Properties

Label 2646.2.f.s.1765.4
Level $2646$
Weight $2$
Character 2646.1765
Analytic conductor $21.128$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(883,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,-4,0,0,0,-8,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.3317760000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1765.4
Root \(1.72286 - 0.178197i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1765
Dual form 2646.2.f.s.883.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(1.72286 - 2.98408i) q^{5} -1.00000 q^{8} +3.44572 q^{10} +(2.00000 + 3.46410i) q^{11} +(-2.12132 + 3.67423i) q^{13} +(-0.500000 - 0.866025i) q^{16} +1.41421 q^{17} +6.27415 q^{19} +(1.72286 + 2.98408i) q^{20} +(-2.00000 + 3.46410i) q^{22} +(-4.37298 + 7.57423i) q^{23} +(-3.43649 - 5.95218i) q^{25} -4.24264 q^{26} +(0.563508 + 0.976025i) q^{29} +(2.73861 - 4.74342i) q^{31} +(0.500000 - 0.866025i) q^{32} +(0.707107 + 1.22474i) q^{34} +5.74597 q^{37} +(3.13707 + 5.43357i) q^{38} +(-1.72286 + 2.98408i) q^{40} +(-2.82843 + 4.89898i) q^{41} +(-0.563508 - 0.976025i) q^{43} -4.00000 q^{44} -8.74597 q^{46} +(2.03151 + 3.51867i) q^{47} +(3.43649 - 5.95218i) q^{50} +(-2.12132 - 3.67423i) q^{52} -12.6190 q^{53} +13.7829 q^{55} +(-0.563508 + 0.976025i) q^{58} +(4.15283 - 7.19291i) q^{59} +(3.13707 + 5.43357i) q^{61} +5.47723 q^{62} +1.00000 q^{64} +(7.30948 + 12.6604i) q^{65} +(3.43649 - 5.95218i) q^{67} +(-0.707107 + 1.22474i) q^{68} +9.87298 q^{71} -4.42227 q^{73} +(2.87298 + 4.97615i) q^{74} +(-3.13707 + 5.43357i) q^{76} +(0.936492 + 1.62205i) q^{79} -3.44572 q^{80} -5.65685 q^{82} +(1.32440 + 2.29393i) q^{83} +(2.43649 - 4.22013i) q^{85} +(0.563508 - 0.976025i) q^{86} +(-2.00000 - 3.46410i) q^{88} +7.07107 q^{89} +(-4.37298 - 7.57423i) q^{92} +(-2.03151 + 3.51867i) q^{94} +(10.8095 - 18.7226i) q^{95} +(7.50873 + 13.0055i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{4} - 8 q^{8} + 16 q^{11} - 4 q^{16} - 16 q^{22} - 4 q^{23} - 12 q^{25} + 20 q^{29} + 4 q^{32} - 16 q^{37} - 20 q^{43} - 32 q^{44} - 8 q^{46} + 12 q^{50} - 8 q^{53} - 20 q^{58} + 8 q^{64}+ \cdots + 40 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.72286 2.98408i 0.770486 1.33452i −0.166810 0.985989i \(-0.553347\pi\)
0.937297 0.348532i \(-0.113320\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 3.44572 1.08963
\(11\) 2.00000 + 3.46410i 0.603023 + 1.04447i 0.992361 + 0.123371i \(0.0393705\pi\)
−0.389338 + 0.921095i \(0.627296\pi\)
\(12\) 0 0
\(13\) −2.12132 + 3.67423i −0.588348 + 1.01905i 0.406100 + 0.913828i \(0.366888\pi\)
−0.994449 + 0.105221i \(0.966445\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.41421 0.342997 0.171499 0.985184i \(-0.445139\pi\)
0.171499 + 0.985184i \(0.445139\pi\)
\(18\) 0 0
\(19\) 6.27415 1.43939 0.719694 0.694291i \(-0.244282\pi\)
0.719694 + 0.694291i \(0.244282\pi\)
\(20\) 1.72286 + 2.98408i 0.385243 + 0.667261i
\(21\) 0 0
\(22\) −2.00000 + 3.46410i −0.426401 + 0.738549i
\(23\) −4.37298 + 7.57423i −0.911830 + 1.57934i −0.100353 + 0.994952i \(0.531997\pi\)
−0.811477 + 0.584384i \(0.801336\pi\)
\(24\) 0 0
\(25\) −3.43649 5.95218i −0.687298 1.19044i
\(26\) −4.24264 −0.832050
\(27\) 0 0
\(28\) 0 0
\(29\) 0.563508 + 0.976025i 0.104641 + 0.181243i 0.913591 0.406633i \(-0.133297\pi\)
−0.808951 + 0.587877i \(0.799964\pi\)
\(30\) 0 0
\(31\) 2.73861 4.74342i 0.491869 0.851943i −0.508087 0.861306i \(-0.669647\pi\)
0.999956 + 0.00936313i \(0.00298042\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 0.707107 + 1.22474i 0.121268 + 0.210042i
\(35\) 0 0
\(36\) 0 0
\(37\) 5.74597 0.944631 0.472316 0.881430i \(-0.343418\pi\)
0.472316 + 0.881430i \(0.343418\pi\)
\(38\) 3.13707 + 5.43357i 0.508900 + 0.881442i
\(39\) 0 0
\(40\) −1.72286 + 2.98408i −0.272408 + 0.471825i
\(41\) −2.82843 + 4.89898i −0.441726 + 0.765092i −0.997818 0.0660290i \(-0.978967\pi\)
0.556092 + 0.831121i \(0.312300\pi\)
\(42\) 0 0
\(43\) −0.563508 0.976025i −0.0859342 0.148842i 0.819855 0.572572i \(-0.194054\pi\)
−0.905789 + 0.423729i \(0.860721\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) −8.74597 −1.28952
\(47\) 2.03151 + 3.51867i 0.296326 + 0.513251i 0.975292 0.220918i \(-0.0709053\pi\)
−0.678967 + 0.734169i \(0.737572\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 3.43649 5.95218i 0.485993 0.841765i
\(51\) 0 0
\(52\) −2.12132 3.67423i −0.294174 0.509525i
\(53\) −12.6190 −1.73335 −0.866673 0.498877i \(-0.833746\pi\)
−0.866673 + 0.498877i \(0.833746\pi\)
\(54\) 0 0
\(55\) 13.7829 1.85848
\(56\) 0 0
\(57\) 0 0
\(58\) −0.563508 + 0.976025i −0.0739923 + 0.128158i
\(59\) 4.15283 7.19291i 0.540652 0.936437i −0.458215 0.888842i \(-0.651511\pi\)
0.998867 0.0475951i \(-0.0151557\pi\)
\(60\) 0 0
\(61\) 3.13707 + 5.43357i 0.401661 + 0.695697i 0.993927 0.110045i \(-0.0350997\pi\)
−0.592265 + 0.805743i \(0.701766\pi\)
\(62\) 5.47723 0.695608
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 7.30948 + 12.6604i 0.906629 + 1.57033i
\(66\) 0 0
\(67\) 3.43649 5.95218i 0.419834 0.727174i −0.576088 0.817388i \(-0.695422\pi\)
0.995922 + 0.0902132i \(0.0287549\pi\)
\(68\) −0.707107 + 1.22474i −0.0857493 + 0.148522i
\(69\) 0 0
\(70\) 0 0
\(71\) 9.87298 1.17171 0.585854 0.810417i \(-0.300759\pi\)
0.585854 + 0.810417i \(0.300759\pi\)
\(72\) 0 0
\(73\) −4.42227 −0.517587 −0.258794 0.965933i \(-0.583325\pi\)
−0.258794 + 0.965933i \(0.583325\pi\)
\(74\) 2.87298 + 4.97615i 0.333978 + 0.578466i
\(75\) 0 0
\(76\) −3.13707 + 5.43357i −0.359847 + 0.623273i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.936492 + 1.62205i 0.105364 + 0.182495i 0.913887 0.405969i \(-0.133066\pi\)
