Properties

Label 7935.2.a.bw.1.8
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,11,25,31,25,11,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.08036 q^{2} +1.00000 q^{3} -0.832828 q^{4} +1.00000 q^{5} -1.08036 q^{6} +2.50098 q^{7} +3.06047 q^{8} +1.00000 q^{9} -1.08036 q^{10} +3.09908 q^{11} -0.832828 q^{12} +5.05600 q^{13} -2.70195 q^{14} +1.00000 q^{15} -1.64074 q^{16} -4.41362 q^{17} -1.08036 q^{18} -8.37165 q^{19} -0.832828 q^{20} +2.50098 q^{21} -3.34811 q^{22} +3.06047 q^{24} +1.00000 q^{25} -5.46229 q^{26} +1.00000 q^{27} -2.08288 q^{28} -1.05068 q^{29} -1.08036 q^{30} -5.62498 q^{31} -4.34835 q^{32} +3.09908 q^{33} +4.76829 q^{34} +2.50098 q^{35} -0.832828 q^{36} +6.45154 q^{37} +9.04437 q^{38} +5.05600 q^{39} +3.06047 q^{40} +3.14288 q^{41} -2.70195 q^{42} +11.6301 q^{43} -2.58100 q^{44} +1.00000 q^{45} +8.62851 q^{47} -1.64074 q^{48} -0.745113 q^{49} -1.08036 q^{50} -4.41362 q^{51} -4.21078 q^{52} -9.34955 q^{53} -1.08036 q^{54} +3.09908 q^{55} +7.65416 q^{56} -8.37165 q^{57} +1.13511 q^{58} +11.3835 q^{59} -0.832828 q^{60} -12.0138 q^{61} +6.07699 q^{62} +2.50098 q^{63} +7.97925 q^{64} +5.05600 q^{65} -3.34811 q^{66} -7.01792 q^{67} +3.67579 q^{68} -2.70195 q^{70} -6.26637 q^{71} +3.06047 q^{72} +15.4649 q^{73} -6.96997 q^{74} +1.00000 q^{75} +6.97214 q^{76} +7.75072 q^{77} -5.46229 q^{78} +6.74139 q^{79} -1.64074 q^{80} +1.00000 q^{81} -3.39543 q^{82} +14.2778 q^{83} -2.08288 q^{84} -4.41362 q^{85} -12.5647 q^{86} -1.05068 q^{87} +9.48462 q^{88} +5.93666 q^{89} -1.08036 q^{90} +12.6449 q^{91} -5.62498 q^{93} -9.32188 q^{94} -8.37165 q^{95} -4.34835 q^{96} +11.6599 q^{97} +0.804988 q^{98} +3.09908 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + 11 q^{2} + 25 q^{3} + 31 q^{4} + 25 q^{5} + 11 q^{6} + 7 q^{7} + 33 q^{8} + 25 q^{9} + 11 q^{10} + 9 q^{11} + 31 q^{12} + 18 q^{13} + 11 q^{14} + 25 q^{15} + 39 q^{16} - 8 q^{17} + 11 q^{18} + 11 q^{19}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.08036 −0.763928 −0.381964 0.924177i \(-0.624752\pi\)
−0.381964 + 0.924177i \(0.624752\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.832828 −0.416414
\(5\) 1.00000 0.447214
\(6\) −1.08036 −0.441054
\(7\) 2.50098 0.945281 0.472640 0.881255i \(-0.343301\pi\)
0.472640 + 0.881255i \(0.343301\pi\)
\(8\) 3.06047 1.08204
\(9\) 1.00000 0.333333
\(10\) −1.08036 −0.341639
\(11\) 3.09908 0.934407 0.467203 0.884150i \(-0.345262\pi\)
0.467203 + 0.884150i \(0.345262\pi\)
\(12\) −0.832828 −0.240417
\(13\) 5.05600 1.40228 0.701141 0.713023i \(-0.252674\pi\)
0.701141 + 0.713023i \(0.252674\pi\)
\(14\) −2.70195 −0.722126
\(15\) 1.00000 0.258199
\(16\) −1.64074 −0.410185
\(17\) −4.41362 −1.07046 −0.535230 0.844706i \(-0.679775\pi\)
−0.535230 + 0.844706i \(0.679775\pi\)
\(18\) −1.08036 −0.254643
\(19\) −8.37165 −1.92059 −0.960294 0.278990i \(-0.910000\pi\)
−0.960294 + 0.278990i \(0.910000\pi\)
\(20\) −0.832828 −0.186226
\(21\) 2.50098 0.545758
\(22\) −3.34811 −0.713820
\(23\) 0 0
\(24\) 3.06047 0.624715
\(25\) 1.00000 0.200000
\(26\) −5.46229 −1.07124
\(27\) 1.00000 0.192450
\(28\) −2.08288 −0.393628
\(29\) −1.05068 −0.195107 −0.0975535 0.995230i \(-0.531102\pi\)
−0.0975535 + 0.995230i \(0.531102\pi\)
\(30\) −1.08036 −0.197245
\(31\) −5.62498 −1.01028 −0.505138 0.863038i \(-0.668559\pi\)
−0.505138 + 0.863038i \(0.668559\pi\)
\(32\) −4.34835 −0.768686
\(33\) 3.09908 0.539480
\(34\) 4.76829 0.817754
\(35\) 2.50098 0.422742
\(36\) −0.832828 −0.138805
\(37\) 6.45154 1.06063 0.530313 0.847802i \(-0.322074\pi\)
0.530313 + 0.847802i \(0.322074\pi\)
\(38\) 9.04437 1.46719
\(39\) 5.05600 0.809608
\(40\) 3.06047 0.483902
\(41\) 3.14288 0.490835 0.245418 0.969417i \(-0.421075\pi\)
0.245418 + 0.969417i \(0.421075\pi\)
\(42\) −2.70195 −0.416920
\(43\) 11.6301 1.77357 0.886786 0.462180i \(-0.152932\pi\)
0.886786 + 0.462180i \(0.152932\pi\)
\(44\) −2.58100 −0.389100
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 8.62851 1.25860 0.629299 0.777163i \(-0.283342\pi\)
0.629299 + 0.777163i \(0.283342\pi\)
\(48\) −1.64074 −0.236821
\(49\) −0.745113 −0.106445
\(50\) −1.08036 −0.152786
\(51\) −4.41362 −0.618030
\(52\) −4.21078 −0.583930
\(53\) −9.34955 −1.28426 −0.642130 0.766596i \(-0.721949\pi\)
−0.642130 + 0.766596i \(0.721949\pi\)
\(54\) −1.08036 −0.147018
\(55\) 3.09908 0.417879
\(56\) 7.65416 1.02283
\(57\) −8.37165 −1.10885
\(58\) 1.13511 0.149048
\(59\) 11.3835 1.48200 0.741000 0.671505i \(-0.234352\pi\)
0.741000 + 0.671505i \(0.234352\pi\)
\(60\) −0.832828 −0.107518
\(61\) −12.0138 −1.53821 −0.769105 0.639122i \(-0.779298\pi\)
−0.769105 + 0.639122i \(0.779298\pi\)
\(62\) 6.07699 0.771779
\(63\) 2.50098 0.315094
\(64\) 7.97925 0.997406
\(65\) 5.05600 0.627120
\(66\) −3.34811 −0.412124
\(67\) −7.01792 −0.857375 −0.428687 0.903453i \(-0.641024\pi\)
−0.428687 + 0.903453i \(0.641024\pi\)
\(68\) 3.67579 0.445754
\(69\) 0 0
\(70\) −2.70195 −0.322945
\(71\) −6.26637 −0.743681 −0.371841 0.928297i \(-0.621273\pi\)
−0.371841 + 0.928297i \(0.621273\pi\)
\(72\) 3.06047 0.360679
