −1.32440 2.29393i −0.102793 0.178043i
\(167\) −4.77012 + 8.26209i −0.369123 + 0.639340i −0.989429 0.145021i \(-0.953675\pi\)
0.620306 + 0.784360i \(0.287009\pi\)
\(168\) 0 0
\(169\) −2.50000 4.33013i −0.192308 0.333087i
\(170\) −2.43649 + 4.22013i −0.186870 + 0.323669i
\(171\) 0 0
\(172\) −0.563508 0.976025i −0.0429671 0.0744212i
\(173\) 12.7279 0.967686 0.483843 0.875155i \(-0.339241\pi\)
0.483843 + 0.875155i \(0.339241\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.00000 3.46410i 0.150756 0.261116i
\(177\) 0 0
\(178\) 3.53553 6.12372i 0.264999 0.458993i
\(179\) −3.43649 5.95218i −0.256855 0.444887i 0.708542 0.705668i \(-0.249353\pi\)
−0.965398 + 0.260782i \(0.916020\pi\)
\(180\) 0 0
\(181\) 13.3452 0.991942 0.495971 0.868339i \(-0.334812\pi\)
0.495971 + 0.868339i \(0.334812\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.37298 + 7.57423i 0.322381 + 0.558380i
\(185\) −19.7990 −1.45565
\(186\) 0 0
\(187\) −5.65685 −0.413670
\(188\) −4.06301 −0.296326
\(189\) 0 0
\(190\) 21.6190 1.56840
\(191\) 6.12702 0.443335 0.221668 0.975122i \(-0.428850\pi\)
0.221668 + 0.975122i \(0.428850\pi\)
\(192\) 0 0
\(193\) 23.8730 1.71841 0.859207 0.511627i \(-0.170957\pi\)
0.859207 + 0.511627i \(0.170957\pi\)
\(194\) −7.50873 13.0055i −0.539096 0.933741i
\(195\) 0 0
\(196\) 0 0
\(197\) −16.6190 −1.18405 −0.592026 0.805919i \(-0.701672\pi\)
−0.592026 + 0.805919i \(0.701672\pi\)
\(198\) 0 0
\(199\) 6.09452 + 10.5560i 0.432029 + 0.748296i 0.997048 0.0767818i \(-0.0244645\pi\)
−0.565019 + 0.825078i \(0.691131\pi\)
\(200\) 3.43649 5.95218i 0.242997 0.420883i
\(201\) 0 0
\(202\) −6.67261 + 11.5573i −0.469483 + 0.813168i
\(203\) 0 0
\(204\) 0 0
\(205\) −19.4919 −1.36138
\(206\) −1.94169 3.36311i −0.135284 0.234319i
\(207\) 0 0
\(208\) −2.12132 + 3.67423i −0.147087 + 0.254762i
\(209\) 12.5483 + 21.7343i 0.867984 + 1.50339i
\(210\) 0 0
\(211\) −10.3095 + 17.8565i −0.709734 + 1.22929i 0.255222 + 0.966882i \(0.417851\pi\)
−0.964956 + 0.262412i \(0.915482\pi\)
\(212\) 6.30948 + 10.9283i 0.433337 + 0.750561i
\(213\) 0 0
\(214\) −0.127017 + 0.219999i −0.00868268 + 0.0150388i
\(215\) 1.94169 3.36311i 0.132422 0.229362i
\(216\) 0 0
\(217\) 0 0
\(218\) 8.43649 + 14.6124i 0.571391 + 0.989679i
\(219\) 0 0
\(220\) 13.7829 0.929241
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) −11.2239 19.4404i −0.751608 1.30182i −0.947043 0.321106i \(-0.895945\pi\)
0.195436 0.980717i \(-0.437388\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1.93649 + 3.35410i −0.128814 + 0.223112i
\(227\) −5.16858 + 8.95224i −0.343051 + 0.594181i −0.984998 0.172568i \(-0.944794\pi\)
0.641947 + 0.766749i \(0.278127\pi\)
\(228\) 0 0
\(229\) 6.67261 + 11.5573i 0.440938 + 0.763728i 0.997759 0.0669049i \(-0.0213124\pi\)
−0.556821 + 0.830632i \(0.687979\pi\)
\(230\) −15.0681 + 26.0987i −0.993559 + 1.72090i
\(231\) 0 0
\(232\) −0.563508 0.976025i −0.0369961 0.0640792i
\(233\) 3.62702 6.28218i 0.237614 0.411559i −0.722415 0.691459i \(-0.756968\pi\)
0.960029 + 0.279900i \(0.0903014\pi\)
\(234\) 0 0
\(235\) −7.00000 12.1244i −0.456630 0.790906i
\(236\) −8.30565 −0.540652
\(237\) 0 0
\(238\) 0 0
\(239\) −7.50000 + 12.9904i −0.485135 + 0.840278i −0.999854 0.0170808i \(-0.994563\pi\)
0.514719 + 0.857359i \(0.327896\pi\)
\(240\) 0 0
\(241\) −11.8412 + 20.5095i −0.762758 + 1.32114i 0.178666 + 0.983910i \(0.442822\pi\)
−0.941424 + 0.337226i \(0.890511\pi\)
\(242\) 2.50000 + 4.33013i 0.160706 + 0.278351i
\(243\) 0 0
\(244\) −6.27415 −0.401661
\(245\) 0 0
\(246\) 0 0
\(247\) −13.3095 23.0527i −0.846862 1.46681i
\(248\) 5.47723 0.347804
\(249\) 0 0
\(250\) 6.45378 0.408173
\(251\) 9.46183 0.597225 0.298613 0.954374i \(-0.403476\pi\)
0.298613 + 0.954374i \(0.403476\pi\)
\(252\) 0 0
\(253\) −34.9839 −2.19942
\(254\) 0.745967 0.0468061
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −1.50403 2.60505i −0.0938187 0.162499i 0.815296 0.579044i \(-0.196574\pi\)
−0.909115 + 0.416545i \(0.863241\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −14.6190 −0.906629
\(261\) 0 0
\(262\) 6.67261 + 11.5573i 0.412235 + 0.714012i
\(263\) −8.80948 + 15.2585i −0.543216 + 0.940877i 0.455501 + 0.890235i \(0.349460\pi\)
−0.998717 + 0.0506418i \(0.983873\pi\)
\(264\) 0 0
\(265\) −21.7407 + 37.6560i −1.33552 + 2.31319i
\(266\) 0 0
\(267\) 0 0
\(268\) −6.87298 −0.419834
\(269\) 1.01575 + 1.75934i 0.0619316 + 0.107269i 0.895329 0.445406i \(-0.146941\pi\)
−0.833397 + 0.552674i \(0.813607\pi\)
\(270\) 0 0