−0.808523 + 0.588464i \(0.799733\pi\)
\(80\) −3.44572 −0.385243
\(81\) 0 0
\(82\) −5.65685 −0.624695
\(83\) 1.32440 + 2.29393i 0.145372 + 0.251791i 0.929512 0.368793i \(-0.120229\pi\)
−0.784140 + 0.620584i \(0.786896\pi\)
\(84\) 0 0
\(85\) 2.43649 4.22013i 0.264275 0.457737i
\(86\) 0.563508 0.976025i 0.0607647 0.105247i
\(87\) 0 0
\(88\) −2.00000 3.46410i −0.213201 0.369274i
\(89\) 7.07107 0.749532 0.374766 0.927119i \(-0.377723\pi\)
0.374766 + 0.927119i \(0.377723\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.37298 7.57423i −0.455915 0.789668i
\(93\) 0 0
\(94\) −2.03151 + 3.51867i −0.209534 + 0.362923i
\(95\) 10.8095 18.7226i 1.10903 1.92089i
\(96\) 0 0
\(97\) 7.50873 + 13.0055i 0.762396 + 1.32051i 0.941612 + 0.336699i \(0.109311\pi\)
−0.179216 + 0.983810i \(0.557356\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 6.87298 0.687298
\(101\) 6.67261 + 11.5573i 0.663949 + 1.14999i 0.979569 + 0.201108i \(0.0644542\pi\)
−0.315620 + 0.948886i \(0.602212\pi\)
\(102\) 0 0
\(103\) 1.94169 3.36311i 0.191321 0.331377i −0.754368 0.656452i \(-0.772056\pi\)
0.945688 + 0.325075i \(0.105390\pi\)
\(104\) 2.12132 3.67423i 0.208013 0.360288i
\(105\) 0 0
\(106\) −6.30948 10.9283i −0.612830 1.06145i
\(107\) −0.254033 −0.0245583 −0.0122792 0.999925i \(-0.503909\pi\)
−0.0122792 + 0.999925i \(0.503909\pi\)
\(108\) 0 0
\(109\) 16.8730 1.61614 0.808069 0.589087i \(-0.200513\pi\)
0.808069 + 0.589087i \(0.200513\pi\)
\(110\) 6.89144 + 11.9363i 0.657073 + 1.13808i
\(111\) 0 0
\(112\) 0 0
\(113\) 1.93649 3.35410i 0.182170 0.315527i −0.760449 0.649397i \(-0.775021\pi\)
0.942619 + 0.333870i \(0.108355\pi\)
\(114\) 0 0
\(115\) 15.0681 + 26.0987i 1.40511 + 2.43371i
\(116\) −1.12702 −0.104641
\(117\) 0 0
\(118\) 8.30565 0.764597
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) −3.13707 + 5.43357i −0.284017 + 0.491932i
\(123\) 0 0
\(124\) 2.73861 + 4.74342i 0.245935 + 0.425971i
\(125\) −6.45378 −0.577243
\(126\) 0 0
\(127\) −0.745967 −0.0661938 −0.0330969 0.999452i \(-0.510537\pi\)
−0.0330969 + 0.999452i \(0.510537\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −7.30948 + 12.6604i −0.641083 + 1.11039i
\(131\) −6.67261 + 11.5573i −0.582988 + 1.00977i 0.412135 + 0.911123i \(0.364783\pi\)
−0.995123 + 0.0986425i \(0.968550\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.87298 0.593735
\(135\) 0 0
\(136\) −1.41421 −0.121268
\(137\) −7.74597 13.4164i −0.661783 1.14624i −0.980147 0.198273i \(-0.936467\pi\)
0.318364 0.947968i \(-0.396866\pi\)
\(138\) 0 0
\(139\) 9.93870 17.2143i 0.842989 1.46010i −0.0443665 0.999015i \(-0.514127\pi\)
0.887356 0.461085i \(-0.152540\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.93649 + 8.55025i 0.414261 + 0.717521i
\(143\) −16.9706 −1.41915
\(144\) 0 0
\(145\) 3.88338 0.322497
\(146\) −2.21113 3.82980i −0.182995 0.316956i
\(147\) 0 0
\(148\) −2.87298 + 4.97615i −0.236158 + 0.409037i
\(149\) −7.87298 + 13.6364i −0.644980 + 1.11714i 0.339326 + 0.940669i \(0.389801\pi\)
−0.984306 + 0.176469i \(0.943532\pi\)
\(150\) 0 0
\(151\) −5.50000 9.52628i −0.447584 0.775238i 0.550645 0.834740i \(-0.314382\pi\)
−0.998228 + 0.0595022i \(0.981049\pi\)
\(152\) −6.27415 −0.508900
\(153\) 0 0
\(154\) 0 0
\(155\) −9.43649 16.3445i −0.757957 1.31282i
\(156\) 0 0
\(157\) 5.96550 10.3325i 0.476099 0.824627i −0.523526 0.852010i \(-0.675384\pi\)
0.999625 + 0.0273823i \(0.00871714\pi\)
\(158\) −0.936492 + 1.62205i −0.0745033 + 0.129043i
\(159\) 0 0
\(160\) −1.72286 2.98408i −0.136204 0.235912i
\(161\) 0 0
\(162\) 0 0
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) −2.82843 4.89898i −0.220863 0.382546i
\(165\) 0 0
\(166\) −1.32440 + 2.29393i −0.102793 + 0.178043i
\(167\) −4.77012 + 8.26209i −0.369123 + 0.639340i −0.989429 0.145021i \(-0.953675\pi\)
0.620306 + 0.784360i \(0.287009\pi\)
\(168\) 0 0
\(169\) −2.50000 4.33013i −0.192308 0.333087i
\(170\) 4.87298 0.373741
\(171\) 0 0
\(172\) 1.12702 0.0859342
\(173\) −6.36396 11.0227i −0.483843 0.838041i 0.515985 0.856598i \(-0.327426\pi\)
−0.999828 + 0.0185571i \(0.994093\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.00000 3.46410i 0.150756 0.261116i
\(177\) 0 0
\(178\) 3.53553 + 6.12372i 0.264999 + 0.458993i
\(179\) 6.87298 0.513711 0.256855 0.966450i \(-0.417314\pi\)
0.256855 + 0.966450i \(0.417314\pi\)
\(180\) 0 0
\(181\) 13.3452 0.991942 0.495971 0.868339i \(-0.334812\pi\)
0.495971 + 0.868339i \(0.334812\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.37298 7.57423i 0.322381 0.558380i
\(185\) 9.89949 17.1464i 0.727825 1.26063i
\(186\) 0 0
\(187\) 2.82843 + 4.89898i 0.206835 + 0.358249i
\(188\) −4.06301 −0.296326
\(189\) 0 0
\(190\) 21.6190 1.56840
\(191\) −3.06351 5.30615i −0.221668 0.383940i 0.733647 0.679531i \(-0.237817\pi\)
−0.955314 + 0.295591i \(0.904483\pi\)
\(192\) 0 0
\(193\) −11.9365 + 20.6746i −0.859207 + 1.48819i 0.0134785 + 0.999909i \(0.495710\pi\)
−0.872686 + 0.488282i \(0.837624\pi\)
\(194\) −7.50873 + 13.0055i −0.539096 + 0.933741i
\(195\) 0 0
\(196\) 0 0
\(197\) −16.6190 −1.18405 −0.592026 0.805919i \(-0.701672\pi\)
−0.592026 + 0.805919i \(0.701672\pi\)
\(198\) 0 0
\(199\) −12.1890 −0.864058 −0.432029 0.901860i \(-0.642202\pi\)
−0.432029 + 0.901860i \(0.642202\pi\)
\(200\) 3.43649 + 5.95218i 0.242997 + 0.420883i
\(201\) 0 0
\(202\) −6.67261 + 11.5573i −0.469483 + 0.813168i
\(203\) 0 0
\(204\) 0 0
\(205\) 9.74597 + 16.8805i 0.680688 + 1.17899i
\(206\) 3.88338 0.270568
\(207\) 0 0
\(208\) 4.24264 0.294174
\(209\) 12.5483 + 21.7343i 0.867984 + 1.50339i
\(210\) 0 0
\(211\) −10.3095 + 17.8565i −0.709734 + 1.22929i 0.255222 + 0.966882i \(0.417851\pi\)