\(73\) 15.4649 1.81002 0.905012 0.425386i \(-0.139862\pi\)
0.905012 + 0.425386i \(0.139862\pi\)
\(74\) −6.96997 −0.810243
\(75\) 1.00000 0.115470
\(76\) 6.97214 0.799760
\(77\) 7.75072 0.883277
\(78\) −5.46229 −0.618482
\(79\) 6.74139 0.758466 0.379233 0.925301i \(-0.376188\pi\)
0.379233 + 0.925301i \(0.376188\pi\)
\(80\) −1.64074 −0.183440
\(81\) 1.00000 0.111111
\(82\) −3.39543 −0.374963
\(83\) 14.2778 1.56719 0.783595 0.621273i \(-0.213384\pi\)
0.783595 + 0.621273i \(0.213384\pi\)
\(84\) −2.08288 −0.227261
\(85\) −4.41362 −0.478724
\(86\) −12.5647 −1.35488
\(87\) −1.05068 −0.112645
\(88\) 9.48462 1.01106
\(89\) 5.93666 0.629285 0.314643 0.949210i \(-0.398115\pi\)
0.314643 + 0.949210i \(0.398115\pi\)
\(90\) −1.08036 −0.113880
\(91\) 12.6449 1.32555
\(92\) 0 0
\(93\) −5.62498 −0.583283
\(94\) −9.32188 −0.961478
\(95\) −8.37165 −0.858913
\(96\) −4.34835 −0.443801
\(97\) 11.6599 1.18389 0.591943 0.805980i \(-0.298361\pi\)
0.591943 + 0.805980i \(0.298361\pi\)
\(98\) 0.804988 0.0813161
\(99\) 3.09908 0.311469
\(100\) −0.832828 −0.0832828
\(101\) 4.15654 0.413591 0.206795 0.978384i \(-0.433697\pi\)
0.206795 + 0.978384i \(0.433697\pi\)
\(102\) 4.76829 0.472131
\(103\) 5.37402 0.529518 0.264759 0.964315i \(-0.414708\pi\)
0.264759 + 0.964315i \(0.414708\pi\)
\(104\) 15.4737 1.51732
\(105\) 2.50098 0.244070
\(106\) 10.1009 0.981082
\(107\) −4.28544 −0.414289 −0.207145 0.978310i \(-0.566417\pi\)
−0.207145 + 0.978310i \(0.566417\pi\)
\(108\) −0.832828 −0.0801389
\(109\) 2.96583 0.284075 0.142038 0.989861i \(-0.454635\pi\)
0.142038 + 0.989861i \(0.454635\pi\)
\(110\) −3.34811 −0.319230
\(111\) 6.45154 0.612353
\(112\) −4.10346 −0.387740
\(113\) 17.0982 1.60846 0.804231 0.594317i \(-0.202578\pi\)
0.804231 + 0.594317i \(0.202578\pi\)
\(114\) 9.04437 0.847083
\(115\) 0 0
\(116\) 0.875039 0.0812453
\(117\) 5.05600 0.467427
\(118\) −12.2982 −1.13214
\(119\) −11.0384 −1.01188
\(120\) 3.06047 0.279381
\(121\) −1.39572 −0.126884
\(122\) 12.9792 1.17508
\(123\) 3.14288 0.283384
\(124\) 4.68464 0.420693
\(125\) 1.00000 0.0894427
\(126\) −2.70195 −0.240709
\(127\) 0.164913 0.0146336 0.00731682 0.999973i \(-0.497671\pi\)
0.00731682 + 0.999973i \(0.497671\pi\)
\(128\) 0.0762499 0.00673960
\(129\) 11.6301 1.02397
\(130\) −5.46229 −0.479074
\(131\) −11.6425 −1.01721 −0.508603 0.861001i \(-0.669838\pi\)
−0.508603 + 0.861001i \(0.669838\pi\)
\(132\) −2.58100 −0.224647
\(133\) −20.9373 −1.81549
\(134\) 7.58186 0.654973
\(135\) 1.00000 0.0860663
\(136\) −13.5077 −1.15828
\(137\) 3.02846 0.258739 0.129369 0.991596i \(-0.458705\pi\)
0.129369 + 0.991596i \(0.458705\pi\)
\(138\) 0 0
\(139\) 9.83875 0.834512 0.417256 0.908789i \(-0.362992\pi\)
0.417256 + 0.908789i \(0.362992\pi\)
\(140\) −2.08288 −0.176036
\(141\) 8.62851 0.726652
\(142\) 6.76992 0.568119
\(143\) 15.6689 1.31030
\(144\) −1.64074 −0.136728
\(145\) −1.05068 −0.0872545
\(146\) −16.7076 −1.38273
\(147\) −0.745113 −0.0614559
\(148\) −5.37302 −0.441660
\(149\) −16.1199 −1.32060 −0.660298 0.751004i \(-0.729570\pi\)
−0.660298 + 0.751004i \(0.729570\pi\)
\(150\) −1.08036 −0.0882108
\(151\) −5.10744 −0.415638 −0.207819 0.978167i \(-0.566636\pi\)
−0.207819 + 0.978167i \(0.566636\pi\)
\(152\) −25.6212 −2.07815
\(153\) −4.41362 −0.356820
\(154\) −8.37355 −0.674760
\(155\) −5.62498 −0.451809
\(156\) −4.21078 −0.337132
\(157\) 6.41640 0.512084 0.256042 0.966666i \(-0.417581\pi\)
0.256042 + 0.966666i \(0.417581\pi\)
\(158\) −7.28311 −0.579413
\(159\) −9.34955 −0.741467
\(160\) −4.34835 −0.343767
\(161\) 0 0
\(162\) −1.08036 −0.0848809
\(163\) −14.9480 −1.17082 −0.585411 0.810737i \(-0.699067\pi\)
−0.585411 + 0.810737i \(0.699067\pi\)
\(164\) −2.61748 −0.204391
\(165\) 3.09908 0.241263
\(166\) −15.4251 −1.19722
\(167\) 6.49021 0.502228 0.251114 0.967958i \(-0.419203\pi\)
0.251114 + 0.967958i \(0.419203\pi\)
\(168\) 7.65416 0.590531
\(169\) 12.5631 0.966395
\(170\) 4.76829 0.365711
\(171\) −8.37165 −0.640196
\(172\) −9.68587 −0.738540
\(173\) 6.24433 0.474748 0.237374 0.971418i \(-0.423713\pi\)
0.237374 + 0.971418i \(0.423713\pi\)
\(174\) 1.13511 0.0860528
\(175\) 2.50098 0.189056
\(176\) −5.08478 −0.383280
\(177\) 11.3835 0.855633
\(178\) −6.41372 −0.480729
\(179\) 3.67740 0.274862 0.137431 0.990511i \(-0.456116\pi\)
0.137431 + 0.990511i \(0.456116\pi\)
\(180\) −0.832828 −0.0620753
\(181\) −11.8608 −0.881610 −0.440805 0.897603i \(-0.645307\pi\)
−0.440805 + 0.897603i \(0.645307\pi\)
\(182\) −13.6611 −1.01262
\(183\) −12.0138 −0.888087
\(184\) 0 0
\(185\) 6.45154 0.474327
\(186\) 6.07699 0.445587
\(187\) −13.6781 −1.00025
\(188\) −7.18607 −0.524098
\(189\) 2.50098 0.181919
\(190\) 9.04437 0.656148
\(191\) 6.51802 0.471627 0.235814 0.971798i \(-0.424224\pi\)
0.235814 + 0.971798i \(0.424224\pi\)
\(192\) 7.97925 0.575853
\(193\) −7.15270 −0.514862 −0.257431 0.966297i \(-0.582876\pi\)
−0.257431 + 0.966297i \(0.582876\pi\)
\(194\) −12.5969 −0.904403
\(195\) 5.05600 0.362068
\(196\) 0.620551 0.0443251
\(197\) −2.86150 −0.203874 −0.101937 0.994791i \(-0.532504\pi\)
−0.101937 + 0.994791i \(0.532504\pi\)
