Properties

Label 7935.2.a.bw.1.14
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,11,25,31,25,11,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.940321 q^{2} +1.00000 q^{3} -1.11580 q^{4} +1.00000 q^{5} +0.940321 q^{6} +0.900767 q^{7} -2.92985 q^{8} +1.00000 q^{9} +0.940321 q^{10} +4.51292 q^{11} -1.11580 q^{12} -6.09945 q^{13} +0.847010 q^{14} +1.00000 q^{15} -0.523404 q^{16} -1.27051 q^{17} +0.940321 q^{18} +1.58545 q^{19} -1.11580 q^{20} +0.900767 q^{21} +4.24360 q^{22} -2.92985 q^{24} +1.00000 q^{25} -5.73544 q^{26} +1.00000 q^{27} -1.00507 q^{28} +3.74391 q^{29} +0.940321 q^{30} +3.96180 q^{31} +5.36753 q^{32} +4.51292 q^{33} -1.19469 q^{34} +0.900767 q^{35} -1.11580 q^{36} +6.50667 q^{37} +1.49083 q^{38} -6.09945 q^{39} -2.92985 q^{40} -6.80395 q^{41} +0.847010 q^{42} -8.12528 q^{43} -5.03551 q^{44} +1.00000 q^{45} -4.16466 q^{47} -0.523404 q^{48} -6.18862 q^{49} +0.940321 q^{50} -1.27051 q^{51} +6.80575 q^{52} +10.9791 q^{53} +0.940321 q^{54} +4.51292 q^{55} -2.63911 q^{56} +1.58545 q^{57} +3.52047 q^{58} +12.4963 q^{59} -1.11580 q^{60} +8.78067 q^{61} +3.72536 q^{62} +0.900767 q^{63} +6.09401 q^{64} -6.09945 q^{65} +4.24360 q^{66} +2.29868 q^{67} +1.41763 q^{68} +0.847010 q^{70} +2.63284 q^{71} -2.92985 q^{72} +16.9959 q^{73} +6.11836 q^{74} +1.00000 q^{75} -1.76904 q^{76} +4.06509 q^{77} -5.73544 q^{78} +1.89618 q^{79} -0.523404 q^{80} +1.00000 q^{81} -6.39790 q^{82} +1.85661 q^{83} -1.00507 q^{84} -1.27051 q^{85} -7.64037 q^{86} +3.74391 q^{87} -13.2222 q^{88} -7.87622 q^{89} +0.940321 q^{90} -5.49418 q^{91} +3.96180 q^{93} -3.91612 q^{94} +1.58545 q^{95} +5.36753 q^{96} +7.91711 q^{97} -5.81929 q^{98} +4.51292 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + 11 q^{2} + 25 q^{3} + 31 q^{4} + 25 q^{5} + 11 q^{6} + 7 q^{7} + 33 q^{8} + 25 q^{9} + 11 q^{10} + 9 q^{11} + 31 q^{12} + 18 q^{13} + 11 q^{14} + 25 q^{15} + 39 q^{16} - 8 q^{17} + 11 q^{18} + 11 q^{19}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.940321 0.664907 0.332454 0.943120i \(-0.392124\pi\)
0.332454 + 0.943120i \(0.392124\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.11580 −0.557898
\(5\) 1.00000 0.447214
\(6\) 0.940321 0.383884
\(7\) 0.900767 0.340458 0.170229 0.985405i \(-0.445549\pi\)
0.170229 + 0.985405i \(0.445549\pi\)
\(8\) −2.92985 −1.03586
\(9\) 1.00000 0.333333
\(10\) 0.940321 0.297356
\(11\) 4.51292 1.36070 0.680349 0.732888i \(-0.261828\pi\)
0.680349 + 0.732888i \(0.261828\pi\)
\(12\) −1.11580 −0.322103