−0.964956 + 0.262412i \(0.915482\pi\)
\(212\) 6.30948 10.9283i 0.433337 0.750561i
\(213\) 0 0
\(214\) −0.127017 0.219999i −0.00868268 0.0150388i
\(215\) −3.88338 −0.264845
\(216\) 0 0
\(217\) 0 0
\(218\) 8.43649 + 14.6124i 0.571391 + 0.989679i
\(219\) 0 0
\(220\) −6.89144 + 11.9363i −0.464621 + 0.804747i
\(221\) −3.00000 + 5.19615i −0.201802 + 0.349531i
\(222\) 0 0
\(223\) −11.2239 19.4404i −0.751608 1.30182i −0.947043 0.321106i \(-0.895945\pi\)
0.195436 0.980717i \(-0.437388\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.87298 0.257627
\(227\) −5.16858 8.95224i −0.343051 0.594181i 0.641947 0.766749i \(-0.278127\pi\)
−0.984998 + 0.172568i \(0.944794\pi\)
\(228\) 0 0
\(229\) 6.67261 11.5573i 0.440938 0.763728i −0.556821 0.830632i \(-0.687979\pi\)
0.997759 + 0.0669049i \(0.0213124\pi\)
\(230\) −15.0681 + 26.0987i −0.993559 + 1.72090i
\(231\) 0 0
\(232\) −0.563508 0.976025i −0.0369961 0.0640792i
\(233\) −7.25403 −0.475228 −0.237614 0.971360i \(-0.576365\pi\)
−0.237614 + 0.971360i \(0.576365\pi\)
\(234\) 0 0
\(235\) 14.0000 0.913259
\(236\) 4.15283 + 7.19291i 0.270326 + 0.468218i
\(237\) 0 0
\(238\) 0 0
\(239\) −7.50000 + 12.9904i −0.485135 + 0.840278i −0.999854 0.0170808i \(-0.994563\pi\)
0.514719 + 0.857359i \(0.327896\pi\)
\(240\) 0 0
\(241\) −11.8412 20.5095i −0.762758 1.32114i −0.941424 0.337226i \(-0.890511\pi\)
0.178666 0.983910i \(-0.442822\pi\)
\(242\) −5.00000 −0.321412
\(243\) 0 0
\(244\) −6.27415 −0.401661
\(245\) 0 0
\(246\) 0 0
\(247\) −13.3095 + 23.0527i −0.846862 + 1.46681i
\(248\) −2.73861 + 4.74342i −0.173902 + 0.301207i
\(249\) 0 0
\(250\) −3.22689 5.58913i −0.204086 0.353488i
\(251\) 9.46183 0.597225 0.298613 0.954374i \(-0.403476\pi\)
0.298613 + 0.954374i \(0.403476\pi\)
\(252\) 0 0
\(253\) −34.9839 −2.19942
\(254\) −0.372983 0.646026i −0.0234031 0.0405353i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −1.50403 + 2.60505i −0.0938187 + 0.162499i −0.909115 0.416545i \(-0.863241\pi\)
0.815296 + 0.579044i \(0.196574\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −14.6190 −0.906629
\(261\) 0 0
\(262\) −13.3452 −0.824470
\(263\) −8.80948 15.2585i −0.543216 0.940877i −0.998717 0.0506418i \(-0.983873\pi\)
0.455501 0.890235i \(-0.349460\pi\)
\(264\) 0 0
\(265\) −21.7407 + 37.6560i −1.33552 + 2.31319i
\(266\) 0 0
\(267\) 0 0
\(268\) 3.43649 + 5.95218i 0.209917 + 0.363587i
\(269\) −2.03151 −0.123863 −0.0619316 0.998080i \(-0.519726\pi\)
−0.0619316 + 0.998080i \(0.519726\pi\)
\(270\) 0 0
\(271\) −7.07107 −0.429537 −0.214768 0.976665i \(-0.568900\pi\)
−0.214768 + 0.976665i \(0.568900\pi\)
\(272\) −0.707107 1.22474i −0.0428746 0.0742611i
\(273\) 0 0
\(274\) 7.74597 13.4164i 0.467951 0.810515i
\(275\) 13.7460 23.8087i 0.828913 1.43572i
\(276\) 0 0
\(277\) −7.18246 12.4404i −0.431552 0.747470i 0.565455 0.824779i \(-0.308701\pi\)
−0.997007 + 0.0773089i \(0.975367\pi\)
\(278\) 19.8774 1.19217
\(279\) 0 0
\(280\) 0 0
\(281\) 4.37298 + 7.57423i 0.260870 + 0.451841i 0.966473 0.256767i \(-0.0826572\pi\)
−0.705603 + 0.708607i \(0.749324\pi\)
\(282\) 0 0
\(283\) 2.51978 4.36439i 0.149785 0.259436i −0.781363 0.624077i \(-0.785475\pi\)
0.931148 + 0.364641i \(0.118808\pi\)
\(284\) −4.93649 + 8.55025i −0.292927 + 0.507364i
\(285\) 0 0
\(286\) −8.48528 14.6969i −0.501745 0.869048i
\(287\) 0 0
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 1.94169 + 3.36311i 0.114020 + 0.197489i
\(291\) 0 0
\(292\) 2.21113 3.82980i 0.129397 0.224122i
\(293\) 0.398461 0.690154i 0.0232783 0.0403192i −0.854152 0.520024i \(-0.825923\pi\)
0.877430 + 0.479705i \(0.159256\pi\)
\(294\) 0 0
\(295\) −14.3095 24.7847i −0.833130 1.44302i
\(296\) −5.74597 −0.333978
\(297\) 0 0
\(298\) −15.7460 −0.912139
\(299\) −18.5530 32.1347i −1.07295 1.85840i
\(300\) 0 0
\(301\) 0 0
\(302\) 5.50000 9.52628i 0.316489 0.548176i
\(303\) 0 0
\(304\) −3.13707 5.43357i −0.179923 0.311637i
\(305\) 21.6190 1.23790
\(306\) 0 0
\(307\) −14.2205 −0.811609 −0.405805 0.913960i \(-0.633009\pi\)
−0.405805 + 0.913960i \(0.633009\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 9.43649 16.3445i 0.535957 0.928304i
\(311\) 0.707107 1.22474i 0.0400963 0.0694489i −0.845281 0.534322i \(-0.820567\pi\)
0.885377 + 0.464873i \(0.153900\pi\)
\(312\) 0 0
\(313\) 7.86799 + 13.6278i 0.444725 + 0.770286i 0.998033 0.0626904i \(-0.0199681\pi\)
−0.553308 + 0.832977i \(0.686635\pi\)
\(314\) 11.9310 0.673305
\(315\) 0 0
\(316\) −1.87298 −0.105364
\(317\) 12.3095 + 21.3206i 0.691369 + 1.19749i 0.971389 + 0.237492i \(0.0763254\pi\)
−0.280020 + 0.959994i \(0.590341\pi\)
\(318\) 0 0
\(319\) −2.25403 + 3.90410i −0.126202 + 0.218588i
\(320\) 1.72286 2.98408i 0.0963108 0.166815i
\(321\) 0 0
\(322\) 0 0
\(323\) 8.87298 0.493706
\(324\) 0 0
\(325\) 29.1596 1.61748
\(326\) 5.00000 + 8.66025i 0.276924 + 0.479647i
\(327\) 0 0
\(328\) 2.82843 4.89898i 0.156174 0.270501i
\(329\) 0 0
\(330\) 0 0
\(331\) −10.1825 17.6365i −0.559679 0.969392i −0.997523 0.0703409i \(-0.977591\pi\)
0.437844 0.899051i \(-0.355742\pi\)
\(332\) −2.64880 −0.145372
\(333\) 0 0
\(334\) −9.54024 −0.522019
\(335\) −11.8412 20.5095i −0.646953 1.12056i
\(336\) 0 0
\(337\) −7.87298 + 13.6364i −0.428869 + 0.742822i −0.996773 0.0802722i \(-0.974421\pi\)
0.567904 + 0.823095i \(0.307754\pi\)
\(338\) 2.50000 4.33013i 0.135982 0.235528i
\(339\) 0 0
\(340\) 2.43649 + 4.22013i 0.132137 + 0.228869i
\(341\) 21.9089 1.18643
\(342\) 0 0
\(343\) 0 0
\(344\) 0.563508 + 0.976025i 0.0303823 + 0.0526237i
\(345\) 0 0
\(346\) 6.36396 11.0227i 0.342129 0.592584i
\(347\) 3.87298 6.70820i 0.207913 0.360115i −0.743144 0.669131i \(-0.766666\pi\)