\(198\) −3.34811 −0.237940
\(199\) −5.81290 −0.412066 −0.206033 0.978545i \(-0.566055\pi\)
−0.206033 + 0.978545i \(0.566055\pi\)
\(200\) 3.06047 0.216408
\(201\) −7.01792 −0.495006
\(202\) −4.49055 −0.315954
\(203\) −2.62774 −0.184431
\(204\) 3.67579 0.257356
\(205\) 3.14288 0.219508
\(206\) −5.80586 −0.404514
\(207\) 0 0
\(208\) −8.29559 −0.575196
\(209\) −25.9444 −1.79461
\(210\) −2.70195 −0.186452
\(211\) 14.7073 1.01249 0.506246 0.862389i \(-0.331033\pi\)
0.506246 + 0.862389i \(0.331033\pi\)
\(212\) 7.78657 0.534784
\(213\) −6.26637 −0.429365
\(214\) 4.62981 0.316487
\(215\) 11.6301 0.793166
\(216\) 3.06047 0.208238
\(217\) −14.0680 −0.954995
\(218\) −3.20416 −0.217013
\(219\) 15.4649 1.04502
\(220\) −2.58100 −0.174011
\(221\) −22.3153 −1.50109
\(222\) −6.96997 −0.467794
\(223\) 27.4144 1.83580 0.917902 0.396807i \(-0.129882\pi\)
0.917902 + 0.396807i \(0.129882\pi\)
\(224\) −10.8751 −0.726624
\(225\) 1.00000 0.0666667
\(226\) −18.4721 −1.22875
\(227\) −3.20691 −0.212850 −0.106425 0.994321i \(-0.533940\pi\)
−0.106425 + 0.994321i \(0.533940\pi\)
\(228\) 6.97214 0.461741
\(229\) −9.14163 −0.604096 −0.302048 0.953293i \(-0.597670\pi\)
−0.302048 + 0.953293i \(0.597670\pi\)
\(230\) 0 0
\(231\) 7.75072 0.509960
\(232\) −3.21558 −0.211113
\(233\) 7.54366 0.494202 0.247101 0.968990i \(-0.420522\pi\)
0.247101 + 0.968990i \(0.420522\pi\)
\(234\) −5.46229 −0.357081
\(235\) 8.62851 0.562862
\(236\) −9.48047 −0.617126
\(237\) 6.74139 0.437900
\(238\) 11.9254 0.773007
\(239\) 10.7392 0.694661 0.347330 0.937743i \(-0.387088\pi\)
0.347330 + 0.937743i \(0.387088\pi\)
\(240\) −1.64074 −0.105909
\(241\) 3.41230 0.219805 0.109903 0.993942i \(-0.464946\pi\)
0.109903 + 0.993942i \(0.464946\pi\)
\(242\) 1.50788 0.0969300
\(243\) 1.00000 0.0641500
\(244\) 10.0054 0.640533
\(245\) −0.745113 −0.0476035
\(246\) −3.39543 −0.216485
\(247\) −42.3271 −2.69321
\(248\) −17.2151 −1.09316
\(249\) 14.2778 0.904817
\(250\) −1.08036 −0.0683278
\(251\) −26.0111 −1.64181 −0.820905 0.571065i \(-0.806530\pi\)
−0.820905 + 0.571065i \(0.806530\pi\)
\(252\) −2.08288 −0.131209
\(253\) 0 0
\(254\) −0.178165 −0.0111790
\(255\) −4.41362 −0.276392
\(256\) −16.0409 −1.00255
\(257\) 17.5574 1.09520 0.547599 0.836741i \(-0.315542\pi\)
0.547599 + 0.836741i \(0.315542\pi\)
\(258\) −12.5647 −0.782241
\(259\) 16.1352 1.00259
\(260\) −4.21078 −0.261141
\(261\) −1.05068 −0.0650357
\(262\) 12.5780 0.777072
\(263\) 20.8332 1.28463 0.642316 0.766440i \(-0.277974\pi\)
0.642316 + 0.766440i \(0.277974\pi\)
\(264\) 9.48462 0.583738
\(265\) −9.34955 −0.574338
\(266\) 22.6198 1.38691
\(267\) 5.93666 0.363318
\(268\) 5.84472 0.357023
\(269\) −4.72683 −0.288200 −0.144100 0.989563i \(-0.546029\pi\)
−0.144100 + 0.989563i \(0.546029\pi\)
\(270\) −1.08036 −0.0657485
\(271\) −21.6896 −1.31755 −0.658775 0.752340i \(-0.728925\pi\)
−0.658775 + 0.752340i \(0.728925\pi\)
\(272\) 7.24161 0.439087
\(273\) 12.6449 0.765307
\(274\) −3.27182 −0.197658
\(275\) 3.09908 0.186881
\(276\) 0 0
\(277\) 9.27565 0.557320 0.278660 0.960390i \(-0.410110\pi\)
0.278660 + 0.960390i \(0.410110\pi\)
\(278\) −10.6294 −0.637507
\(279\) −5.62498 −0.336759
\(280\) 7.65416 0.457423
\(281\) −2.25086 −0.134275 −0.0671376 0.997744i \(-0.521387\pi\)
−0.0671376 + 0.997744i \(0.521387\pi\)
\(282\) −9.32188 −0.555110
\(283\) 10.7197 0.637218 0.318609 0.947886i \(-0.396784\pi\)
0.318609 + 0.947886i \(0.396784\pi\)
\(284\) 5.21881 0.309679
\(285\) −8.37165 −0.495894
\(286\) −16.9280 −1.00098
\(287\) 7.86027 0.463977
\(288\) −4.34835 −0.256229
\(289\) 2.48003 0.145884
\(290\) 1.13511 0.0666562
\(291\) 11.6599 0.683517
\(292\) −12.8796 −0.753719
\(293\) −16.8568 −0.984787 −0.492393 0.870373i \(-0.663878\pi\)
−0.492393 + 0.870373i \(0.663878\pi\)
\(294\) 0.804988 0.0469479
\(295\) 11.3835 0.662771
\(296\) 19.7447 1.14764
\(297\) 3.09908 0.179827
\(298\) 17.4153 1.00884
\(299\) 0 0
\(300\) −0.832828 −0.0480833
\(301\) 29.0866 1.67652
\(302\) 5.51786 0.317517
\(303\) 4.15654 0.238787
\(304\) 13.7357 0.787797
\(305\) −12.0138 −0.687909
\(306\) 4.76829 0.272585
\(307\) −8.01764 −0.457591 −0.228795 0.973475i \(-0.573479\pi\)
−0.228795 + 0.973475i \(0.573479\pi\)
\(308\) −6.45502 −0.367809
\(309\) 5.37402 0.305717
\(310\) 6.07699 0.345150
\(311\) −0.268117 −0.0152035 −0.00760176 0.999971i \(-0.502420\pi\)
−0.00760176 + 0.999971i \(0.502420\pi\)
\(312\) 15.4737 0.876027
\(313\) 2.72810 0.154201 0.0771006 0.997023i \(-0.475434\pi\)
0.0771006 + 0.997023i \(0.475434\pi\)
\(314\) −6.93200 −0.391196
\(315\) 2.50098 0.140914
\(316\) −5.61442 −0.315836
\(317\) 20.8543 1.17130 0.585648 0.810565i \(-0.300840\pi\)
0.585648 + 0.810565i \(0.300840\pi\)
\(318\) 10.1009 0.566428
\(319\) −3.25615 −0.182309
\(320\) 7.97925 0.446054
\(321\) −4.28544 −0.239190
\(322\) 0 0
\(323\) 36.9493 2.05591
\(324\) −0.832828 −0.0462682
\(325\) 5.05600 0.280456
\(326\) 16.1492 0.894423
\(327\) 2.96583 0.164011
\(328\) 9.61868 0.531103
\(329\) 21.5797 1.18973
\(330\) −3.34811 −0.184307