\(271\) 3.53553 6.12372i 0.214768 0.371990i −0.738433 0.674327i \(-0.764434\pi\)
0.953201 + 0.302338i \(0.0977670\pi\)
\(272\) −0.707107 1.22474i −0.0428746 0.0742611i
\(273\) 0 0
\(274\) 7.74597 13.4164i 0.467951 0.810515i
\(275\) 13.7460 + 23.8087i 0.828913 + 1.43572i
\(276\) 0 0
\(277\) −7.18246 + 12.4404i −0.431552 + 0.747470i −0.997007 0.0773089i \(-0.975367\pi\)
0.565455 + 0.824779i \(0.308701\pi\)
\(278\) −9.93870 + 17.2143i −0.596084 + 1.03245i
\(279\) 0 0
\(280\) 0 0
\(281\) 4.37298 + 7.57423i 0.260870 + 0.451841i 0.966473 0.256767i \(-0.0826572\pi\)
−0.705603 + 0.708607i \(0.749324\pi\)
\(282\) 0 0
\(283\) −5.03956 −0.299571 −0.149785 0.988719i \(-0.547858\pi\)
−0.149785 + 0.988719i \(0.547858\pi\)
\(284\) 9.87298 0.585854
\(285\) 0 0
\(286\) −8.48528 14.6969i −0.501745 0.869048i
\(287\) 0 0
\(288\) 0 0
\(289\) 7.50000 12.9904i 0.441176 0.764140i
\(290\) 1.94169 3.36311i 0.114020 0.197489i
\(291\) 0 0
\(292\) 2.21113 + 3.82980i 0.129397 + 0.224122i
\(293\) 0.398461 0.690154i 0.0232783 0.0403192i −0.854152 0.520024i \(-0.825923\pi\)
0.877430 + 0.479705i \(0.159256\pi\)
\(294\) 0 0
\(295\) −14.3095 24.7847i −0.833130 1.44302i
\(296\) 2.87298 4.97615i 0.166989 0.289233i
\(297\) 0 0
\(298\) 7.87298 + 13.6364i 0.456070 + 0.789936i
\(299\) 37.1060 2.14590
\(300\) 0 0
\(301\) 0 0
\(302\) 5.50000 9.52628i 0.316489 0.548176i
\(303\) 0 0
\(304\) −3.13707 + 5.43357i −0.179923 + 0.311637i
\(305\) −10.8095 18.7226i −0.618949 1.07205i
\(306\) 0 0
\(307\) −14.2205 −0.811609 −0.405805 0.913960i \(-0.633009\pi\)
−0.405805 + 0.913960i \(0.633009\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 9.43649 + 16.3445i 0.535957 + 0.928304i
\(311\) −1.41421 −0.0801927 −0.0400963 0.999196i \(-0.512766\pi\)
−0.0400963 + 0.999196i \(0.512766\pi\)
\(312\) 0 0
\(313\) −15.7360 −0.889450 −0.444725 0.895667i \(-0.646699\pi\)
−0.444725 + 0.895667i \(0.646699\pi\)
\(314\) 11.9310 0.673305
\(315\) 0 0
\(316\) −1.87298 −0.105364
\(317\) −24.6190 −1.38274 −0.691369 0.722502i \(-0.742992\pi\)
−0.691369 + 0.722502i \(0.742992\pi\)
\(318\) 0 0
\(319\) 4.50807 0.252403
\(320\) 1.72286 + 2.98408i 0.0963108 + 0.166815i
\(321\) 0 0
\(322\) 0 0
\(323\) 8.87298 0.493706
\(324\) 0 0
\(325\) −14.5798 25.2530i −0.808742 1.40078i
\(326\) 5.00000 8.66025i 0.276924 0.479647i
\(327\) 0 0
\(328\) 2.82843 4.89898i 0.156174 0.270501i
\(329\) 0 0
\(330\) 0 0
\(331\) 20.3649 1.11936 0.559679 0.828710i \(-0.310925\pi\)
0.559679 + 0.828710i \(0.310925\pi\)
\(332\) 1.32440 + 2.29393i 0.0726859 + 0.125896i
\(333\) 0 0
\(334\) 4.77012 8.26209i 0.261009 0.452081i
\(335\) −11.8412 20.5095i −0.646953 1.12056i
\(336\) 0 0
\(337\) −7.87298 + 13.6364i −0.428869 + 0.742822i −0.996773 0.0802722i \(-0.974421\pi\)
0.567904 + 0.823095i \(0.307754\pi\)
\(338\) 2.50000 + 4.33013i 0.135982 + 0.235528i
\(339\) 0 0
\(340\) 2.43649 4.22013i 0.132137 0.228869i
\(341\) −10.9545 + 18.9737i −0.593217 + 1.02748i
\(342\) 0 0
\(343\) 0 0
\(344\) 0.563508 + 0.976025i 0.0303823 + 0.0526237i
\(345\) 0 0
\(346\) −12.7279 −0.684257
\(347\) −7.74597 −0.415825 −0.207913 0.978147i \(-0.566667\pi\)
−0.207913 + 0.978147i \(0.566667\pi\)
\(348\) 0 0
\(349\) −8.21584 14.2302i −0.439784 0.761728i 0.557889 0.829916i \(-0.311612\pi\)
−0.997672 + 0.0681880i \(0.978278\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 + 3.46410i −0.106600 + 0.184637i
\(353\) −1.94169 + 3.36311i −0.103346 + 0.179000i −0.913061 0.407823i \(-0.866288\pi\)
0.809715 + 0.586823i \(0.199622\pi\)
\(354\) 0 0
\(355\) 17.0098 + 29.4618i 0.902785 + 1.56367i
\(356\) −3.53553 + 6.12372i −0.187383 + 0.324557i
\(357\) 0 0
\(358\) 3.43649 + 5.95218i 0.181624 + 0.314582i
\(359\) 9.11895 15.7945i 0.481280 0.833601i −0.518489 0.855084i \(-0.673505\pi\)
0.999769 + 0.0214830i \(0.00683878\pi\)
\(360\) 0 0
\(361\) −10.1825 17.6365i −0.535919 0.928239i
\(362\) −13.3452 −0.701409
\(363\) 0 0
\(364\) 0 0
\(365\) −7.61895 + 13.1964i −0.398794 + 0.690732i
\(366\) 0 0
\(367\) 3.44572 5.96816i 0.179865 0.311535i −0.761969 0.647613i \(-0.775767\pi\)
0.941834 + 0.336078i \(0.109101\pi\)
\(368\) −4.37298 7.57423i −0.227958 0.394834i
\(369\) 0 0
\(370\) 19.7990 1.02930
\(371\) 0 0
\(372\) 0 0
\(373\) 0.563508 + 0.976025i 0.0291774 + 0.0505367i 0.880245 0.474519i \(-0.157378\pi\)
−0.851068 + 0.525055i \(0.824045\pi\)
\(374\) 5.65685 0.292509
\(375\) 0 0
\(376\) 4.06301 0.209534
\(377\) −4.78153 −0.246261
\(378\) 0 0
\(379\) 26.3649 1.35427 0.677137 0.735857i \(-0.263220\pi\)