0.951057 + 0.309016i \(0.0999997\pi\)
\(348\) 0 0
\(349\) −8.21584 14.2302i −0.439784 0.761728i 0.557889 0.829916i \(-0.311612\pi\)
−0.997672 + 0.0681880i \(0.978278\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) −1.94169 3.36311i −0.103346 0.179000i 0.809715 0.586823i \(-0.199622\pi\)
−0.913061 + 0.407823i \(0.866288\pi\)
\(354\) 0 0
\(355\) 17.0098 29.4618i 0.902785 1.56367i
\(356\) −3.53553 + 6.12372i −0.187383 + 0.324557i
\(357\) 0 0
\(358\) 3.43649 + 5.95218i 0.181624 + 0.314582i
\(359\) −18.2379 −0.962560 −0.481280 0.876567i \(-0.659828\pi\)
−0.481280 + 0.876567i \(0.659828\pi\)
\(360\) 0 0
\(361\) 20.3649 1.07184
\(362\) 6.67261 + 11.5573i 0.350704 + 0.607438i
\(363\) 0 0
\(364\) 0 0
\(365\) −7.61895 + 13.1964i −0.398794 + 0.690732i
\(366\) 0 0
\(367\) 3.44572 + 5.96816i 0.179865 + 0.311535i 0.941834 0.336078i \(-0.109101\pi\)
−0.761969 + 0.647613i \(0.775767\pi\)
\(368\) 8.74597 0.455915
\(369\) 0 0
\(370\) 19.7990 1.02930
\(371\) 0 0
\(372\) 0 0
\(373\) 0.563508 0.976025i 0.0291774 0.0505367i −0.851068 0.525055i \(-0.824045\pi\)
0.880245 + 0.474519i \(0.157378\pi\)
\(374\) −2.82843 + 4.89898i −0.146254 + 0.253320i
\(375\) 0 0
\(376\) −2.03151 3.51867i −0.104767 0.181462i
\(377\) −4.78153 −0.246261
\(378\) 0 0
\(379\) 26.3649 1.35427 0.677137 0.735857i \(-0.263220\pi\)
0.677137 + 0.735857i \(0.263220\pi\)
\(380\) 10.8095 + 18.7226i 0.554514 + 0.960447i
\(381\) 0 0
\(382\) 3.06351 5.30615i 0.156743 0.271486i
\(383\) 6.45378 11.1783i 0.329773 0.571183i −0.652694 0.757622i \(-0.726361\pi\)
0.982467 + 0.186439i \(0.0596946\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −23.8730 −1.21510
\(387\) 0 0
\(388\) −15.0175 −0.762396
\(389\) 6.56351 + 11.3683i 0.332783 + 0.576397i 0.983056 0.183303i \(-0.0586790\pi\)
−0.650273 + 0.759700i \(0.725346\pi\)
\(390\) 0 0
\(391\) −6.18433 + 10.7116i −0.312755 + 0.541708i
\(392\) 0 0
\(393\) 0 0
\(394\) −8.30948 14.3924i −0.418625 0.725080i
\(395\) 6.45378 0.324725
\(396\) 0 0
\(397\) −7.07107 −0.354887 −0.177443 0.984131i \(-0.556783\pi\)
−0.177443 + 0.984131i \(0.556783\pi\)
\(398\) −6.09452 10.5560i −0.305491 0.529125i
\(399\) 0 0
\(400\) −3.43649 + 5.95218i −0.171825 + 0.297609i
\(401\) −1.93649 + 3.35410i −0.0967038 + 0.167496i −0.910318 0.413909i \(-0.864163\pi\)
0.813615 + 0.581405i \(0.197497\pi\)
\(402\) 0 0
\(403\) 11.6190 + 20.1246i 0.578781 + 1.00248i
\(404\) −13.3452 −0.663949
\(405\) 0 0
\(406\) 0 0
\(407\) 11.4919 + 19.9046i 0.569634 + 0.986635i
\(408\) 0 0
\(409\) 11.5717 20.0428i 0.572186 0.991055i −0.424155 0.905589i \(-0.639429\pi\)
0.996341 0.0854655i \(-0.0272378\pi\)
\(410\) −9.74597 + 16.8805i −0.481319 + 0.833669i
\(411\) 0 0
\(412\) 1.94169 + 3.36311i 0.0956603 + 0.165688i
\(413\) 0 0
\(414\) 0 0
\(415\) 9.12702 0.448028
\(416\) 2.12132 + 3.67423i 0.104006 + 0.180144i
\(417\) 0 0
\(418\) −12.5483 + 21.7343i −0.613757 + 1.06306i
\(419\) 15.6854 27.1679i 0.766280 1.32724i −0.173287 0.984871i \(-0.555439\pi\)
0.939567 0.342365i \(-0.111228\pi\)
\(420\) 0 0
\(421\) 6.43649 + 11.1483i 0.313695 + 0.543336i 0.979159 0.203094i \(-0.0650996\pi\)
−0.665464 + 0.746430i \(0.731766\pi\)
\(422\) −20.6190 −1.00371
\(423\) 0 0
\(424\) 12.6190 0.612830
\(425\) −4.85993 8.41765i −0.235741 0.408316i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.127017 0.219999i 0.00613958 0.0106341i
\(429\) 0 0
\(430\) −1.94169 3.36311i −0.0936367 0.162183i
\(431\) 21.4919 1.03523 0.517615 0.855614i \(-0.326820\pi\)
0.517615 + 0.855614i \(0.326820\pi\)
\(432\) 0 0
\(433\) 29.6985 1.42722 0.713609 0.700544i \(-0.247059\pi\)
0.713609 + 0.700544i \(0.247059\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −8.43649 + 14.6124i −0.404035 + 0.699809i
\(437\) −27.4367 + 47.5218i −1.31248 + 2.27328i
\(438\) 0 0
\(439\) −5.47723 9.48683i −0.261414 0.452782i 0.705204 0.709004i \(-0.250855\pi\)
−0.966618 + 0.256223i \(0.917522\pi\)
\(440\) −13.7829 −0.657073
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) −7.18246 12.4404i −0.341249 0.591060i 0.643416 0.765517i \(-0.277517\pi\)
−0.984665 + 0.174456i \(0.944183\pi\)
\(444\) 0 0
\(445\) 12.1825 21.1006i 0.577504 1.00027i
\(446\) 11.2239 19.4404i 0.531467 0.920527i
\(447\) 0 0
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) −22.6274 −1.06548
\(452\) 1.93649 + 3.35410i 0.0910849 + 0.157764i
\(453\) 0 0
\(454\) 5.16858 8.95224i 0.242573 0.420150i
\(455\) 0 0
\(456\) 0 0
\(457\) −13.0635 22.6267i −0.611085 1.05843i −0.991058 0.133433i \(-0.957400\pi\)
0.379973 0.924998i \(-0.375933\pi\)
\(458\) 13.3452 0.623581
\(459\) 0 0
\(460\) −30.1361 −1.40511
\(461\) −14.1813 24.5628i −0.660491 1.14400i −0.980487 0.196585i \(-0.937015\pi\)
0.319996 0.947419i \(-0.396318\pi\)
\(462\) 0 0
\(463\) 0.809475 1.40205i 0.0376195 0.0651589i −0.846603 0.532226i \(-0.821356\pi\)
0.884222 + 0.467067i \(0.154689\pi\)
\(464\) 0.563508 0.976025i 0.0261602 0.0453108i
\(465\) 0 0
\(466\) −3.62702 6.28218i −0.168018 0.291016i
\(467\) 6.19574 0.286705 0.143352 0.989672i \(-0.454212\pi\)
0.143352 + 0.989672i \(0.454212\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 7.00000 + 12.1244i 0.322886 + 0.559255i
\(471\) 0 0
\(472\) −4.15283 + 7.19291i −0.191149 + 0.331080i
\(473\) 2.25403 3.90410i 0.103641 0.179511i
\(474\) 0 0
\(475\) −21.5611 37.3448i −0.989289 1.71350i
\(476\) 0 0
\(477\) 0 0
\(478\) −15.0000 −0.686084
\(479\) −1.94169 3.36311i −0.0887182 0.153664i 0.818251 0.574861i \(-0.194944\pi\)
−0.906970 + 0.421196i \(0.861610\pi\)
\(480\) 0 0
\(481\) −12.1890 + 21.1120i −0.555772 + 0.962626i
\(482\) 11.8412 20.5095i 0.539351 0.934184i
\(483\) 0 0