\(331\) 7.76342 0.426716 0.213358 0.976974i \(-0.431560\pi\)
0.213358 + 0.976974i \(0.431560\pi\)
\(332\) −11.8909 −0.652599
\(333\) 6.45154 0.353542
\(334\) −7.01175 −0.383666
\(335\) −7.01792 −0.383430
\(336\) −4.10346 −0.223862
\(337\) −12.6100 −0.686909 −0.343455 0.939169i \(-0.611597\pi\)
−0.343455 + 0.939169i \(0.611597\pi\)
\(338\) −13.5727 −0.738256
\(339\) 17.0982 0.928646
\(340\) 3.67579 0.199347
\(341\) −17.4323 −0.944009
\(342\) 9.04437 0.489064
\(343\) −19.3704 −1.04590
\(344\) 35.5935 1.91907
\(345\) 0 0
\(346\) −6.74611 −0.362673
\(347\) 29.1850 1.56674 0.783368 0.621559i \(-0.213500\pi\)
0.783368 + 0.621559i \(0.213500\pi\)
\(348\) 0.875039 0.0469070
\(349\) −0.964660 −0.0516371 −0.0258185 0.999667i \(-0.508219\pi\)
−0.0258185 + 0.999667i \(0.508219\pi\)
\(350\) −2.70195 −0.144425
\(351\) 5.05600 0.269869
\(352\) −13.4759 −0.718266
\(353\) 23.1117 1.23011 0.615055 0.788484i \(-0.289134\pi\)
0.615055 + 0.788484i \(0.289134\pi\)
\(354\) −12.2982 −0.653642
\(355\) −6.26637 −0.332584
\(356\) −4.94422 −0.262043
\(357\) −11.0384 −0.584212
\(358\) −3.97290 −0.209974
\(359\) 7.99373 0.421893 0.210946 0.977498i \(-0.432345\pi\)
0.210946 + 0.977498i \(0.432345\pi\)
\(360\) 3.06047 0.161301
\(361\) 51.0845 2.68866
\(362\) 12.8140 0.673486
\(363\) −1.39572 −0.0732564
\(364\) −10.5311 −0.551978
\(365\) 15.4649 0.809467
\(366\) 12.9792 0.678434
\(367\) 15.5771 0.813119 0.406559 0.913624i \(-0.366728\pi\)
0.406559 + 0.913624i \(0.366728\pi\)
\(368\) 0 0
\(369\) 3.14288 0.163612
\(370\) −6.96997 −0.362351
\(371\) −23.3830 −1.21399
\(372\) 4.68464 0.242887
\(373\) −9.49846 −0.491811 −0.245906 0.969294i \(-0.579085\pi\)
−0.245906 + 0.969294i \(0.579085\pi\)
\(374\) 14.7773 0.764115
\(375\) 1.00000 0.0516398
\(376\) 26.4073 1.36185
\(377\) −5.31226 −0.273595
\(378\) −2.70195 −0.138973
\(379\) −31.5484 −1.62053 −0.810266 0.586062i \(-0.800677\pi\)
−0.810266 + 0.586062i \(0.800677\pi\)
\(380\) 6.97214 0.357663
\(381\) 0.164913 0.00844874
\(382\) −7.04179 −0.360289
\(383\) −19.6603 −1.00460 −0.502298 0.864695i \(-0.667512\pi\)
−0.502298 + 0.864695i \(0.667512\pi\)
\(384\) 0.0762499 0.00389111
\(385\) 7.75072 0.395013
\(386\) 7.72747 0.393318
\(387\) 11.6301 0.591191
\(388\) −9.71071 −0.492986
\(389\) 14.8422 0.752531 0.376265 0.926512i \(-0.377208\pi\)
0.376265 + 0.926512i \(0.377208\pi\)
\(390\) −5.46229 −0.276594
\(391\) 0 0
\(392\) −2.28039 −0.115177
\(393\) −11.6425 −0.587284
\(394\) 3.09145 0.155745
\(395\) 6.74139 0.339196
\(396\) −2.58100 −0.129700
\(397\) −5.27400 −0.264694 −0.132347 0.991203i \(-0.542251\pi\)
−0.132347 + 0.991203i \(0.542251\pi\)
\(398\) 6.28001 0.314789
\(399\) −20.9373 −1.04818
\(400\) −1.64074 −0.0820371
\(401\) −7.21849 −0.360474 −0.180237 0.983623i \(-0.557686\pi\)
−0.180237 + 0.983623i \(0.557686\pi\)
\(402\) 7.58186 0.378149
\(403\) −28.4399 −1.41669
\(404\) −3.46168 −0.172225
\(405\) 1.00000 0.0496904
\(406\) 2.83889 0.140892
\(407\) 19.9938 0.991057
\(408\) −13.5077 −0.668732
\(409\) −9.42270 −0.465922 −0.232961 0.972486i \(-0.574842\pi\)
−0.232961 + 0.972486i \(0.574842\pi\)
\(410\) −3.39543 −0.167689
\(411\) 3.02846 0.149383
\(412\) −4.47564 −0.220499
\(413\) 28.4698 1.40091
\(414\) 0 0
\(415\) 14.2778 0.700868
\(416\) −21.9852 −1.07791
\(417\) 9.83875 0.481806
\(418\) 28.0292 1.37095
\(419\) −21.6652 −1.05842 −0.529208 0.848492i \(-0.677511\pi\)
−0.529208 + 0.848492i \(0.677511\pi\)
\(420\) −2.08288 −0.101634
\(421\) 22.4027 1.09184 0.545920 0.837838i \(-0.316180\pi\)
0.545920 + 0.837838i \(0.316180\pi\)
\(422\) −15.8891 −0.773471
\(423\) 8.62851 0.419533
\(424\) −28.6140 −1.38962
\(425\) −4.41362 −0.214092
\(426\) 6.76992 0.328004
\(427\) −30.0463 −1.45404
\(428\) 3.56904 0.172516
\(429\) 15.6689 0.756503
\(430\) −12.5647 −0.605922
\(431\) −3.91046 −0.188360 −0.0941800 0.995555i \(-0.530023\pi\)
−0.0941800 + 0.995555i \(0.530023\pi\)
\(432\) −1.64074 −0.0789402
\(433\) 3.99400 0.191940 0.0959698 0.995384i \(-0.469405\pi\)
0.0959698 + 0.995384i \(0.469405\pi\)
\(434\) 15.1984 0.729547
\(435\) −1.05068 −0.0503764
\(436\) −2.47003 −0.118293
\(437\) 0 0
\(438\) −16.7076 −0.798318
\(439\) −28.8414 −1.37652 −0.688262 0.725462i \(-0.741626\pi\)
−0.688262 + 0.725462i \(0.741626\pi\)
\(440\) 9.48462 0.452162
\(441\) −0.745113 −0.0354816
\(442\) 24.1085 1.14672
\(443\) 33.8971 1.61050 0.805249 0.592936i \(-0.202031\pi\)
0.805249 + 0.592936i \(0.202031\pi\)
\(444\) −5.37302 −0.254992
\(445\) 5.93666 0.281425
\(446\) −29.6173 −1.40242
\(447\) −16.1199 −0.762446
\(448\) 19.9559 0.942829
\(449\) 33.0196 1.55829 0.779147 0.626841i \(-0.215653\pi\)
0.779147 + 0.626841i \(0.215653\pi\)
\(450\) −1.08036 −0.0509285
\(451\) 9.74003 0.458640
\(452\) −14.2398 −0.669786
\(453\) −5.10744 −0.239969
\(454\) 3.46461 0.162602
\(455\) 12.6449 0.592804
\(456\) −25.6212 −1.19982
\(457\) −27.9667 −1.30823 −0.654114 0.756396i \(-0.726958\pi\)
−0.654114 + 0.756396i \(0.726958\pi\)
\(458\) 9.87623 0.461486
\(459\) −4.41362 −0.206010
\(460\) 0 0
\(461\) 33.4177 1.55642 0.778209 0.628005i \(-0.216128\pi\)