0.677137 + 0.735857i \(0.263220\pi\)
\(380\) −21.6190 −1.10903
\(381\) 0 0
\(382\) −6.12702 −0.313485
\(383\) 6.45378 + 11.1783i 0.329773 + 0.571183i 0.982467 0.186439i \(-0.0596946\pi\)
−0.652694 + 0.757622i \(0.726361\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −23.8730 −1.21510
\(387\) 0 0
\(388\) 7.50873 + 13.0055i 0.381198 + 0.660254i
\(389\) 6.56351 11.3683i 0.332783 0.576397i −0.650273 0.759700i \(-0.725346\pi\)
0.983056 + 0.183303i \(0.0586790\pi\)
\(390\) 0 0
\(391\) −6.18433 + 10.7116i −0.312755 + 0.541708i
\(392\) 0 0
\(393\) 0 0
\(394\) 16.6190 0.837251
\(395\) −3.22689 5.58913i −0.162362 0.281220i
\(396\) 0 0
\(397\) 3.53553 6.12372i 0.177443 0.307341i −0.763561 0.645736i \(-0.776551\pi\)
0.941004 + 0.338395i \(0.109884\pi\)
\(398\) −6.09452 10.5560i −0.305491 0.529125i
\(399\) 0 0
\(400\) −3.43649 + 5.95218i −0.171825 + 0.297609i
\(401\) −1.93649 3.35410i −0.0967038 0.167496i 0.813615 0.581405i \(-0.197497\pi\)
−0.910318 + 0.413909i \(0.864163\pi\)
\(402\) 0 0
\(403\) 11.6190 20.1246i 0.578781 1.00248i
\(404\) 6.67261 11.5573i 0.331975 0.574997i
\(405\) 0 0
\(406\) 0 0
\(407\) 11.4919 + 19.9046i 0.569634 + 0.986635i
\(408\) 0 0
\(409\) −23.1435 −1.14437 −0.572186 0.820124i \(-0.693904\pi\)
−0.572186 + 0.820124i \(0.693904\pi\)
\(410\) 19.4919 0.962638
\(411\) 0 0
\(412\) 1.94169 + 3.36311i 0.0956603 + 0.165688i
\(413\) 0 0
\(414\) 0 0
\(415\) −4.56351 + 7.90423i −0.224014 + 0.388003i
\(416\) 2.12132 3.67423i 0.104006 0.180144i
\(417\) 0 0
\(418\) −12.5483 21.7343i −0.613757 1.06306i
\(419\) 15.6854 27.1679i 0.766280 1.32724i −0.173287 0.984871i \(-0.555439\pi\)
0.939567 0.342365i \(-0.111228\pi\)
\(420\) 0 0
\(421\) 6.43649 + 11.1483i 0.313695 + 0.543336i 0.979159 0.203094i \(-0.0650996\pi\)
−0.665464 + 0.746430i \(0.731766\pi\)
\(422\) 10.3095 17.8565i 0.501857 0.869243i
\(423\) 0 0
\(424\) −6.30948 10.9283i −0.306415 0.530727i
\(425\) 9.71987 0.471483
\(426\) 0 0
\(427\) 0 0
\(428\) 0.127017 0.219999i 0.00613958 0.0106341i
\(429\) 0 0
\(430\) −1.94169 + 3.36311i −0.0936367 + 0.162183i
\(431\) −10.7460 18.6126i −0.517615 0.896535i −0.999791 0.0204609i \(-0.993487\pi\)
0.482176 0.876075i \(-0.339847\pi\)
\(432\) 0 0
\(433\) 29.6985 1.42722 0.713609 0.700544i \(-0.247059\pi\)
0.713609 + 0.700544i \(0.247059\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −8.43649 14.6124i −0.404035 0.699809i
\(437\) 54.8735 2.62495
\(438\) 0 0
\(439\) 10.9545 0.522827 0.261414 0.965227i \(-0.415811\pi\)
0.261414 + 0.965227i \(0.415811\pi\)
\(440\) −13.7829 −0.657073
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) 14.3649 0.682498 0.341249 0.939973i \(-0.389150\pi\)
0.341249 + 0.939973i \(0.389150\pi\)
\(444\) 0 0
\(445\) −24.3649 −1.15501
\(446\) 11.2239 + 19.4404i 0.531467 + 0.920527i
\(447\) 0 0
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 11.3137 + 19.5959i 0.532742 + 0.922736i
\(452\) 1.93649 3.35410i 0.0910849 0.157764i
\(453\) 0 0
\(454\) 5.16858 8.95224i 0.242573 0.420150i
\(455\) 0 0
\(456\) 0 0
\(457\) 26.1270 1.22217 0.611085 0.791565i \(-0.290733\pi\)
0.611085 + 0.791565i \(0.290733\pi\)
\(458\) −6.67261 11.5573i −0.311790 0.540037i
\(459\) 0 0
\(460\) 15.0681 26.0987i 0.702553 1.21686i
\(461\) −14.1813 24.5628i −0.660491 1.14400i −0.980487 0.196585i \(-0.937015\pi\)
0.319996 0.947419i \(-0.396318\pi\)
\(462\) 0 0
\(463\) 0.809475 1.40205i 0.0376195 0.0651589i −0.846603 0.532226i \(-0.821356\pi\)
0.884222 + 0.467067i \(0.154689\pi\)
\(464\) 0.563508 + 0.976025i 0.0261602 + 0.0453108i
\(465\) 0 0
\(466\) −3.62702 + 6.28218i −0.168018 + 0.291016i
\(467\) −3.09787 + 5.36567i −0.143352 + 0.248294i −0.928757 0.370689i \(-0.879122\pi\)
0.785405 + 0.618983i \(0.212455\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 7.00000 + 12.1244i 0.322886 + 0.559255i
\(471\) 0 0
\(472\) 8.30565 0.382299
\(473\) −4.50807 −0.207281
\(474\) 0 0
\(475\) −21.5611 37.3448i −0.989289 1.71350i
\(476\) 0 0
\(477\) 0 0
\(478\) 7.50000 12.9904i 0.343042 0.594166i
\(479\) −1.94169 + 3.36311i −0.0887182 + 0.153664i −0.906970 0.421196i \(-0.861610\pi\)
0.818251 + 0.574861i \(0.194944\pi\)
\(480\) 0 0
\(481\) −12.1890 21.1120i −0.555772 0.962626i
\(482\) 11.8412 20.5095i 0.539351 0.934184i
\(483\) 0 0
\(484\) −2.50000 4.33013i −0.113636 0.196824i
\(485\) −25.8730 + 44.8133i −1.17483 + 2.03487i
\(486\) 0 0
\(487\) 0.245967 + 0.426027i 0.0111458 + 0.0193051i 0.871545 0.490316i \(-0.163119\pi\)