\(484\) −2.50000 4.33013i −0.113636 0.196824i
\(485\) 51.7460 2.34966
\(486\) 0 0
\(487\) −0.491933 −0.0222916 −0.0111458 0.999938i \(-0.503548\pi\)
−0.0111458 + 0.999938i \(0.503548\pi\)
\(488\) −3.13707 5.43357i −0.142009 0.245966i
\(489\) 0 0
\(490\) 0 0
\(491\) 0.872983 1.51205i 0.0393972 0.0682379i −0.845654 0.533731i \(-0.820790\pi\)
0.885052 + 0.465493i \(0.154123\pi\)
\(492\) 0 0
\(493\) 0.796921 + 1.38031i 0.0358915 + 0.0621659i
\(494\) −26.6190 −1.19764
\(495\) 0 0
\(496\) −5.47723 −0.245935
\(497\) 0 0
\(498\) 0 0
\(499\) 14.8730 25.7608i 0.665806 1.15321i −0.313260 0.949667i \(-0.601421\pi\)
0.979066 0.203543i \(-0.0652456\pi\)
\(500\) 3.22689 5.58913i 0.144311 0.249954i
\(501\) 0 0
\(502\) 4.73092 + 8.19419i 0.211151 + 0.365724i
\(503\) −3.88338 −0.173152 −0.0865758 0.996245i \(-0.527592\pi\)
−0.0865758 + 0.996245i \(0.527592\pi\)
\(504\) 0 0
\(505\) 45.9839 2.04626
\(506\) −17.4919 30.2969i −0.777611 1.34686i
\(507\) 0 0
\(508\) 0.372983 0.646026i 0.0165485 0.0286628i
\(509\) −11.4035 + 19.7515i −0.505452 + 0.875469i 0.494528 + 0.869162i \(0.335341\pi\)
−0.999980 + 0.00630722i \(0.997992\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −3.00806 −0.132680
\(515\) −6.69052 11.5883i −0.294820 0.510643i
\(516\) 0 0
\(517\) −8.12602 + 14.0747i −0.357382 + 0.619004i
\(518\) 0 0
\(519\) 0 0
\(520\) −7.30948 12.6604i −0.320542 0.555194i
\(521\) 1.41421 0.0619578 0.0309789 0.999520i \(-0.490138\pi\)
0.0309789 + 0.999520i \(0.490138\pi\)
\(522\) 0 0
\(523\) −18.2836 −0.799484 −0.399742 0.916628i \(-0.630900\pi\)
−0.399742 + 0.916628i \(0.630900\pi\)
\(524\) −6.67261 11.5573i −0.291494 0.504883i
\(525\) 0 0
\(526\) 8.80948 15.2585i 0.384111 0.665300i
\(527\) 3.87298 6.70820i 0.168710 0.292214i
\(528\) 0 0
\(529\) −26.7460 46.3254i −1.16287 2.01415i
\(530\) −43.4814 −1.88871
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 20.7846i −0.519778 0.900281i
\(534\) 0 0
\(535\) −0.437664 + 0.758056i −0.0189219 + 0.0327736i
\(536\) −3.43649 + 5.95218i −0.148434 + 0.257095i
\(537\) 0 0
\(538\) −1.01575 1.75934i −0.0437922 0.0758504i
\(539\) 0 0
\(540\) 0 0
\(541\) −38.1109 −1.63851 −0.819257 0.573426i \(-0.805614\pi\)
−0.819257 + 0.573426i \(0.805614\pi\)
\(542\) −3.53553 6.12372i −0.151864 0.263036i
\(543\) 0 0
\(544\) 0.707107 1.22474i 0.0303170 0.0525105i
\(545\) 29.0698 50.3503i 1.24521 2.15677i
\(546\) 0 0
\(547\) 16.4919 + 28.5649i 0.705144 + 1.22135i 0.966639 + 0.256141i \(0.0824511\pi\)
−0.261495 + 0.965205i \(0.584216\pi\)
\(548\) 15.4919 0.661783
\(549\) 0 0
\(550\) 27.4919 1.17226
\(551\) 3.53553 + 6.12372i 0.150619 + 0.260879i
\(552\) 0 0
\(553\) 0 0
\(554\) 7.18246 12.4404i 0.305153 0.528541i
\(555\) 0 0
\(556\) 9.93870 + 17.2143i 0.421495 + 0.730050i
\(557\) −26.6190 −1.12788 −0.563941 0.825815i \(-0.690715\pi\)
−0.563941 + 0.825815i \(0.690715\pi\)
\(558\) 0 0
\(559\) 4.78153 0.202237
\(560\) 0 0
\(561\) 0 0
\(562\) −4.37298 + 7.57423i −0.184463 + 0.319500i
\(563\) 10.8254 18.7502i 0.456238 0.790227i −0.542521 0.840042i \(-0.682530\pi\)
0.998758 + 0.0498156i \(0.0158634\pi\)
\(564\) 0 0
\(565\) −6.67261 11.5573i −0.280719 0.486219i
\(566\) 5.03956 0.211829
\(567\) 0 0
\(568\) −9.87298 −0.414261
\(569\) −11.7460 20.3446i −0.492417 0.852890i 0.507545 0.861625i \(-0.330553\pi\)
−0.999962 + 0.00873460i \(0.997220\pi\)
\(570\) 0 0
\(571\) −15.7460 + 27.2728i −0.658948 + 1.14133i 0.321940 + 0.946760i \(0.395665\pi\)
−0.980888 + 0.194572i \(0.937668\pi\)
\(572\) 8.48528 14.6969i 0.354787 0.614510i
\(573\) 0 0
\(574\) 0 0
\(575\) 60.1109 2.50680
\(576\) 0 0
\(577\) −24.2213 −1.00834 −0.504172 0.863603i \(-0.668202\pi\)
−0.504172 + 0.863603i \(0.668202\pi\)
\(578\) −7.50000 12.9904i −0.311959 0.540329i
\(579\) 0 0
\(580\) −1.94169 + 3.36311i −0.0806244 + 0.139645i
\(581\) 0 0
\(582\) 0 0
\(583\) −25.2379 43.7133i −1.04525 1.81042i
\(584\) 4.42227 0.182995
\(585\) 0 0
\(586\) 0.796921 0.0329205
\(587\) −4.28184 7.41637i −0.176731 0.306106i 0.764028 0.645183i \(-0.223219\pi\)
−0.940759 + 0.339076i \(0.889885\pi\)
\(588\) 0 0
\(589\) 17.1825 29.7609i 0.707991 1.22628i
\(590\) 14.3095 24.7847i 0.589112 1.02037i
\(591\) 0 0
\(592\) −2.87298 4.97615i −0.118079 0.204519i
\(593\) 33.7615 1.38642 0.693209 0.720736i \(-0.256196\pi\)
0.693209 + 0.720736i \(0.256196\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −7.87298 13.6364i −0.322490 0.558569i
\(597\) 0 0
\(598\) 18.5530 32.1347i 0.758688 1.31409i
\(599\) −22.6190 + 39.1772i −0.924185 + 1.60074i −0.131319 + 0.991340i \(0.541921\pi\)
−0.792866 + 0.609396i \(0.791412\pi\)
\(600\) 0 0
\(601\) −2.39076 4.14092i −0.0975213 0.168912i 0.813137 0.582073i \(-0.197758\pi\)
−0.910658 + 0.413161i \(0.864425\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 11.0000 0.447584
\(605\) 8.61430 + 14.9204i 0.350221 + 0.606601i
\(606\) 0 0
\(607\) 13.3452 23.1146i 0.541666 0.938192i −0.457143 0.889393i \(-0.651127\pi\)
0.998809 0.0487991i \(-0.0155394\pi\)
\(608\) 3.13707 5.43357i 0.127225 0.220360i
\(609\) 0 0
\(610\) 10.8095 + 18.7226i 0.437663 + 0.758054i
\(611\) −17.2379 −0.697371
\(612\) 0 0
\(613\) 26.6190 1.07513 0.537565 0.843223i \(-0.319344\pi\)
0.537565 + 0.843223i \(0.319344\pi\)
\(614\) −7.11027 12.3154i −0.286947 0.497007i
\(615\) 0 0
\(616\) 0 0
\(617\) −6.12702 + 10.6123i −0.246664 + 0.427235i −0.962598 0.270933i \(-0.912668\pi\)
0.715934 + 0.698168i \(0.246001\pi\)
\(618\) 0 0
\(619\) −18.9515 32.8249i −0.761723 1.31934i −0.941962 0.335721i \(-0.891020\pi\)
0.180238 0.983623i \(-0.442313\pi\)
\(620\) 18.8730 0.757957
\(621\) 0 0
\(622\) 1.41421 0.0567048
\(623\) 0 0