0.778209 + 0.628005i \(0.216128\pi\)
\(462\) −8.37355 −0.389573
\(463\) 16.6628 0.774388 0.387194 0.921998i \(-0.373444\pi\)
0.387194 + 0.921998i \(0.373444\pi\)
\(464\) 1.72390 0.0800301
\(465\) −5.62498 −0.260852
\(466\) −8.14985 −0.377534
\(467\) −15.5251 −0.718416 −0.359208 0.933258i \(-0.616953\pi\)
−0.359208 + 0.933258i \(0.616953\pi\)
\(468\) −4.21078 −0.194643
\(469\) −17.5516 −0.810460
\(470\) −9.32188 −0.429986
\(471\) 6.41640 0.295652
\(472\) 34.8387 1.60358
\(473\) 36.0426 1.65724
\(474\) −7.28311 −0.334524
\(475\) −8.37165 −0.384118
\(476\) 9.19306 0.421363
\(477\) −9.34955 −0.428086
\(478\) −11.6022 −0.530671
\(479\) 31.5511 1.44160 0.720802 0.693141i \(-0.243774\pi\)
0.720802 + 0.693141i \(0.243774\pi\)
\(480\) −4.34835 −0.198474
\(481\) 32.6190 1.48730
\(482\) −3.68650 −0.167915
\(483\) 0 0
\(484\) 1.16240 0.0528362
\(485\) 11.6599 0.529450
\(486\) −1.08036 −0.0490060
\(487\) −28.6551 −1.29849 −0.649244 0.760580i \(-0.724915\pi\)
−0.649244 + 0.760580i \(0.724915\pi\)
\(488\) −36.7679 −1.66440
\(489\) −14.9480 −0.675974
\(490\) 0.804988 0.0363657
\(491\) 10.5686 0.476955 0.238478 0.971148i \(-0.423352\pi\)
0.238478 + 0.971148i \(0.423352\pi\)
\(492\) −2.61748 −0.118005
\(493\) 4.63732 0.208854
\(494\) 45.7283 2.05742
\(495\) 3.09908 0.139293
\(496\) 9.22914 0.414401
\(497\) −15.6721 −0.702988
\(498\) −15.4251 −0.691215
\(499\) −34.6530 −1.55128 −0.775640 0.631176i \(-0.782573\pi\)
−0.775640 + 0.631176i \(0.782573\pi\)
\(500\) −0.832828 −0.0372452
\(501\) 6.49021 0.289961
\(502\) 28.1013 1.25422
\(503\) −22.1075 −0.985725 −0.492863 0.870107i \(-0.664049\pi\)
−0.492863 + 0.870107i \(0.664049\pi\)
\(504\) 7.65416 0.340943
\(505\) 4.15654 0.184963
\(506\) 0 0
\(507\) 12.5631 0.557949
\(508\) −0.137344 −0.00609365
\(509\) 4.19975 0.186151 0.0930754 0.995659i \(-0.470330\pi\)
0.0930754 + 0.995659i \(0.470330\pi\)
\(510\) 4.76829 0.211143
\(511\) 38.6772 1.71098
\(512\) 17.1774 0.759140
\(513\) −8.37165 −0.369617
\(514\) −18.9682 −0.836653
\(515\) 5.37402 0.236808
\(516\) −9.68587 −0.426397
\(517\) 26.7404 1.17604
\(518\) −17.4317 −0.765907
\(519\) 6.24433 0.274096
\(520\) 15.4737 0.678567
\(521\) −28.9172 −1.26689 −0.633443 0.773790i \(-0.718359\pi\)
−0.633443 + 0.773790i \(0.718359\pi\)
\(522\) 1.13511 0.0496826
\(523\) 12.8802 0.563213 0.281607 0.959530i \(-0.409133\pi\)
0.281607 + 0.959530i \(0.409133\pi\)
\(524\) 9.69616 0.423579
\(525\) 2.50098 0.109152
\(526\) −22.5073 −0.981366
\(527\) 24.8265 1.08146
\(528\) −5.08478 −0.221287
\(529\) 0 0
\(530\) 10.1009 0.438753
\(531\) 11.3835 0.494000
\(532\) 17.4372 0.755997
\(533\) 15.8904 0.688290
\(534\) −6.41372 −0.277549
\(535\) −4.28544 −0.185276
\(536\) −21.4781 −0.927713
\(537\) 3.67740 0.158691
\(538\) 5.10666 0.220164
\(539\) −2.30916 −0.0994627
\(540\) −0.832828 −0.0358392
\(541\) 14.4495 0.621233 0.310617 0.950535i \(-0.399464\pi\)
0.310617 + 0.950535i \(0.399464\pi\)
\(542\) 23.4325 1.00651
\(543\) −11.8608 −0.508998
\(544\) 19.1919 0.822848
\(545\) 2.96583 0.127042
\(546\) −13.6611 −0.584639
\(547\) −28.2358 −1.20728 −0.603639 0.797258i \(-0.706283\pi\)
−0.603639 + 0.797258i \(0.706283\pi\)
\(548\) −2.52219 −0.107742
\(549\) −12.0138 −0.512737
\(550\) −3.34811 −0.142764
\(551\) 8.79595 0.374720
\(552\) 0 0
\(553\) 16.8601 0.716963
\(554\) −10.0210 −0.425752
\(555\) 6.45154 0.273853
\(556\) −8.19398 −0.347502
\(557\) −4.08724 −0.173182 −0.0865910 0.996244i \(-0.527597\pi\)
−0.0865910 + 0.996244i \(0.527597\pi\)
\(558\) 6.07699 0.257260
\(559\) 58.8018 2.48705
\(560\) −4.10346 −0.173403
\(561\) −13.6781 −0.577492
\(562\) 2.43174 0.102577
\(563\) −16.0327 −0.675697 −0.337848 0.941201i \(-0.609699\pi\)
−0.337848 + 0.941201i \(0.609699\pi\)
\(564\) −7.18607 −0.302588
\(565\) 17.0982 0.719326
\(566\) −11.5811 −0.486789
\(567\) 2.50098 0.105031
\(568\) −19.1780 −0.804692
\(569\) 13.6709 0.573112 0.286556 0.958063i \(-0.407490\pi\)
0.286556 + 0.958063i \(0.407490\pi\)
\(570\) 9.04437 0.378827
\(571\) −2.03500 −0.0851619 −0.0425810 0.999093i \(-0.513558\pi\)
−0.0425810 + 0.999093i \(0.513558\pi\)
\(572\) −13.0495 −0.545628
\(573\) 6.51802 0.272294
\(574\) −8.49190 −0.354445
\(575\) 0 0
\(576\) 7.97925 0.332469
\(577\) 9.34661 0.389104 0.194552 0.980892i \(-0.437675\pi\)
0.194552 + 0.980892i \(0.437675\pi\)
\(578\) −2.67932 −0.111445
\(579\) −7.15270 −0.297256
\(580\) 0.875039 0.0363340
\(581\) 35.7084 1.48143
\(582\) −12.5969 −0.522157
\(583\) −28.9750 −1.20002
\(584\) 47.3297 1.95852
\(585\) 5.05600 0.209040
\(586\) 18.2114 0.752306
\(587\) 42.1764 1.74081 0.870403 0.492339i \(-0.163858\pi\)
0.870403 + 0.492339i \(0.163858\pi\)
\(588\) 0.620551 0.0255911
\(589\) 47.0904 1.94033
\(590\) −12.2982 −0.506309
\(591\) −2.86150 −0.117707
\(592\) −10.5853 −0.435054
\(593\) 12.2241 0.501984 0.250992 0.967989i \(-0.419243\pi\)
0.250992 + 0.967989i \(0.419243\pi\)
\(594\) −3.34811 −0.137375
\(595\) −11.0384 −0.452529
\(596\) 13.4251 0.549914
\(597\) −5.81290 −0.237906
\(598\) 0 0
\(599\) −25.6961 −1.04991 −0.524957 0.851129i \(-0.675919\pi\)