−0.860399 + 0.509622i \(0.829785\pi\)
\(488\) 6.27415 0.284017
\(489\) 0 0
\(490\) 0 0
\(491\) 0.872983 1.51205i 0.0393972 0.0682379i −0.845654 0.533731i \(-0.820790\pi\)
0.885052 + 0.465493i \(0.154123\pi\)
\(492\) 0 0
\(493\) 0.796921 1.38031i 0.0358915 0.0621659i
\(494\) 13.3095 + 23.0527i 0.598822 + 1.03719i
\(495\) 0 0
\(496\) −5.47723 −0.245935
\(497\) 0 0
\(498\) 0 0
\(499\) 14.8730 + 25.7608i 0.665806 + 1.15321i 0.979066 + 0.203543i \(0.0652456\pi\)
−0.313260 + 0.949667i \(0.601421\pi\)
\(500\) −6.45378 −0.288622
\(501\) 0 0
\(502\) −9.46183 −0.422302
\(503\) −3.88338 −0.173152 −0.0865758 0.996245i \(-0.527592\pi\)
−0.0865758 + 0.996245i \(0.527592\pi\)
\(504\) 0 0
\(505\) 45.9839 2.04626
\(506\) 34.9839 1.55522
\(507\) 0 0
\(508\) −0.745967 −0.0330969
\(509\) −11.4035 19.7515i −0.505452 0.875469i −0.999980 0.00630722i \(-0.997992\pi\)
0.494528 0.869162i \(-0.335341\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 1.50403 + 2.60505i 0.0663398 + 0.114904i
\(515\) −6.69052 + 11.5883i −0.294820 + 0.510643i
\(516\) 0 0
\(517\) −8.12602 + 14.0747i −0.357382 + 0.619004i
\(518\) 0 0
\(519\) 0 0
\(520\) 14.6190 0.641083
\(521\) −0.707107 1.22474i −0.0309789 0.0536570i 0.850120 0.526589i \(-0.176529\pi\)
−0.881099 + 0.472931i \(0.843196\pi\)
\(522\) 0 0
\(523\) 9.14178 15.8340i 0.399742 0.692373i −0.593952 0.804501i \(-0.702433\pi\)
0.993694 + 0.112127i \(0.0357664\pi\)
\(524\) −6.67261 11.5573i −0.291494 0.504883i
\(525\) 0 0
\(526\) 8.80948 15.2585i 0.384111 0.665300i
\(527\) 3.87298 + 6.70820i 0.168710 + 0.292214i
\(528\) 0 0
\(529\) −26.7460 + 46.3254i −1.16287 + 2.01415i
\(530\) 21.7407 37.6560i 0.944355 1.63567i
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 20.7846i −0.519778 0.900281i
\(534\) 0 0
\(535\) 0.875328 0.0378437
\(536\) 6.87298 0.296868
\(537\) 0 0
\(538\) −1.01575 1.75934i −0.0437922 0.0758504i
\(539\) 0 0
\(540\) 0 0
\(541\) 19.0554 33.0050i 0.819257 1.41900i −0.0869727 0.996211i \(-0.527719\pi\)
0.906230 0.422785i \(-0.138947\pi\)
\(542\) −3.53553 + 6.12372i −0.151864 + 0.263036i
\(543\) 0 0
\(544\) 0.707107 + 1.22474i 0.0303170 + 0.0525105i
\(545\) 29.0698 50.3503i 1.24521 2.15677i
\(546\) 0 0
\(547\) 16.4919 + 28.5649i 0.705144 + 1.22135i 0.966639 + 0.256141i \(0.0824511\pi\)
−0.261495 + 0.965205i \(0.584216\pi\)
\(548\) −7.74597 + 13.4164i −0.330891 + 0.573121i
\(549\) 0 0
\(550\) −13.7460 23.8087i −0.586130 1.01521i
\(551\) −7.07107 −0.301238
\(552\) 0 0
\(553\) 0 0
\(554\) 7.18246 12.4404i 0.305153 0.528541i
\(555\) 0 0
\(556\) 9.93870 17.2143i 0.421495 0.730050i
\(557\) 13.3095 + 23.0527i 0.563941 + 0.976774i 0.997147 + 0.0754792i \(0.0240486\pi\)
−0.433207 + 0.901295i \(0.642618\pi\)
\(558\) 0 0
\(559\) 4.78153 0.202237
\(560\) 0 0
\(561\) 0 0
\(562\) −4.37298 7.57423i −0.184463 0.319500i
\(563\) −21.6509 −0.912475 −0.456238 0.889858i \(-0.650803\pi\)
−0.456238 + 0.889858i \(0.650803\pi\)
\(564\) 0 0
\(565\) 13.3452 0.561437
\(566\) 5.03956 0.211829
\(567\) 0 0
\(568\) −9.87298 −0.414261
\(569\) 23.4919 0.984833 0.492417 0.870360i \(-0.336114\pi\)
0.492417 + 0.870360i \(0.336114\pi\)
\(570\) 0 0
\(571\) 31.4919 1.31790 0.658948 0.752188i \(-0.271002\pi\)
0.658948 + 0.752188i \(0.271002\pi\)
\(572\) 8.48528 + 14.6969i 0.354787 + 0.614510i
\(573\) 0 0
\(574\) 0 0
\(575\) 60.1109 2.50680
\(576\) 0 0
\(577\) 12.1106 + 20.9762i 0.504172 + 0.873252i 0.999988 + 0.00482425i \(0.00153561\pi\)
−0.495816 + 0.868427i \(0.665131\pi\)
\(578\) −7.50000 + 12.9904i −0.311959 + 0.540329i
\(579\) 0 0
\(580\) −1.94169 + 3.36311i −0.0806244 + 0.139645i
\(581\) 0 0
\(582\) 0 0
\(583\) 50.4758 2.09049
\(584\) −2.21113 3.82980i −0.0914974 0.158478i
\(585\) 0 0
\(586\) −0.398461 + 0.690154i −0.0164603 + 0.0285100i
\(587\) −4.28184 7.41637i −0.176731 0.306106i 0.764028 0.645183i \(-0.223219\pi\)
−0.940759 + 0.339076i \(0.889885\pi\)
\(588\) 0 0
\(589\) 17.1825 29.7609i 0.707991 1.22628i
\(590\) 14.3095 + 24.7847i 0.589112 + 1.02037i
\(591\) 0 0
\(592\) −2.87298 + 4.97615i −0.118079 + 0.204519i
\(593\) −16.8807 + 29.2383i −0.693209 + 1.20067i 0.277571 + 0.960705i \(0.410470\pi\)
−0.970781 + 0.239969i \(0.922863\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −7.87298 13.6364i −0.322490 0.558569i
\(597\) 0 0
\(598\) −37.1060 −1.51738
\(599\) 45.2379 1.84837 0.924185 0.381945i \(-0.124745\pi\)
0.924185 + 0.381945i \(0.124745\pi\)
\(600\) 0 0
\(601\) −2.39076 4.14092i −0.0975213 0.168912i 0.813137 0.582073i \(-0.197758\pi\)