\(624\) 0 0
\(625\) 6.06351 10.5023i 0.242540 0.420092i
\(626\) −7.86799 + 13.6278i −0.314468 + 0.544675i
\(627\) 0 0
\(628\) 5.96550 + 10.3325i 0.238049 + 0.412314i
\(629\) 8.12602 0.324006
\(630\) 0 0
\(631\) −4.38105 −0.174407 −0.0872034 0.996191i \(-0.527793\pi\)
−0.0872034 + 0.996191i \(0.527793\pi\)
\(632\) −0.936492 1.62205i −0.0372516 0.0645217i
\(633\) 0 0
\(634\) −12.3095 + 21.3206i −0.488872 + 0.846751i
\(635\) −1.28520 + 2.22602i −0.0510014 + 0.0883371i
\(636\) 0 0
\(637\) 0 0
\(638\) −4.50807 −0.178476
\(639\) 0 0
\(640\) 3.44572 0.136204
\(641\) 8.55544 + 14.8185i 0.337920 + 0.585294i 0.984041 0.177941i \(-0.0569435\pi\)
−0.646122 + 0.763234i \(0.723610\pi\)
\(642\) 0 0
\(643\) 1.76206 3.05198i 0.0694890 0.120358i −0.829187 0.558971i \(-0.811196\pi\)
0.898676 + 0.438612i \(0.144530\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4.43649 + 7.68423i 0.174551 + 0.302332i
\(647\) −5.47723 −0.215332 −0.107666 0.994187i \(-0.534338\pi\)
−0.107666 + 0.994187i \(0.534338\pi\)
\(648\) 0 0
\(649\) 33.2226 1.30410
\(650\) 14.5798 + 25.2530i 0.571867 + 0.990502i
\(651\) 0 0
\(652\) −5.00000 + 8.66025i −0.195815 + 0.339162i
\(653\) −7.25403 + 12.5644i −0.283872 + 0.491681i −0.972335 0.233590i \(-0.924952\pi\)
0.688463 + 0.725272i \(0.258286\pi\)
\(654\) 0 0
\(655\) 22.9919 + 39.8232i 0.898369 + 1.55602i
\(656\) 5.65685 0.220863
\(657\) 0 0
\(658\) 0 0
\(659\) 14.5635 + 25.2247i 0.567314 + 0.982616i 0.996830 + 0.0795572i \(0.0253506\pi\)
−0.429517 + 0.903059i \(0.641316\pi\)
\(660\) 0 0
\(661\) −23.1043 + 40.0178i −0.898652 + 1.55651i −0.0694345 + 0.997587i \(0.522119\pi\)
−0.829218 + 0.558925i \(0.811214\pi\)
\(662\) 10.1825 17.6365i 0.395752 0.685463i
\(663\) 0 0
\(664\) −1.32440 2.29393i −0.0513967 0.0890216i
\(665\) 0 0
\(666\) 0 0
\(667\) −9.85685 −0.381659
\(668\) −4.77012 8.26209i −0.184561 0.319670i
\(669\) 0 0
\(670\) 11.8412 20.5095i 0.457465 0.792353i
\(671\) −12.5483 + 21.7343i −0.484421 + 0.839043i
\(672\) 0 0
\(673\) −7.11895 12.3304i −0.274415 0.475301i 0.695572 0.718456i \(-0.255151\pi\)
−0.969987 + 0.243155i \(0.921818\pi\)
\(674\) −15.7460 −0.606512
\(675\) 0 0
\(676\) 5.00000 0.192308
\(677\) −6.36396 11.0227i −0.244587 0.423637i 0.717428 0.696632i \(-0.245319\pi\)
−0.962015 + 0.272995i \(0.911986\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2.43649 + 4.22013i −0.0934352 + 0.161834i
\(681\) 0 0
\(682\) 10.9545 + 18.9737i 0.419468 + 0.726539i
\(683\) −7.74597 −0.296391 −0.148196 0.988958i \(-0.547347\pi\)
−0.148196 + 0.988958i \(0.547347\pi\)
\(684\) 0 0
\(685\) −53.3809 −2.03958
\(686\) 0 0
\(687\) 0 0
\(688\) −0.563508 + 0.976025i −0.0214836 + 0.0372106i
\(689\) 26.7688 46.3650i 1.01981 1.76637i
\(690\) 0 0
\(691\) 8.52448 + 14.7648i 0.324287 + 0.561681i 0.981368 0.192139i \(-0.0615424\pi\)
−0.657081 + 0.753820i \(0.728209\pi\)
\(692\) 12.7279 0.483843
\(693\) 0 0
\(694\) 7.74597 0.294033
\(695\) −34.2460 59.3158i −1.29902 2.24997i
\(696\) 0 0
\(697\) −4.00000 + 6.92820i −0.151511 + 0.262424i
\(698\) 8.21584 14.2302i 0.310974 0.538623i
\(699\) 0 0
\(700\) 0 0
\(701\) 16.2540 0.613906 0.306953 0.951725i \(-0.400690\pi\)
0.306953 + 0.951725i \(0.400690\pi\)
\(702\) 0 0
\(703\) 36.0510 1.35969
\(704\) 2.00000 + 3.46410i 0.0753778 + 0.130558i
\(705\) 0 0
\(706\) 1.94169 3.36311i 0.0730765 0.126572i
\(707\) 0 0
\(708\) 0 0
\(709\) 26.3649 + 45.6654i 0.990155 + 1.71500i 0.616298 + 0.787513i \(0.288632\pi\)
0.373857 + 0.927486i \(0.378035\pi\)
\(710\) 34.0195 1.27673
\(711\) 0 0
\(712\) −7.07107 −0.264999
\(713\) 23.9518 + 41.4858i 0.897003 + 1.55365i
\(714\) 0 0
\(715\) −29.2379 + 50.6415i −1.09344 + 1.89389i
\(716\) −3.43649 + 5.95218i −0.128428 + 0.222443i
\(717\) 0 0
\(718\) −9.11895 15.7945i −0.340316 0.589445i
\(719\) −23.5027 −0.876504 −0.438252 0.898852i \(-0.644402\pi\)
−0.438252 + 0.898852i \(0.644402\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 10.1825 + 17.6365i 0.378952 + 0.656364i
\(723\) 0 0
\(724\) −6.67261 + 11.5573i −0.247985 + 0.429523i
\(725\) 3.87298 6.70820i 0.143839 0.249136i
\(726\) 0 0
\(727\) 1.68366 + 2.91618i 0.0624434 + 0.108155i 0.895557 0.444947i \(-0.146777\pi\)
−0.833114 + 0.553102i \(0.813444\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −15.2379 −0.563980
\(731\) −0.796921 1.38031i −0.0294752 0.0510525i
\(732\) 0 0
\(733\) −18.5138 + 32.0668i −0.683823 + 1.18442i 0.289983 + 0.957032i \(0.406350\pi\)
−0.973805 + 0.227384i \(0.926983\pi\)
\(734\) −3.44572 + 5.96816i −0.127184 + 0.220289i
\(735\) 0 0
\(736\) 4.37298 + 7.57423i 0.161190 + 0.279190i
\(737\) 27.4919 1.01268
\(738\) 0 0
\(739\) −30.0000 −1.10357 −0.551784 0.833987i \(-0.686053\pi\)
−0.551784 + 0.833987i \(0.686053\pi\)
\(740\) 9.89949 + 17.1464i 0.363913 + 0.630315i
\(741\) 0 0
\(742\) 0 0
\(743\) −6.12702 + 10.6123i −0.224778 + 0.389328i −0.956253 0.292541i \(-0.905499\pi\)
0.731475 + 0.681869i \(0.238833\pi\)
\(744\) 0 0
\(745\) 27.1281 + 46.9872i 0.993896 + 1.72148i
\(746\) 1.12702 0.0412630
\(747\) 0 0
\(748\) −5.65685 −0.206835
\(749\) 0 0
\(750\) 0 0
\(751\) 6.50000 11.2583i 0.237188 0.410822i −0.722718 0.691143i \(-0.757107\pi\)
0.959906 + 0.280321i \(0.0904408\pi\)
\(752\) 2.03151 3.51867i 0.0740814 0.128313i
\(753\) 0 0
\(754\) −2.39076 4.14092i −0.0870665 0.150804i
\(755\) −37.9029 −1.37943
\(756\) 0 0
\(757\) 31.2379 1.13536 0.567680 0.823249i \(-0.307841\pi\)
0.567680 + 0.823249i \(0.307841\pi\)
\(758\) 13.1825 + 22.8327i 0.478808 + 0.829321i
\(759\) 0 0
\(760\) −10.8095 + 18.7226i −0.392101 + 0.679139i
\(761\) 15.2869 26.4777i 0.554150 0.959816i −0.443819 0.896116i \(-0.646377\pi\)