−0.524957 + 0.851129i \(0.675919\pi\)
\(600\) 3.06047 0.124943
\(601\) 6.13585 0.250287 0.125143 0.992139i \(-0.460061\pi\)
0.125143 + 0.992139i \(0.460061\pi\)
\(602\) −31.4239 −1.28074
\(603\) −7.01792 −0.285792
\(604\) 4.25362 0.173077
\(605\) −1.39572 −0.0567441
\(606\) −4.49055 −0.182416
\(607\) −6.22427 −0.252635 −0.126318 0.991990i \(-0.540316\pi\)
−0.126318 + 0.991990i \(0.540316\pi\)
\(608\) 36.4028 1.47633
\(609\) −2.62774 −0.106481
\(610\) 12.9792 0.525513
\(611\) 43.6258 1.76491
\(612\) 3.67579 0.148585
\(613\) 29.2823 1.18270 0.591350 0.806415i \(-0.298595\pi\)
0.591350 + 0.806415i \(0.298595\pi\)
\(614\) 8.66191 0.349566
\(615\) 3.14288 0.126733
\(616\) 23.7208 0.955739
\(617\) −17.6688 −0.711321 −0.355660 0.934615i \(-0.615744\pi\)
−0.355660 + 0.934615i \(0.615744\pi\)
\(618\) −5.80586 −0.233546
\(619\) −28.7800 −1.15677 −0.578384 0.815765i \(-0.696316\pi\)
−0.578384 + 0.815765i \(0.696316\pi\)
\(620\) 4.68464 0.188140
\(621\) 0 0
\(622\) 0.289662 0.0116144
\(623\) 14.8475 0.594851
\(624\) −8.29559 −0.332089
\(625\) 1.00000 0.0400000
\(626\) −2.94732 −0.117799
\(627\) −25.9444 −1.03612
\(628\) −5.34376 −0.213239
\(629\) −28.4746 −1.13536
\(630\) −2.70195 −0.107648
\(631\) −11.6466 −0.463642 −0.231821 0.972758i \(-0.574468\pi\)
−0.231821 + 0.972758i \(0.574468\pi\)
\(632\) 20.6318 0.820689
\(633\) 14.7073 0.584563
\(634\) −22.5301 −0.894786
\(635\) 0.164913 0.00654436
\(636\) 7.78657 0.308757
\(637\) −3.76729 −0.149266
\(638\) 3.51781 0.139271
\(639\) −6.26637 −0.247894
\(640\) 0.0762499 0.00301404
\(641\) −19.8577 −0.784331 −0.392166 0.919895i \(-0.628274\pi\)
−0.392166 + 0.919895i \(0.628274\pi\)
\(642\) 4.62981 0.182724
\(643\) 13.5334 0.533705 0.266853 0.963737i \(-0.414016\pi\)
0.266853 + 0.963737i \(0.414016\pi\)
\(644\) 0 0
\(645\) 11.6301 0.457934
\(646\) −39.9184 −1.57057
\(647\) −5.75874 −0.226399 −0.113200 0.993572i \(-0.536110\pi\)
−0.113200 + 0.993572i \(0.536110\pi\)
\(648\) 3.06047 0.120226
\(649\) 35.2782 1.38479
\(650\) −5.46229 −0.214249
\(651\) −14.0680 −0.551367
\(652\) 12.4491 0.487546
\(653\) −26.7082 −1.04517 −0.522586 0.852586i \(-0.675033\pi\)
−0.522586 + 0.852586i \(0.675033\pi\)
\(654\) −3.20416 −0.125293
\(655\) −11.6425 −0.454908
\(656\) −5.15665 −0.201334
\(657\) 15.4649 0.603341
\(658\) −23.3138 −0.908867
\(659\) −0.749871 −0.0292108 −0.0146054 0.999893i \(-0.504649\pi\)
−0.0146054 + 0.999893i \(0.504649\pi\)
\(660\) −2.58100 −0.100465
\(661\) 1.89109 0.0735550 0.0367775 0.999323i \(-0.488291\pi\)
0.0367775 + 0.999323i \(0.488291\pi\)
\(662\) −8.38727 −0.325980
\(663\) −22.3153 −0.866653
\(664\) 43.6966 1.69576
\(665\) −20.9373 −0.811914
\(666\) −6.96997 −0.270081
\(667\) 0 0
\(668\) −5.40523 −0.209135
\(669\) 27.4144 1.05990
\(670\) 7.58186 0.292913
\(671\) −37.2317 −1.43731
\(672\) −10.8751 −0.419517
\(673\) 29.7313 1.14606 0.573029 0.819535i \(-0.305768\pi\)
0.573029 + 0.819535i \(0.305768\pi\)
\(674\) 13.6233 0.524749
\(675\) 1.00000 0.0384900
\(676\) −10.4629 −0.402421
\(677\) −3.75385 −0.144272 −0.0721361 0.997395i \(-0.522982\pi\)
−0.0721361 + 0.997395i \(0.522982\pi\)
\(678\) −18.4721 −0.709418
\(679\) 29.1612 1.11910
\(680\) −13.5077 −0.517998
\(681\) −3.20691 −0.122889
\(682\) 18.8331 0.721155
\(683\) 46.6404 1.78465 0.892323 0.451398i \(-0.149074\pi\)
0.892323 + 0.451398i \(0.149074\pi\)
\(684\) 6.97214 0.266587
\(685\) 3.02846 0.115712
\(686\) 20.9269 0.798993
\(687\) −9.14163 −0.348775
\(688\) −19.0820 −0.727494
\(689\) −47.2713 −1.80089
\(690\) 0 0
\(691\) −39.2320 −1.49245 −0.746227 0.665692i \(-0.768137\pi\)
−0.746227 + 0.665692i \(0.768137\pi\)
\(692\) −5.20045 −0.197692
\(693\) 7.75072 0.294426
\(694\) −31.5303 −1.19687
\(695\) 9.83875 0.373205
\(696\) −3.21558 −0.121886
\(697\) −13.8715 −0.525420
\(698\) 1.04218 0.0394470
\(699\) 7.54366 0.285327
\(700\) −2.08288 −0.0787256
\(701\) 6.57424 0.248306 0.124153 0.992263i \(-0.460379\pi\)
0.124153 + 0.992263i \(0.460379\pi\)
\(702\) −5.46229 −0.206161
\(703\) −54.0100 −2.03703
\(704\) 24.7283 0.931983
\(705\) 8.62851 0.324969
\(706\) −24.9689 −0.939716
\(707\) 10.3954 0.390959
\(708\) −9.48047 −0.356298
\(709\) −11.7329 −0.440638 −0.220319 0.975428i \(-0.570710\pi\)
−0.220319 + 0.975428i \(0.570710\pi\)
\(710\) 6.76992 0.254071
\(711\) 6.74139 0.252822
\(712\) 18.1690 0.680911
\(713\) 0 0
\(714\) 11.9254 0.446296
\(715\) 15.6689 0.585985
\(716\) −3.06264 −0.114456
\(717\) 10.7392 0.401063
\(718\) −8.63609 −0.322296
\(719\) 10.3636 0.386498 0.193249 0.981150i \(-0.438097\pi\)
0.193249 + 0.981150i \(0.438097\pi\)
\(720\) −1.64074 −0.0611468
\(721\) 13.4403 0.500543
\(722\) −55.1895 −2.05394
\(723\) 3.41230 0.126905
\(724\) 9.87804 0.367115
\(725\) −1.05068 −0.0390214
\(726\) 1.50788 0.0559626
\(727\) −34.1589 −1.26688 −0.633442 0.773790i \(-0.718359\pi\)
−0.633442 + 0.773790i \(0.718359\pi\)
\(728\) 38.6994 1.43430
\(729\) 1.00000 0.0370370
\(730\) −16.7076 −0.618375
\(731\) −51.3308 −1.89854
\(732\) 10.0054 0.369812
\(733\) −12.9923 −0.479882 −0.239941 0.970787i \(-0.577128\pi\)