−0.910658 + 0.413161i \(0.864425\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −5.50000 + 9.52628i −0.223792 + 0.387619i
\(605\) 8.61430 14.9204i 0.350221 0.606601i
\(606\) 0 0
\(607\) 13.3452 + 23.1146i 0.541666 + 0.938192i 0.998809 + 0.0487991i \(0.0155394\pi\)
−0.457143 + 0.889393i \(0.651127\pi\)
\(608\) 3.13707 5.43357i 0.127225 0.220360i
\(609\) 0 0
\(610\) 10.8095 + 18.7226i 0.437663 + 0.758054i
\(611\) 8.61895 14.9285i 0.348685 0.603941i
\(612\) 0 0
\(613\) −13.3095 23.0527i −0.537565 0.931089i −0.999034 0.0439334i \(-0.986011\pi\)
0.461470 0.887156i \(-0.347322\pi\)
\(614\) 14.2205 0.573894
\(615\) 0 0
\(616\) 0 0
\(617\) −6.12702 + 10.6123i −0.246664 + 0.427235i −0.962598 0.270933i \(-0.912668\pi\)
0.715934 + 0.698168i \(0.246001\pi\)
\(618\) 0 0
\(619\) −18.9515 + 32.8249i −0.761723 + 1.31934i 0.180238 + 0.983623i \(0.442313\pi\)
−0.941962 + 0.335721i \(0.891020\pi\)
\(620\) −9.43649 16.3445i −0.378979 0.656410i
\(621\) 0 0
\(622\) 1.41421 0.0567048
\(623\) 0 0
\(624\) 0 0
\(625\) 6.06351 + 10.5023i 0.242540 + 0.420092i
\(626\) 15.7360 0.628936
\(627\) 0 0
\(628\) −11.9310 −0.476099
\(629\) 8.12602 0.324006
\(630\) 0 0
\(631\) −4.38105 −0.174407 −0.0872034 0.996191i \(-0.527793\pi\)
−0.0872034 + 0.996191i \(0.527793\pi\)
\(632\) 1.87298 0.0745033
\(633\) 0 0
\(634\) 24.6190 0.977743
\(635\) −1.28520 2.22602i −0.0510014 0.0883371i
\(636\) 0 0
\(637\) 0 0
\(638\) −4.50807 −0.178476
\(639\) 0 0
\(640\) −1.72286 2.98408i −0.0681020 0.117956i
\(641\) 8.55544 14.8185i 0.337920 0.585294i −0.646122 0.763234i \(-0.723610\pi\)
0.984041 + 0.177941i \(0.0569435\pi\)
\(642\) 0 0
\(643\) 1.76206 3.05198i 0.0694890 0.120358i −0.829187 0.558971i \(-0.811196\pi\)
0.898676 + 0.438612i \(0.144530\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −8.87298 −0.349103
\(647\) 2.73861 + 4.74342i 0.107666 + 0.186483i 0.914824 0.403852i \(-0.132329\pi\)
−0.807158 + 0.590335i \(0.798996\pi\)
\(648\) 0 0
\(649\) −16.6113 + 28.7716i −0.652051 + 1.12939i
\(650\) 14.5798 + 25.2530i 0.571867 + 0.990502i
\(651\) 0 0
\(652\) −5.00000 + 8.66025i −0.195815 + 0.339162i
\(653\) −7.25403 12.5644i −0.283872 0.491681i 0.688463 0.725272i \(-0.258286\pi\)
−0.972335 + 0.233590i \(0.924952\pi\)
\(654\) 0 0
\(655\) 22.9919 39.8232i 0.898369 1.55602i
\(656\) −2.82843 + 4.89898i −0.110432 + 0.191273i
\(657\) 0 0
\(658\) 0 0
\(659\) 14.5635 + 25.2247i 0.567314 + 0.982616i 0.996830 + 0.0795572i \(0.0253506\pi\)
−0.429517 + 0.903059i \(0.641316\pi\)
\(660\) 0 0
\(661\) 46.2086 1.79730 0.898652 0.438661i \(-0.144547\pi\)
0.898652 + 0.438661i \(0.144547\pi\)
\(662\) −20.3649 −0.791505
\(663\) 0 0
\(664\) −1.32440 2.29393i −0.0513967 0.0890216i
\(665\) 0 0
\(666\) 0 0
\(667\) 4.92843 8.53628i 0.190829 0.330526i
\(668\) −4.77012 + 8.26209i −0.184561 + 0.319670i
\(669\) 0 0
\(670\) 11.8412 + 20.5095i 0.457465 + 0.792353i
\(671\) −12.5483 + 21.7343i −0.484421 + 0.839043i
\(672\) 0 0
\(673\) −7.11895 12.3304i −0.274415 0.475301i 0.695572 0.718456i \(-0.255151\pi\)
−0.969987 + 0.243155i \(0.921818\pi\)
\(674\) 7.87298 13.6364i 0.303256 0.525255i
\(675\) 0 0
\(676\) −2.50000 4.33013i −0.0961538 0.166543i
\(677\) 12.7279 0.489174 0.244587 0.969627i \(-0.421348\pi\)
0.244587 + 0.969627i \(0.421348\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2.43649 + 4.22013i −0.0934352 + 0.161834i
\(681\) 0 0
\(682\) 10.9545 18.9737i 0.419468 0.726539i
\(683\) 3.87298 + 6.70820i 0.148196 + 0.256682i 0.930561 0.366138i \(-0.119320\pi\)
−0.782365 + 0.622820i \(0.785987\pi\)
\(684\) 0 0
\(685\) −53.3809 −2.03958
\(686\) 0 0
\(687\) 0 0
\(688\) −0.563508 0.976025i −0.0214836 0.0372106i
\(689\) −53.5377 −2.03962
\(690\) 0 0
\(691\) −17.0490 −0.648573 −0.324287 0.945959i \(-0.605124\pi\)
−0.324287 + 0.945959i \(0.605124\pi\)
\(692\) 12.7279 0.483843
\(693\) 0 0
\(694\) 7.74597 0.294033
\(695\) 68.4919 2.59805
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) 8.21584 + 14.2302i 0.310974 + 0.538623i
\(699\) 0 0
\(700\) 0 0
\(701\) 16.2540 0.613906 0.306953 0.951725i \(-0.400690\pi\)
0.306953 + 0.951725i \(0.400690\pi\)
\(702\) 0 0
\(703\) −18.0255 31.2211i −0.679845 1.17753i
\(704\) 2.00000 3.46410i 0.0753778 0.130558i
\(705\) 0 0
\(706\) 1.94169 3.36311i 0.0730765 0.126572i
\(707\) 0 0
\(708\) 0 0
\(709\) −52.7298 −1.98031 −0.990155 0.139974i \(-0.955298\pi\)
−0.990155 + 0.139974i \(0.955298\pi\)
\(710\) −17.0098 29.4618i −0.638365 1.10568i
\(711\) 0 0