0.997969 0.0636995i \(-0.0202899\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 6.12702 0.221668
\(765\) 0 0
\(766\) 12.9076 0.466369
\(767\) 17.6190 + 30.5169i 0.636183 + 1.10190i
\(768\) 0 0
\(769\) −0.617292 + 1.06918i −0.0222601 + 0.0385557i −0.876941 0.480598i \(-0.840420\pi\)
0.854681 + 0.519154i \(0.173753\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −11.9365 20.6746i −0.429604 0.744095i
\(773\) −2.03151 −0.0730682 −0.0365341 0.999332i \(-0.511632\pi\)
−0.0365341 + 0.999332i \(0.511632\pi\)
\(774\) 0 0
\(775\) −37.6449 −1.35224
\(776\) −7.50873 13.0055i −0.269548 0.466870i
\(777\) 0 0
\(778\) −6.56351 + 11.3683i −0.235313 + 0.407574i
\(779\) −17.7460 + 30.7369i −0.635815 + 1.10126i
\(780\) 0 0
\(781\) 19.7460 + 34.2010i 0.706566 + 1.22381i
\(782\) −12.3687 −0.442303
\(783\) 0 0
\(784\) 0 0
\(785\) −20.5554 35.6031i −0.733655 1.27073i
\(786\) 0 0
\(787\) 6.18433 10.7116i 0.220448 0.381827i −0.734496 0.678613i \(-0.762582\pi\)
0.954944 + 0.296786i \(0.0959149\pi\)
\(788\) 8.30948 14.3924i 0.296013 0.512709i
\(789\) 0 0
\(790\) 3.22689 + 5.58913i 0.114808 + 0.198852i
\(791\) 0 0
\(792\) 0 0
\(793\) −26.6190 −0.945267
\(794\) −3.53553 6.12372i −0.125471 0.217323i
\(795\) 0 0
\(796\) 6.09452 10.5560i 0.216014 0.374148i
\(797\) 10.2980 17.8366i 0.364772 0.631804i −0.623967 0.781450i \(-0.714480\pi\)
0.988740 + 0.149646i \(0.0478135\pi\)
\(798\) 0 0
\(799\) 2.87298 + 4.97615i 0.101639 + 0.176044i
\(800\) −6.87298 −0.242997
\(801\) 0 0
\(802\) −3.87298 −0.136760
\(803\) −8.84454 15.3192i −0.312117 0.540602i
\(804\) 0 0
\(805\) 0 0
\(806\) −11.6190 + 20.1246i −0.409260 + 0.708859i
\(807\) 0 0
\(808\) −6.67261 11.5573i −0.234742 0.406584i
\(809\) −46.7298 −1.64293 −0.821467 0.570256i \(-0.806844\pi\)
−0.821467 + 0.570256i \(0.806844\pi\)
\(810\) 0 0
\(811\) 3.00806 0.105627 0.0528136 0.998604i \(-0.483181\pi\)
0.0528136 + 0.998604i \(0.483181\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −11.4919 + 19.9046i −0.402792 + 0.697656i
\(815\) 17.2286 29.8408i 0.603491 1.04528i
\(816\) 0 0
\(817\) −3.53553 6.12372i −0.123693 0.214242i
\(818\) 23.1435 0.809193
\(819\) 0 0
\(820\) −19.4919 −0.680688
\(821\) −4.74597 8.22026i −0.165635 0.286889i 0.771245 0.636538i \(-0.219634\pi\)
−0.936881 + 0.349649i \(0.886301\pi\)
\(822\) 0 0
\(823\) 3.12702 5.41615i 0.109001 0.188795i −0.806365 0.591418i \(-0.798568\pi\)
0.915366 + 0.402623i \(0.131902\pi\)
\(824\) −1.94169 + 3.36311i −0.0676420 + 0.117159i
\(825\) 0 0
\(826\) 0 0
\(827\) −48.8730 −1.69948 −0.849740 0.527202i \(-0.823241\pi\)
−0.849740 + 0.527202i \(0.823241\pi\)
\(828\) 0 0
\(829\) 10.6180 0.368779 0.184389 0.982853i \(-0.440969\pi\)
0.184389 + 0.982853i \(0.440969\pi\)
\(830\) 4.56351 + 7.90423i 0.158402 + 0.274360i
\(831\) 0 0
\(832\) −2.12132 + 3.67423i −0.0735436 + 0.127381i
\(833\) 0 0
\(834\) 0 0
\(835\) 16.4365 + 28.4688i 0.568808 + 0.985205i
\(836\) −25.0966 −0.867984
\(837\) 0 0
\(838\) 31.3707 1.08368
\(839\) −12.8961 22.3368i −0.445224 0.771151i 0.552844 0.833285i \(-0.313543\pi\)
−0.998068 + 0.0621340i \(0.980209\pi\)
\(840\) 0 0
\(841\) 13.8649 24.0147i 0.478101 0.828094i
\(842\) −6.43649 + 11.1483i −0.221816 + 0.384197i
\(843\) 0 0
\(844\) −10.3095 17.8565i −0.354867 0.614647i
\(845\) −17.2286 −0.592682
\(846\) 0 0
\(847\) 0 0
\(848\) 6.30948 + 10.9283i 0.216668 + 0.375280i
\(849\) 0 0
\(850\) 4.85993 8.41765i 0.166694 0.288723i
\(851\) −25.1270 + 43.5213i −0.861343 + 1.49189i
\(852\) 0 0
\(853\) −9.06337 15.6982i −0.310324 0.537497i 0.668109 0.744064i \(-0.267104\pi\)
−0.978432 + 0.206567i \(0.933771\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.254033 0.00868268
\(857\) −12.9076 22.3565i −0.440914 0.763685i 0.556844 0.830617i \(-0.312012\pi\)
−0.997758 + 0.0669325i \(0.978679\pi\)
\(858\) 0 0
\(859\) 15.2869 26.4777i 0.521583 0.903407i −0.478102 0.878304i \(-0.658675\pi\)
0.999685 0.0251033i \(-0.00799146\pi\)
\(860\) 1.94169 3.36311i 0.0662111 0.114681i
\(861\) 0 0
\(862\) 10.7460 + 18.6126i 0.366009 + 0.633946i
\(863\) 43.8730 1.49345 0.746727 0.665131i \(-0.231624\pi\)
0.746727 + 0.665131i \(0.231624\pi\)
\(864\) 0 0
\(865\) −43.8569 −1.49118
\(866\) 14.8492 + 25.7196i 0.504598 + 0.873989i
\(867\) 0 0
\(868\) 0 0
\(869\) −3.74597 + 6.48820i −0.127073 + 0.220097i
\(870\) 0 0
\(871\) 14.5798 + 25.2530i 0.494018 + 0.855664i
\(872\) −16.8730 −0.571391
\(873\) 0 0
\(874\) −54.8735 −1.85612
\(875\) 0 0
\(876\) 0 0
\(877\) −15.5635 + 26.9568i −0.525542 + 0.910266i 0.474015 + 0.880517i \(0.342804\pi\)
−0.999557 + 0.0297493i \(0.990529\pi\)
\(878\) 5.47723 9.48683i 0.184847 0.320165i
\(879\) 0 0
\(880\) −6.89144 11.9363i −0.232310 0.402373i
\(881\) 26.6904 0.899223 0.449612 0.893224i \(-0.351562\pi\)
0.449612 + 0.893224i \(0.351562\pi\)
\(882\) 0 0
\(883\) 35.4919 1.19440 0.597199 0.802093i \(-0.296280\pi\)
0.597199 + 0.802093i \(0.296280\pi\)
\(884\) −3.00000 5.19615i −0.100901 0.174766i
\(885\) 0 0
\(886\) 7.18246 12.4404i 0.241299 0.417943i
\(887\) −3.88338 + 6.72622i −0.130391 + 0.225844i −0.923827 0.382809i \(-0.874957\pi\)
0.793436 + 0.608653i \(0.208290\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 24.3649 0.816714
\(891\) 0 0
\(892\) 22.4478 0.751608
\(893\) 12.7460 + 22.0767i 0.426528 + 0.738767i
\(894\) 0 0
\(895\) 11.8412 20.5095i 0.395807 0.685558i
\(896\) 0 0
\(897\) 0 0
\(898\) −4.50000 7.79423i −0.150167 0.260097i
\(899\) 6.17292 0.205879
\(900\) 0 0
\(901\) −17.8459 −0.594533
\(902\) −11.3137 19.5959i −0.376705 0.652473i
\(903\) 0 0
\(904\) −1.93649 + 3.35410i −0.0644068 + 0.111556i
\(905\) 22.9919 39.8232i 0.764278 1.32377i
