Defining parameters
Level: | \( N \) | = | \( 7935 = 3 \cdot 5 \cdot 23^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 24 \) | ||
Sturm bound: | \(8937984\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(7935))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2246464 | 1534640 | 711824 |
Cusp forms | 2222529 | 1526184 | 696345 |
Eisenstein series | 23935 | 8456 | 15479 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(7935))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(7935))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(7935)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(345))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(529))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1587))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2645))\)\(^{\oplus 2}\)