\(712\) 3.53553 6.12372i 0.132500 0.229496i
\(713\) 23.9518 + 41.4858i 0.897003 + 1.55365i
\(714\) 0 0
\(715\) −29.2379 + 50.6415i −1.09344 + 1.89389i
\(716\) −3.43649 5.95218i −0.128428 0.222443i
\(717\) 0 0
\(718\) −9.11895 + 15.7945i −0.340316 + 0.589445i
\(719\) 11.7514 20.3540i 0.438252 0.759075i −0.559303 0.828964i \(-0.688931\pi\)
0.997555 + 0.0698884i \(0.0222643\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 10.1825 + 17.6365i 0.378952 + 0.656364i
\(723\) 0 0
\(724\) 13.3452 0.495971
\(725\) −7.74597 −0.287678
\(726\) 0 0
\(727\) 1.68366 + 2.91618i 0.0624434 + 0.108155i 0.895557 0.444947i \(-0.146777\pi\)
−0.833114 + 0.553102i \(0.813444\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 7.61895 13.1964i 0.281990 0.488421i
\(731\) −0.796921 + 1.38031i −0.0294752 + 0.0510525i
\(732\) 0 0
\(733\) −18.5138 32.0668i −0.683823 1.18442i −0.973805 0.227384i \(-0.926983\pi\)
0.289983 0.957032i \(-0.406350\pi\)
\(734\) −3.44572 + 5.96816i −0.127184 + 0.220289i
\(735\) 0 0
\(736\) 4.37298 + 7.57423i 0.161190 + 0.279190i
\(737\) −13.7460 + 23.8087i −0.506339 + 0.877005i
\(738\) 0 0
\(739\) 15.0000 + 25.9808i 0.551784 + 0.955718i 0.998146 + 0.0608653i \(0.0193860\pi\)
−0.446362 + 0.894852i \(0.647281\pi\)
\(740\) −19.7990 −0.727825
\(741\) 0 0
\(742\) 0 0
\(743\) −6.12702 + 10.6123i −0.224778 + 0.389328i −0.956253 0.292541i \(-0.905499\pi\)
0.731475 + 0.681869i \(0.238833\pi\)
\(744\) 0 0
\(745\) 27.1281 46.9872i 0.993896 1.72148i
\(746\) −0.563508 0.976025i −0.0206315 0.0357348i
\(747\) 0 0
\(748\) −5.65685 −0.206835
\(749\) 0 0
\(750\) 0 0
\(751\) 6.50000 + 11.2583i 0.237188 + 0.410822i 0.959906 0.280321i \(-0.0904408\pi\)
−0.722718 + 0.691143i \(0.757107\pi\)
\(752\) −4.06301 −0.148163
\(753\) 0 0
\(754\) 4.78153 0.174133
\(755\) −37.9029 −1.37943
\(756\) 0 0
\(757\) 31.2379 1.13536 0.567680 0.823249i \(-0.307841\pi\)
0.567680 + 0.823249i \(0.307841\pi\)
\(758\) −26.3649 −0.957617
\(759\) 0 0
\(760\) 21.6190 0.784202
\(761\) 15.2869 + 26.4777i 0.554150 + 0.959816i 0.997969 + 0.0636995i \(0.0202899\pi\)
−0.443819 + 0.896116i \(0.646377\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 6.12702 0.221668
\(765\) 0 0
\(766\) −6.45378 11.1783i −0.233184 0.403887i
\(767\) 17.6190 30.5169i 0.636183 1.10190i
\(768\) 0 0
\(769\) −0.617292 + 1.06918i −0.0222601 + 0.0385557i −0.876941 0.480598i \(-0.840420\pi\)
0.854681 + 0.519154i \(0.173753\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 23.8730 0.859207
\(773\) 1.01575 + 1.75934i 0.0365341 + 0.0632789i 0.883714 0.468027i \(-0.155035\pi\)
−0.847180 + 0.531306i \(0.821702\pi\)
\(774\) 0 0
\(775\) 18.8224 32.6014i 0.676122 1.17108i
\(776\) −7.50873 13.0055i −0.269548 0.466870i
\(777\) 0 0
\(778\) −6.56351 + 11.3683i −0.235313 + 0.407574i
\(779\) −17.7460 30.7369i −0.635815 1.10126i
\(780\) 0 0
\(781\) 19.7460 34.2010i 0.706566 1.22381i
\(782\) 6.18433 10.7116i 0.221151 0.383045i
\(783\) 0 0
\(784\) 0 0
\(785\) −20.5554 35.6031i −0.733655 1.27073i
\(786\) 0 0
\(787\) −12.3687 −0.440895 −0.220448 0.975399i \(-0.570752\pi\)
−0.220448 + 0.975399i \(0.570752\pi\)
\(788\) −16.6190 −0.592026
\(789\) 0 0
\(790\) 3.22689 + 5.58913i 0.114808 + 0.198852i
\(791\) 0 0
\(792\) 0 0
\(793\) 13.3095 23.0527i 0.472633 0.818625i
\(794\) −3.53553 + 6.12372i −0.125471 + 0.217323i
\(795\) 0 0
\(796\) 6.09452 + 10.5560i 0.216014 + 0.374148i
\(797\) 10.2980 17.8366i 0.364772 0.631804i −0.623967 0.781450i \(-0.714480\pi\)
0.988740 + 0.149646i \(0.0478135\pi\)
\(798\) 0 0
\(799\) 2.87298 + 4.97615i 0.101639 + 0.176044i
\(800\) 3.43649 5.95218i 0.121498 0.210441i
\(801\) 0 0
\(802\) 1.93649 + 3.35410i 0.0683799 + 0.118437i
\(803\) 17.6891 0.624234
\(804\) 0 0
\(805\) 0 0
\(806\) −11.6190 + 20.1246i −0.409260 + 0.708859i
\(807\) 0 0
\(808\) −6.67261 + 11.5573i −0.234742 + 0.406584i
\(809\) 23.3649 + 40.4692i 0.821467 + 1.42282i 0.904590 + 0.426283i \(0.140177\pi\)
−0.0831232 + 0.996539i \(0.526490\pi\)
\(810\) 0 0
\(811\) 3.00806 0.105627 0.0528136 0.998604i \(-0.483181\pi\)
0.0528136 + 0.998604i \(0.483181\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −11.4919 19.9046i −0.402792 0.697656i
\(815\) −34.4572 −1.20698
\(816\) 0 0
\(817\) 7.07107 0.247385
\(818\) 23.1435 0.809193
\(819\) 0 0
\(820\) −19.4919 −0.680688
\(821\) 9.49193 0.331271 0.165635 0.986187i \(-0.447033\pi\)
0.165635 + 0.986187i \(0.447033\pi\)
\(822\) 0 0
\(823\) −6.25403 −0.218002 −0.109001 0.994042i \(-0.534765\pi\)
−0.109001 + 0.994042i \(0.534765\pi\)