\(906\) 0 0
\(907\) −9.30948 16.1245i −0.309116 0.535405i 0.669053 0.743215i \(-0.266700\pi\)
−0.978169 + 0.207810i \(0.933366\pi\)
\(908\) 10.3372 0.343051
\(909\) 0 0
\(910\) 0 0
\(911\) −19.3730 33.5550i −0.641856 1.11173i −0.985018 0.172450i \(-0.944832\pi\)
0.343163 0.939276i \(-0.388502\pi\)
\(912\) 0 0
\(913\) −5.29760 + 9.17571i −0.175325 + 0.303672i
\(914\) 13.0635 22.6267i 0.432102 0.748423i
\(915\) 0 0
\(916\) 6.67261 + 11.5573i 0.220469 + 0.381864i
\(917\) 0 0
\(918\) 0 0
\(919\) −0.635083 −0.0209495 −0.0104747 0.999945i \(-0.503334\pi\)
−0.0104747 + 0.999945i \(0.503334\pi\)
\(920\) −15.0681 26.0987i −0.496780 0.860448i
\(921\) 0 0
\(922\) 14.1813 24.5628i 0.467038 0.808933i
\(923\) −20.9438 + 36.2757i −0.689372 + 1.19403i
\(924\) 0 0
\(925\) −19.7460 34.2010i −0.649243 1.12452i
\(926\) 1.61895 0.0532020
\(927\) 0 0
\(928\) 1.12702 0.0369961
\(929\) 27.2179 + 47.1428i 0.892991 + 1.54671i 0.836272 + 0.548315i \(0.184730\pi\)
0.0567186 + 0.998390i \(0.481936\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 3.62702 6.28218i 0.118807 0.205780i
\(933\) 0 0
\(934\) 3.09787 + 5.36567i 0.101365 + 0.175570i
\(935\) 19.4919 0.637454
\(936\) 0 0
\(937\) 45.2320 1.47767 0.738833 0.673889i \(-0.235377\pi\)
0.738833 + 0.673889i \(0.235377\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −7.00000 + 12.1244i −0.228315 + 0.395453i
\(941\) −12.8569 + 22.2689i −0.419124 + 0.725945i −0.995852 0.0909922i \(-0.970996\pi\)
0.576727 + 0.816937i \(0.304330\pi\)
\(942\) 0 0
\(943\) −24.7373 42.8463i −0.805558 1.39527i
\(944\) −8.30565 −0.270326
\(945\) 0 0
\(946\) 4.50807 0.146570
\(947\) −28.8014 49.8855i −0.935920 1.62106i −0.772985 0.634424i \(-0.781237\pi\)
−0.162935 0.986637i \(-0.552096\pi\)
\(948\) 0 0
\(949\) 9.38105 16.2485i 0.304522 0.527447i
\(950\) 21.5611 37.3448i 0.699533 1.21163i
\(951\) 0 0
\(952\) 0 0
\(953\) 59.4919 1.92713 0.963566 0.267469i \(-0.0861874\pi\)
0.963566 + 0.267469i \(0.0861874\pi\)
\(954\) 0 0
\(955\) −21.1120 −0.683168
\(956\) −7.50000 12.9904i −0.242567 0.420139i
\(957\) 0 0
\(958\) 1.94169 3.36311i 0.0627332 0.108657i
\(959\) 0 0
\(960\) 0 0
\(961\) 0.500000 + 0.866025i 0.0161290 + 0.0279363i
\(962\) −24.3781 −0.785981
\(963\) 0 0
\(964\) 23.6824 0.762758
\(965\) 41.1298 + 71.2389i 1.32402 + 2.29326i
\(966\) 0 0
\(967\) −30.2460 + 52.3876i −0.972645 + 1.68467i −0.285147 + 0.958484i \(0.592042\pi\)
−0.687498 + 0.726186i \(0.741291\pi\)
\(968\) 2.50000 4.33013i 0.0803530 0.139176i
\(969\) 0 0
\(970\) 25.8730 + 44.8133i 0.830731 + 1.43887i
\(971\) 1.49262 0.0479005 0.0239502 0.999713i \(-0.492376\pi\)
0.0239502 + 0.999713i \(0.492376\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.245967 0.426027i −0.00788128 0.0136508i
\(975\) 0 0
\(976\) 3.13707 5.43357i 0.100415 0.173924i
\(977\) 22.7460 39.3972i 0.727708 1.26043i −0.230142 0.973157i \(-0.573919\pi\)
0.957850 0.287270i \(-0.0927477\pi\)
\(978\) 0 0
\(979\) 14.1421 + 24.4949i 0.451985 + 0.782860i
\(980\) 0 0
\(981\) 0 0
\(982\) 1.74597 0.0557160
\(983\) 4.94975 + 8.57321i 0.157872 + 0.273443i 0.934101 0.357008i \(-0.116203\pi\)
−0.776229 + 0.630451i \(0.782870\pi\)
\(984\) 0 0
\(985\) −28.6321 + 49.5923i −0.912295 + 1.58014i
\(986\) −0.796921 + 1.38031i −0.0253791 + 0.0439580i
\(987\) 0 0
\(988\) −13.3095 23.0527i −0.423431 0.733404i
\(989\) 9.85685 0.313430
\(990\) 0 0
\(991\) −11.7460 −0.373123 −0.186561 0.982443i \(-0.559734\pi\)
−0.186561 + 0.982443i \(0.559734\pi\)
\(992\) −2.73861 4.74342i −0.0869510 0.150604i
\(993\) 0 0
\(994\) 0 0
\(995\) −21.0000 + 36.3731i −0.665745 + 1.15310i
\(996\) 0 0
\(997\) −13.5640 23.4936i −0.429578 0.744050i 0.567258 0.823540i \(-0.308004\pi\)
−0.996836 + 0.0794898i \(0.974671\pi\)
\(998\) 29.7460 0.941592
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.f.s.1765.4 8
3.2 odd 2 882.2.f.p.589.1 yes 8
7.2 even 3 2646.2.h.s.361.1 8
7.3 odd 6 2646.2.e.r.1549.1 8
7.4 even 3 2646.2.e.r.1549.4 8
7.5 odd 6 2646.2.h.s.361.4 8
7.6 odd 2 inner 2646.2.f.s.1765.1 8
9.2 odd 6 882.2.f.p.295.2 8
9.4 even 3 7938.2.a.cd.1.1 4
9.5 odd 6 7938.2.a.cu.1.4 4
9.7 even 3 inner 2646.2.f.s.883.4 8
21.2 odd 6 882.2.h.r.67.4 8
21.5 even 6 882.2.h.r.67.1 8
21.11 odd 6 882.2.e.t.373.2 8
21.17 even 6 882.2.e.t.373.3 8
21.20 even 2 882.2.f.p.589.4 yes 8
63.2 odd 6 882.2.e.t.655.2 8
63.11 odd 6 882.2.h.r.79.4 8
63.13 odd 6 7938.2.a.cd.1.4 4
63.16 even 3 2646.2.e.r.2125.4 8
63.20 even 6 882.2.f.p.295.3 yes 8
63.25 even 3 2646.2.h.s.667.1 8
63.34 odd 6 inner 2646.2.f.s.883.1 8
63.38 even 6 882.2.h.r.79.1 8
63.41 even 6 7938.2.a.cu.1.1 4
63.47 even 6 882.2.e.t.655.3 8
63.52 odd 6 2646.2.h.s.667.4 8
63.61 odd 6 2646.2.e.r.2125.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.t.373.2 8 21.11 odd 6
882.2.e.t.373.3 8 21.17 even 6
882.2.e.t.655.2 8 63.2 odd 6
882.2.e.t.655.3 8 63.47 even 6
882.2.f.p.295.2 8 9.2 odd 6
882.2.f.p.295.3 yes 8 63.20 even 6
882.2.f.p.589.1 yes 8 3.2 odd 2
882.2.f.p.589.4 yes 8 21.20 even 2
882.2.h.r.67.1 8 21.5 even 6
882.2.h.r.67.4 8 21.2 odd 6
882.2.h.r.79.1 8 63.38 even 6
882.2.h.r.79.4 8 63.11 odd 6
2646.2.e.r.1549.1 8 7.3 odd 6
2646.2.e.r.1549.4 8 7.4 even 3
2646.2.e.r.2125.1 8 63.61 odd 6
2646.2.e.r.2125.4 8 63.16 even 3
2646.2.f.s.883.1 8 63.34 odd 6 inner
2646.2.f.s.883.4 8 9.7 even 3 inner
2646.2.f.s.1765.1 8 7.6 odd 2 inner
2646.2.f.s.1765.4 8 1.1 even 1 trivial
2646.2.h.s.361.1 8 7.2 even 3
2646.2.h.s.361.4 8 7.5 odd 6
2646.2.h.s.667.1 8 63.25 even 3
2646.2.h.s.667.4 8 63.52 odd 6
7938.2.a.cd.1.1 4 9.4 even 3
7938.2.a.cd.1.4 4 63.13 odd 6
7938.2.a.cu.1.1 4 63.41 even 6
7938.2.a.cu.1.4 4 9.5 odd 6