−0.239941 + 0.970787i \(0.577128\pi\)
\(734\) −16.8288 −0.621164
\(735\) −0.745113 −0.0274839
\(736\) 0 0
\(737\) −21.7491 −0.801137
\(738\) −3.39543 −0.124988
\(739\) −23.6637 −0.870484 −0.435242 0.900314i \(-0.643337\pi\)
−0.435242 + 0.900314i \(0.643337\pi\)
\(740\) −5.37302 −0.197516
\(741\) −42.3271 −1.55492
\(742\) 25.2620 0.927397
\(743\) 6.83604 0.250790 0.125395 0.992107i \(-0.459980\pi\)
0.125395 + 0.992107i \(0.459980\pi\)
\(744\) −17.2151 −0.631135
\(745\) −16.1199 −0.590588
\(746\) 10.2617 0.375709
\(747\) 14.2778 0.522396
\(748\) 11.3915 0.416516
\(749\) −10.7178 −0.391620
\(750\) −1.08036 −0.0394491
\(751\) 37.0810 1.35310 0.676552 0.736394i \(-0.263473\pi\)
0.676552 + 0.736394i \(0.263473\pi\)
\(752\) −14.1572 −0.516258
\(753\) −26.0111 −0.947899
\(754\) 5.73914 0.209007
\(755\) −5.10744 −0.185879
\(756\) −2.08288 −0.0757538
\(757\) −41.9753 −1.52562 −0.762809 0.646624i \(-0.776180\pi\)
−0.762809 + 0.646624i \(0.776180\pi\)
\(758\) 34.0835 1.23797
\(759\) 0 0
\(760\) −25.6212 −0.929377
\(761\) 18.7013 0.677921 0.338960 0.940801i \(-0.389925\pi\)
0.338960 + 0.940801i \(0.389925\pi\)
\(762\) −0.178165 −0.00645423
\(763\) 7.41748 0.268531
\(764\) −5.42839 −0.196392
\(765\) −4.41362 −0.159575
\(766\) 21.2402 0.767439
\(767\) 57.5548 2.07818
\(768\) −16.0409 −0.578825
\(769\) −49.7505 −1.79405 −0.897024 0.441982i \(-0.854276\pi\)
−0.897024 + 0.441982i \(0.854276\pi\)
\(770\) −8.37355 −0.301762
\(771\) 17.5574 0.632313
\(772\) 5.95697 0.214396
\(773\) 4.96532 0.178590 0.0892951 0.996005i \(-0.471539\pi\)
0.0892951 + 0.996005i \(0.471539\pi\)
\(774\) −12.5647 −0.451627
\(775\) −5.62498 −0.202055
\(776\) 35.6848 1.28101
\(777\) 16.1352 0.578846
\(778\) −16.0349 −0.574879
\(779\) −26.3111 −0.942693
\(780\) −4.21078 −0.150770
\(781\) −19.4200 −0.694901
\(782\) 0 0
\(783\) −1.05068 −0.0375484
\(784\) 1.22254 0.0436621
\(785\) 6.41640 0.229011
\(786\) 12.5780 0.448643
\(787\) 1.34048 0.0477830 0.0238915 0.999715i \(-0.492394\pi\)
0.0238915 + 0.999715i \(0.492394\pi\)
\(788\) 2.38314 0.0848959
\(789\) 20.8332 0.741682
\(790\) −7.28311 −0.259122
\(791\) 42.7622 1.52045
\(792\) 9.48462 0.337021
\(793\) −60.7418 −2.15701
\(794\) 5.69780 0.202207
\(795\) −9.34955 −0.331594
\(796\) 4.84115 0.171590
\(797\) −5.42680 −0.192227 −0.0961135 0.995370i \(-0.530641\pi\)
−0.0961135 + 0.995370i \(0.530641\pi\)
\(798\) 22.6198 0.800731
\(799\) −38.0830 −1.34728
\(800\) −4.34835 −0.153737
\(801\) 5.93666 0.209762
\(802\) 7.79855 0.275376
\(803\) 47.9268 1.69130
\(804\) 5.84472 0.206127
\(805\) 0 0
\(806\) 30.7253 1.08225
\(807\) −4.72683 −0.166392
\(808\) 12.7209 0.447521
\(809\) 1.40730 0.0494781 0.0247391 0.999694i \(-0.492125\pi\)
0.0247391 + 0.999694i \(0.492125\pi\)
\(810\) −1.08036 −0.0379599
\(811\) 24.1912 0.849466 0.424733 0.905319i \(-0.360368\pi\)
0.424733 + 0.905319i \(0.360368\pi\)
\(812\) 2.18845 0.0767996
\(813\) −21.6896 −0.760688
\(814\) −21.6005 −0.757096
\(815\) −14.9480 −0.523607
\(816\) 7.24161 0.253507
\(817\) −97.3631 −3.40630
\(818\) 10.1799 0.355931
\(819\) 12.6449 0.441850
\(820\) −2.61748 −0.0914063
\(821\) 4.73150 0.165131 0.0825653 0.996586i \(-0.473689\pi\)
0.0825653 + 0.996586i \(0.473689\pi\)
\(822\) −3.27182 −0.114118
\(823\) −0.537068 −0.0187210 −0.00936052 0.999956i \(-0.502980\pi\)
−0.00936052 + 0.999956i \(0.502980\pi\)
\(824\) 16.4470 0.572959
\(825\) 3.09908 0.107896
\(826\) −30.7575 −1.07019
\(827\) 17.4962 0.608401 0.304200 0.952608i \(-0.401611\pi\)
0.304200 + 0.952608i \(0.401611\pi\)
\(828\) 0 0
\(829\) 10.9294 0.379594 0.189797 0.981823i \(-0.439217\pi\)
0.189797 + 0.981823i \(0.439217\pi\)
\(830\) −15.4251 −0.535413
\(831\) 9.27565 0.321769
\(832\) 40.3431 1.39865
\(833\) 3.28865 0.113945
\(834\) −10.6294 −0.368065
\(835\) 6.49021 0.224603
\(836\) 21.6072 0.747301
\(837\) −5.62498 −0.194428
\(838\) 23.4062 0.808553
\(839\) 26.9960 0.932007 0.466003 0.884783i \(-0.345693\pi\)
0.466003 + 0.884783i \(0.345693\pi\)
\(840\) 7.65416 0.264094
\(841\) −27.8961 −0.961933
\(842\) −24.2029 −0.834087
\(843\) −2.25086 −0.0775238
\(844\) −12.2487 −0.421616
\(845\) 12.5631 0.432185
\(846\) −9.32188 −0.320493
\(847\) −3.49067 −0.119941
\(848\) 15.3402 0.526784
\(849\) 10.7197 0.367898
\(850\) 4.76829 0.163551
\(851\) 0 0
\(852\) 5.21881 0.178793
\(853\) −27.9913 −0.958403 −0.479201 0.877705i \(-0.659074\pi\)
−0.479201 + 0.877705i \(0.659074\pi\)
\(854\) 32.4607 1.11078
\(855\) −8.37165 −0.286304
\(856\) −13.1155 −0.448277
\(857\) −26.6611 −0.910726 −0.455363 0.890306i \(-0.650490\pi\)
−0.455363 + 0.890306i \(0.650490\pi\)
\(858\) −16.9280 −0.577914
\(859\) −8.09971 −0.276358 −0.138179 0.990407i \(-0.544125\pi\)
−0.138179 + 0.990407i \(0.544125\pi\)
\(860\) −9.68587 −0.330285
\(861\) 7.86027 0.267877
\(862\) 4.22469 0.143894
\(863\) −19.1373 −0.651443 −0.325721 0.945466i \(-0.605607\pi\)
−0.325721 + 0.945466i \(0.605607\pi\)
\(864\) −4.34835 −0.147934
\(865\) 6.24433 0.212314
\(866\) −4.31495 −0.146628
\(867\) 2.48003 0.0842264
\(868\) 11.7162 0.397673