\(13\) −6.09945 −1.69168 −0.845841 0.533435i \(-0.820901\pi\)
−0.845841 + 0.533435i \(0.820901\pi\)
\(14\) 0.847010 0.226373
\(15\) 1.00000 0.258199
\(16\) −0.523404 −0.130851
\(17\) −1.27051 −0.308144 −0.154072 0.988060i \(-0.549239\pi\)
−0.154072 + 0.988060i \(0.549239\pi\)
\(18\) 0.940321 0.221636
\(19\) 1.58545 0.363728 0.181864 0.983324i \(-0.441787\pi\)
0.181864 + 0.983324i \(0.441787\pi\)
\(20\) −1.11580 −0.249500
\(21\) 0.900767 0.196564
\(22\) 4.24360 0.904738
\(23\) 0 0
\(24\) −2.92985 −0.598053
\(25\) 1.00000 0.200000
\(26\) −5.73544 −1.12481
\(27\) 1.00000 0.192450
\(28\) −1.00507 −0.189941
\(29\) 3.74391 0.695226 0.347613 0.937638i \(-0.386992\pi\)
0.347613 + 0.937638i \(0.386992\pi\)
\(30\) 0.940321 0.171678
\(31\) 3.96180 0.711560 0.355780 0.934570i \(-0.384215\pi\)
0.355780 + 0.934570i \(0.384215\pi\)
\(32\) 5.36753 0.948854
\(33\) 4.51292 0.785599
\(34\) −1.19469 −0.204887
\(35\) 0.900767 0.152257
\(36\) −1.11580 −0.185966
\(37\) 6.50667 1.06969 0.534845 0.844950i \(-0.320370\pi\)
0.534845 + 0.844950i \(0.320370\pi\)
\(38\) 1.49083 0.241845
\(39\) −6.09945 −0.976693
\(40\) −2.92985 −0.463250
\(41\) −6.80395 −1.06260 −0.531299 0.847184i \(-0.678296\pi\)
−0.531299 + 0.847184i \(0.678296\pi\)
\(42\) 0.847010 0.130696
\(43\) −8.12528 −1.23909 −0.619547 0.784960i \(-0.712684\pi\)
−0.619547 + 0.784960i \(0.712684\pi\)
\(44\) −5.03551 −0.759131
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −4.16466 −0.607478 −0.303739 0.952755i \(-0.598235\pi\)
−0.303739 + 0.952755i \(0.598235\pi\)
\(48\) −0.523404 −0.0755468
\(49\) −6.18862 −0.884088
\(50\) 0.940321 0.132981
\(51\) −1.27051 −0.177907
\(52\) 6.80575 0.943787
\(53\) 10.9791 1.50809 0.754045 0.656822i \(-0.228100\pi\)
0.754045 + 0.656822i \(0.228100\pi\)
\(54\) 0.940321 0.127961
\(55\) 4.51292 0.608522
\(56\) −2.63911 −0.352666
\(57\) 1.58545 0.209998
\(58\) 3.52047 0.462261
\(59\) 12.4963 1.62688 0.813440 0.581649i \(-0.197592\pi\)
0.813440 + 0.581649i \(0.197592\pi\)
\(60\) −1.11580 −0.144049
\(61\) 8.78067 1.12425 0.562125 0.827053i \(-0.309984\pi\)
0.562125 + 0.827053i \(0.309984\pi\)
\(62\) 3.72536 0.473121
\(63\) 0.900767 0.113486
\(64\) 6.09401 0.761751
\(65\) −6.09945 −0.756543
\(66\) 4.24360 0.522350
\(67\) 2.29868 0.280828 0.140414 0.990093i \(-0.455157\pi\)
0.140414 + 0.990093i \(0.455157\pi\)
\(68\) 1.41763 0.171913
\(69\) 0 0
\(70\) 0.847010 0.101237
\(71\) 2.63284 0.312461 0.156230 0.987721i \(-0.450066\pi\)
0.156230 + 0.987721i \(0.450066\pi\)