\(824\) −1.94169 3.36311i −0.0676420 0.117159i
\(825\) 0 0
\(826\) 0 0
\(827\) −48.8730 −1.69948 −0.849740 0.527202i \(-0.823241\pi\)
−0.849740 + 0.527202i \(0.823241\pi\)
\(828\) 0 0
\(829\) −5.30900 9.19547i −0.184389 0.319372i 0.758981 0.651113i \(-0.225697\pi\)
−0.943371 + 0.331741i \(0.892364\pi\)
\(830\) 4.56351 7.90423i 0.158402 0.274360i
\(831\) 0 0
\(832\) −2.12132 + 3.67423i −0.0735436 + 0.127381i
\(833\) 0 0
\(834\) 0 0
\(835\) −32.8730 −1.13762
\(836\) 12.5483 + 21.7343i 0.433992 + 0.751696i
\(837\) 0 0
\(838\) −15.6854 + 27.1679i −0.541842 + 0.938498i
\(839\) −12.8961 22.3368i −0.445224 0.771151i 0.552844 0.833285i \(-0.313543\pi\)
−0.998068 + 0.0621340i \(0.980209\pi\)
\(840\) 0 0
\(841\) 13.8649 24.0147i 0.478101 0.828094i
\(842\) −6.43649 11.1483i −0.221816 0.384197i
\(843\) 0 0
\(844\) −10.3095 + 17.8565i −0.354867 + 0.614647i
\(845\) 8.61430 14.9204i 0.296341 0.513277i
\(846\) 0 0
\(847\) 0 0
\(848\) 6.30948 + 10.9283i 0.216668 + 0.375280i
\(849\) 0 0
\(850\) −9.71987 −0.333389
\(851\) 50.2540 1.72269
\(852\) 0 0
\(853\) −9.06337 15.6982i −0.310324 0.537497i 0.668109 0.744064i \(-0.267104\pi\)
−0.978432 + 0.206567i \(0.933771\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.127017 + 0.219999i −0.00434134 + 0.00751942i
\(857\) −12.9076 + 22.3565i −0.440914 + 0.763685i −0.997758 0.0669325i \(-0.978679\pi\)
0.556844 + 0.830617i \(0.312012\pi\)
\(858\) 0 0
\(859\) 15.2869 + 26.4777i 0.521583 + 0.903407i 0.999685 + 0.0251033i \(0.00799146\pi\)
−0.478102 + 0.878304i \(0.658675\pi\)
\(860\) 1.94169 3.36311i 0.0662111 0.114681i
\(861\) 0 0
\(862\) 10.7460 + 18.6126i 0.366009 + 0.633946i
\(863\) −21.9365 + 37.9951i −0.746727 + 1.29337i 0.202657 + 0.979250i \(0.435042\pi\)
−0.949384 + 0.314119i \(0.898291\pi\)
\(864\) 0 0
\(865\) 21.9284 + 37.9811i 0.745589 + 1.29140i
\(866\) −29.6985 −1.00920
\(867\) 0 0
\(868\) 0 0
\(869\) −3.74597 + 6.48820i −0.127073 + 0.220097i
\(870\) 0 0
\(871\) 14.5798 25.2530i 0.494018 0.855664i
\(872\) 8.43649 + 14.6124i 0.285696 + 0.494839i
\(873\) 0 0
\(874\) −54.8735 −1.85612
\(875\) 0 0
\(876\) 0 0
\(877\) −15.5635 26.9568i −0.525542 0.910266i −0.999557 0.0297493i \(-0.990529\pi\)
0.474015 0.880517i \(-0.342804\pi\)
\(878\) −10.9545 −0.369695
\(879\) 0 0
\(880\) 13.7829 0.464621
\(881\) 26.6904 0.899223 0.449612 0.893224i \(-0.351562\pi\)
0.449612 + 0.893224i \(0.351562\pi\)
\(882\) 0 0
\(883\) 35.4919 1.19440 0.597199 0.802093i \(-0.296280\pi\)
0.597199 + 0.802093i \(0.296280\pi\)
\(884\) 6.00000 0.201802
\(885\) 0 0
\(886\) −14.3649 −0.482599
\(887\) −3.88338 6.72622i −0.130391 0.225844i 0.793436 0.608653i \(-0.208290\pi\)
−0.923827 + 0.382809i \(0.874957\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 24.3649 0.816714
\(891\) 0 0
\(892\) −11.2239 19.4404i −0.375804 0.650911i
\(893\) 12.7460 22.0767i 0.426528 0.738767i
\(894\) 0 0
\(895\) 11.8412 20.5095i 0.395807 0.685558i
\(896\) 0 0
\(897\) 0 0
\(898\) 9.00000 0.300334
\(899\) −3.08646 5.34591i −0.102939 0.178296i
\(900\) 0 0
\(901\) 8.92295 15.4550i 0.297266 0.514881i
\(902\) −11.3137 19.5959i −0.376705 0.652473i
\(903\) 0 0
\(904\) −1.93649 + 3.35410i −0.0644068 + 0.111556i
\(905\) 22.9919 + 39.8232i 0.764278 + 1.32377i
\(906\) 0 0
\(907\) −9.30948 + 16.1245i −0.309116 + 0.535405i −0.978169 0.207810i \(-0.933366\pi\)
0.669053 + 0.743215i \(0.266700\pi\)
\(908\) −5.16858 + 8.95224i −0.171525 + 0.297091i
\(909\) 0 0
\(910\) 0 0
\(911\) −19.3730 33.5550i −0.641856 1.11173i −0.985018 0.172450i \(-0.944832\pi\)
0.343163 0.939276i \(-0.388502\pi\)
\(912\) 0 0
\(913\) 10.5952 0.350650
\(914\) −26.1270 −0.864205
\(915\) 0 0
\(916\) 6.67261 + 11.5573i 0.220469 + 0.381864i
\(917\) 0 0
\(918\) 0 0
\(919\) 0.317542 0.549998i 0.0104747 0.0181428i −0.860741 0.509044i \(-0.829999\pi\)
0.871215 + 0.490901i \(0.163332\pi\)
\(920\) −15.0681 + 26.0987i −0.496780 + 0.860448i
\(921\) 0 0
\(922\) 14.1813 + 24.5628i 0.467038 + 0.808933i
\(923\) −20.9438 + 36.2757i −0.689372 + 1.19403i
\(924\) 0 0
\(925\) −19.7460 34.2010i −0.649243 1.12452i
\(926\) −0.809475 + 1.40205i −0.0266010 + 0.0460743i
\(927\) 0 0
\(928\) −0.563508 0.976025i −0.0184981 0.0320396i
\(929\) −54.4358 −1.78598 −0.892991 0.450075i \(-0.851397\pi\)
−0.892991 + 0.450075i \(0.851397\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 3.62702 6.28218i 0.118807 0.205780i
\(933\) 0 0
\(934\) 3.09787 5.36567i 0.101365 0.175570i
\(935\) −9.74597 16.8805i −0.318727 0.552052i