\(869\) 20.8921 0.708716
\(870\) 1.13511 0.0384840
\(871\) −35.4826 −1.20228
\(872\) 9.07683 0.307380
\(873\) 11.6599 0.394628
\(874\) 0 0
\(875\) 2.50098 0.0845485
\(876\) −12.8796 −0.435160
\(877\) −15.0875 −0.509468 −0.254734 0.967011i \(-0.581988\pi\)
−0.254734 + 0.967011i \(0.581988\pi\)
\(878\) 31.1590 1.05156
\(879\) −16.8568 −0.568567
\(880\) −5.08478 −0.171408
\(881\) −32.4938 −1.09474 −0.547372 0.836890i \(-0.684372\pi\)
−0.547372 + 0.836890i \(0.684372\pi\)
\(882\) 0.804988 0.0271054
\(883\) −6.16160 −0.207354 −0.103677 0.994611i \(-0.533061\pi\)
−0.103677 + 0.994611i \(0.533061\pi\)
\(884\) 18.5848 0.625074
\(885\) 11.3835 0.382651
\(886\) −36.6210 −1.23031
\(887\) 4.20145 0.141071 0.0705355 0.997509i \(-0.477529\pi\)
0.0705355 + 0.997509i \(0.477529\pi\)
\(888\) 19.7447 0.662590
\(889\) 0.412443 0.0138329
\(890\) −6.41372 −0.214988
\(891\) 3.09908 0.103823
\(892\) −22.8315 −0.764454
\(893\) −72.2349 −2.41725
\(894\) 17.4153 0.582454
\(895\) 3.67740 0.122922
\(896\) 0.190699 0.00637081
\(897\) 0 0
\(898\) −35.6730 −1.19042
\(899\) 5.91008 0.197112
\(900\) −0.832828 −0.0277609
\(901\) 41.2653 1.37475
\(902\) −10.5227 −0.350368
\(903\) 29.0866 0.967941
\(904\) 52.3284 1.74042
\(905\) −11.8608 −0.394268
\(906\) 5.51786 0.183319
\(907\) 9.59705 0.318665 0.159332 0.987225i \(-0.449066\pi\)
0.159332 + 0.987225i \(0.449066\pi\)
\(908\) 2.67081 0.0886338
\(909\) 4.15654 0.137864
\(910\) −13.6611 −0.452860
\(911\) 5.13714 0.170201 0.0851005 0.996372i \(-0.472879\pi\)
0.0851005 + 0.996372i \(0.472879\pi\)
\(912\) 13.7357 0.454835
\(913\) 44.2479 1.46439
\(914\) 30.2140 0.999391
\(915\) −12.0138 −0.397164
\(916\) 7.61340 0.251554
\(917\) −29.1175 −0.961545
\(918\) 4.76829 0.157377
\(919\) −36.9375 −1.21846 −0.609228 0.792995i \(-0.708521\pi\)
−0.609228 + 0.792995i \(0.708521\pi\)
\(920\) 0 0
\(921\) −8.01764 −0.264190
\(922\) −36.1031 −1.18899
\(923\) −31.6828 −1.04285
\(924\) −6.45502 −0.212354
\(925\) 6.45154 0.212125
\(926\) −18.0018 −0.591576
\(927\) 5.37402 0.176506
\(928\) 4.56874 0.149976
\(929\) 11.6066 0.380800 0.190400 0.981707i \(-0.439022\pi\)
0.190400 + 0.981707i \(0.439022\pi\)
\(930\) 6.07699 0.199272
\(931\) 6.23782 0.204436
\(932\) −6.28257 −0.205792
\(933\) −0.268117 −0.00877775
\(934\) 16.7727 0.548818
\(935\) −13.6781 −0.447323
\(936\) 15.4737 0.505774
\(937\) 26.1152 0.853146 0.426573 0.904453i \(-0.359721\pi\)
0.426573 + 0.904453i \(0.359721\pi\)
\(938\) 18.9621 0.619133
\(939\) 2.72810 0.0890281
\(940\) −7.18607 −0.234384
\(941\) 50.9626 1.66133 0.830667 0.556770i \(-0.187960\pi\)
0.830667 + 0.556770i \(0.187960\pi\)
\(942\) −6.93200 −0.225857
\(943\) 0 0
\(944\) −18.6773 −0.607895
\(945\) 2.50098 0.0813568
\(946\) −38.9388 −1.26601
\(947\) 40.7038 1.32269 0.661347 0.750080i \(-0.269985\pi\)
0.661347 + 0.750080i \(0.269985\pi\)
\(948\) −5.61442 −0.182348
\(949\) 78.1903 2.53816
\(950\) 9.04437 0.293438
\(951\) 20.8543 0.676248
\(952\) −33.7825 −1.09490
\(953\) −2.61359 −0.0846626 −0.0423313 0.999104i \(-0.513479\pi\)
−0.0423313 + 0.999104i \(0.513479\pi\)
\(954\) 10.1009 0.327027
\(955\) 6.51802 0.210918
\(956\) −8.94390 −0.289266
\(957\) −3.25615 −0.105256
\(958\) −34.0864 −1.10128
\(959\) 7.57411 0.244581
\(960\) 7.97925 0.257529
\(961\) 0.640424 0.0206588
\(962\) −35.2402 −1.13619
\(963\) −4.28544 −0.138096
\(964\) −2.84186 −0.0915300
\(965\) −7.15270 −0.230253
\(966\) 0 0
\(967\) −18.2175 −0.585834 −0.292917 0.956138i \(-0.594626\pi\)
−0.292917 + 0.956138i \(0.594626\pi\)
\(968\) −4.27156 −0.137293
\(969\) 36.9493 1.18698
\(970\) −12.5969 −0.404461
\(971\) 16.5227 0.530239 0.265120 0.964216i \(-0.414589\pi\)
0.265120 + 0.964216i \(0.414589\pi\)
\(972\) −0.832828 −0.0267130
\(973\) 24.6065 0.788848
\(974\) 30.9578 0.991951
\(975\) 5.05600 0.161922
\(976\) 19.7116 0.630952
\(977\) −31.5625 −1.00977 −0.504887 0.863186i \(-0.668466\pi\)
−0.504887 + 0.863186i \(0.668466\pi\)
\(978\) 16.1492 0.516395
\(979\) 18.3982 0.588008
\(980\) 0.620551 0.0198228
\(981\) 2.96583 0.0946918
\(982\) −11.4179 −0.364359
\(983\) 15.1549 0.483366 0.241683 0.970355i \(-0.422301\pi\)
0.241683 + 0.970355i \(0.422301\pi\)
\(984\) 9.61868 0.306632
\(985\) −2.86150 −0.0911751
\(986\) −5.00996 −0.159550
\(987\) 21.5797 0.686890
\(988\) 35.2512 1.12149
\(989\) 0 0
\(990\) −3.34811 −0.106410
\(991\) 25.8354 0.820687 0.410343 0.911931i \(-0.365409\pi\)
0.410343 + 0.911931i \(0.365409\pi\)
\(992\) 24.4594 0.776586
\(993\) 7.76342 0.246365
\(994\) 16.9314 0.537032
\(995\) −5.81290 −0.184281
\(996\) −11.8909 −0.376778
\(997\) 56.8799 1.80140 0.900702 0.434438i \(-0.143053\pi\)
0.900702 + 0.434438i \(0.143053\pi\)
\(998\) 37.4376 1.18507
\(999\) 6.45154 0.204118
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bw.1.8 25
23.17 odd 22 345.2.m.c.151.4 yes 50
23.19 odd 22 345.2.m.c.16.4 50
23.22 odd 2 7935.2.a.bv.1.8 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.c.16.4 50 23.19 odd 22
345.2.m.c.151.4 yes 50 23.17 odd 22
7935.2.a.bv.1.8 25 23.22 odd 2
7935.2.a.bw.1.8 25 1.1 even 1 trivial