\(936\) 0 0
\(937\) 45.2320 1.47767 0.738833 0.673889i \(-0.235377\pi\)
0.738833 + 0.673889i \(0.235377\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −7.00000 12.1244i −0.228315 0.395453i
\(941\) 25.7139 0.838249 0.419124 0.907929i \(-0.362337\pi\)
0.419124 + 0.907929i \(0.362337\pi\)
\(942\) 0 0
\(943\) 49.4747 1.61112
\(944\) −8.30565 −0.270326
\(945\) 0 0
\(946\) 4.50807 0.146570
\(947\) 57.6028 1.87184 0.935920 0.352213i \(-0.114571\pi\)
0.935920 + 0.352213i \(0.114571\pi\)
\(948\) 0 0
\(949\) −18.7621 −0.609044
\(950\) 21.5611 + 37.3448i 0.699533 + 1.21163i
\(951\) 0 0
\(952\) 0 0
\(953\) 59.4919 1.92713 0.963566 0.267469i \(-0.0861874\pi\)
0.963566 + 0.267469i \(0.0861874\pi\)
\(954\) 0 0
\(955\) 10.5560 + 18.2835i 0.341584 + 0.591641i
\(956\) −7.50000 + 12.9904i −0.242567 + 0.420139i
\(957\) 0 0
\(958\) 1.94169 3.36311i 0.0627332 0.108657i
\(959\) 0 0
\(960\) 0 0
\(961\) −1.00000 −0.0322581
\(962\) 12.1890 + 21.1120i 0.392990 + 0.680679i
\(963\) 0 0
\(964\) −11.8412 + 20.5095i −0.381379 + 0.660568i
\(965\) 41.1298 + 71.2389i 1.32402 + 2.29326i
\(966\) 0 0
\(967\) −30.2460 + 52.3876i −0.972645 + 1.68467i −0.285147 + 0.958484i \(0.592042\pi\)
−0.687498 + 0.726186i \(0.741291\pi\)
\(968\) 2.50000 + 4.33013i 0.0803530 + 0.139176i
\(969\) 0 0
\(970\) 25.8730 44.8133i 0.830731 1.43887i
\(971\) −0.746310 + 1.29265i −0.0239502 + 0.0414830i −0.877752 0.479115i \(-0.840958\pi\)
0.853802 + 0.520598i \(0.174291\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.245967 0.426027i −0.00788128 0.0136508i
\(975\) 0 0
\(976\) −6.27415 −0.200831
\(977\) −45.4919 −1.45542 −0.727708 0.685887i \(-0.759414\pi\)
−0.727708 + 0.685887i \(0.759414\pi\)
\(978\) 0 0
\(979\) 14.1421 + 24.4949i 0.451985 + 0.782860i
\(980\) 0 0
\(981\) 0 0
\(982\) −0.872983 + 1.51205i −0.0278580 + 0.0482515i
\(983\) 4.94975 8.57321i 0.157872 0.273443i −0.776229 0.630451i \(-0.782870\pi\)
0.934101 + 0.357008i \(0.116203\pi\)
\(984\) 0 0
\(985\) −28.6321 49.5923i −0.912295 1.58014i
\(986\) −0.796921 + 1.38031i −0.0253791 + 0.0439580i
\(987\) 0 0
\(988\) −13.3095 23.0527i −0.423431 0.733404i
\(989\) −4.92843 + 8.53628i −0.156715 + 0.271438i
\(990\) 0 0
\(991\) 5.87298 + 10.1723i 0.186561 + 0.323134i 0.944102 0.329655i \(-0.106932\pi\)
−0.757540 + 0.652789i \(0.773599\pi\)
\(992\) 5.47723 0.173902
\(993\) 0 0
\(994\) 0 0
\(995\) −21.0000 + 36.3731i −0.665745 + 1.15310i
\(996\) 0 0
\(997\) −13.5640 + 23.4936i −0.429578 + 0.744050i −0.996836 0.0794898i \(-0.974671\pi\)
0.567258 + 0.823540i \(0.308004\pi\)
\(998\) −14.8730 25.7608i −0.470796 0.815443i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.e.r.1549.4 8
3.2 odd 2 882.2.e.t.373.2 8
7.2 even 3 2646.2.f.s.1765.4 8
7.3 odd 6 2646.2.h.s.361.4 8
7.4 even 3 2646.2.h.s.361.1 8
7.5 odd 6 2646.2.f.s.1765.1 8
7.6 odd 2 inner 2646.2.e.r.1549.1 8
9.2 odd 6 882.2.h.r.79.4 8
9.7 even 3 2646.2.h.s.667.1 8
21.2 odd 6 882.2.f.p.589.1 yes 8
21.5 even 6 882.2.f.p.589.4 yes 8
21.11 odd 6 882.2.h.r.67.4 8
21.17 even 6 882.2.h.r.67.1 8
21.20 even 2 882.2.e.t.373.3 8
63.2 odd 6 882.2.f.p.295.2 8
63.5 even 6 7938.2.a.cu.1.1 4
63.11 odd 6 882.2.e.t.655.2 8
63.16 even 3 2646.2.f.s.883.4 8
63.20 even 6 882.2.h.r.79.1 8
63.23 odd 6 7938.2.a.cu.1.4 4
63.25 even 3 inner 2646.2.e.r.2125.4 8
63.34 odd 6 2646.2.h.s.667.4 8
63.38 even 6 882.2.e.t.655.3 8
63.40 odd 6 7938.2.a.cd.1.4 4
63.47 even 6 882.2.f.p.295.3 yes 8
63.52 odd 6 inner 2646.2.e.r.2125.1 8
63.58 even 3 7938.2.a.cd.1.1 4
63.61 odd 6 2646.2.f.s.883.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.t.373.2 8 3.2 odd 2
882.2.e.t.373.3 8 21.20 even 2
882.2.e.t.655.2 8 63.11 odd 6
882.2.e.t.655.3 8 63.38 even 6
882.2.f.p.295.2 8 63.2 odd 6
882.2.f.p.295.3 yes 8 63.47 even 6
882.2.f.p.589.1 yes 8 21.2 odd 6
882.2.f.p.589.4 yes 8 21.5 even 6
882.2.h.r.67.1 8 21.17 even 6
882.2.h.r.67.4 8 21.11 odd 6
882.2.h.r.79.1 8 63.20 even 6
882.2.h.r.79.4 8 9.2 odd 6
2646.2.e.r.1549.1 8 7.6 odd 2 inner
2646.2.e.r.1549.4 8 1.1 even 1 trivial
2646.2.e.r.2125.1 8 63.52 odd 6 inner
2646.2.e.r.2125.4 8 63.25 even 3 inner
2646.2.f.s.883.1 8 63.61 odd 6
2646.2.f.s.883.4 8 63.16 even 3
2646.2.f.s.1765.1 8 7.5 odd 6
2646.2.f.s.1765.4 8 7.2 even 3
2646.2.h.s.361.1 8 7.4 even 3
2646.2.h.s.361.4 8 7.3 odd 6
2646.2.h.s.667.1 8 9.7 even 3
2646.2.h.s.667.4 8 63.34 odd 6
7938.2.a.cd.1.1 4 63.58 even 3
7938.2.a.cd.1.4 4 63.40 odd 6
7938.2.a.cu.1.1 4 63.5 even 6
7938.2.a.cu.1.4 4 63.23 odd 6