\(72\) −2.92985 −0.345286
\(73\) 16.9959 1.98922 0.994612 0.103670i \(-0.0330586\pi\)
0.994612 + 0.103670i \(0.0330586\pi\)
\(74\) 6.11836 0.711245
\(75\) 1.00000 0.115470
\(76\) −1.76904 −0.202923
\(77\) 4.06509 0.463260
\(78\) −5.73544 −0.649410
\(79\) 1.89618 0.213337 0.106669 0.994295i \(-0.465982\pi\)
0.106669 + 0.994295i \(0.465982\pi\)
\(80\) −0.523404 −0.0585183
\(81\) 1.00000 0.111111
\(82\) −6.39790 −0.706530
\(83\) 1.85661 0.203789 0.101895 0.994795i \(-0.467510\pi\)
0.101895 + 0.994795i \(0.467510\pi\)
\(84\) −1.00507 −0.109662
\(85\) −1.27051 −0.137806
\(86\) −7.64037 −0.823882
\(87\) 3.74391 0.401389
\(88\) −13.2222 −1.40949
\(89\) −7.87622 −0.834878 −0.417439 0.908705i \(-0.637072\pi\)
−0.417439 + 0.908705i \(0.637072\pi\)
\(90\) 0.940321 0.0991185
\(91\) −5.49418 −0.575947
\(92\) 0 0
\(93\) 3.96180 0.410819
\(94\) −3.91612 −0.403917
\(95\) 1.58545 0.162664
\(96\) 5.36753 0.547821
\(97\) 7.91711 0.803861 0.401930 0.915670i \(-0.368339\pi\)
0.401930 + 0.915670i \(0.368339\pi\)
\(98\) −5.81929 −0.587837
\(99\) 4.51292 0.453566
\(100\) −1.11580 −0.111580
\(101\) −6.35098 −0.631947 −0.315973 0.948768i \(-0.602331\pi\)
−0.315973 + 0.948768i \(0.602331\pi\)
\(102\) −1.19469 −0.118291
\(103\) −13.8741 −1.36706 −0.683529 0.729924i \(-0.739556\pi\)
−0.683529 + 0.729924i \(0.739556\pi\)
\(104\) 17.8705 1.75234
\(105\) 0.900767 0.0879059
\(106\) 10.3238 1.00274
\(107\) 9.02378 0.872362 0.436181 0.899859i \(-0.356331\pi\)
0.436181 + 0.899859i \(0.356331\pi\)
\(108\) −1.11580 −0.107368
\(109\) −2.82629 −0.270710 −0.135355 0.990797i \(-0.543217\pi\)
−0.135355 + 0.990797i \(0.543217\pi\)
\(110\) 4.24360 0.404611
\(111\) 6.50667 0.617586
\(112\) −0.471465 −0.0445492
\(113\) −12.0708 −1.13552 −0.567761 0.823193i \(-0.692190\pi\)
−0.567761 + 0.823193i \(0.692190\pi\)
\(114\) 1.49083 0.139629
\(115\) 0 0
\(116\) −4.17744 −0.387866
\(117\) −6.09945 −0.563894
\(118\) 11.7505 1.08172
\(119\) −1.14443 −0.104910
\(120\) −2.92985 −0.267457
\(121\) 9.36648 0.851498
\(122\) 8.25664 0.747521
\(123\) −6.80395 −0.613492
\(124\) −4.42056 −0.396978
\(125\) 1.00000 0.0894427
\(126\) 0.847010 0.0754576
\(127\) 17.1749 1.52403 0.762013 0.647562i \(-0.224211\pi\)
0.762013 + 0.647562i \(0.224211\pi\)
\(128\) −5.00474 −0.442361
\(129\) −8.12528 −0.715391
\(130\) −5.73544 −0.503031
\(131\) 10.9640 0.957932 0.478966 0.877834i \(-0.341012\pi\)
0.478966 + 0.877834i \(0.341012\pi\)
\(132\) −5.03551 −0.438285
\(133\) 1.42812 0.123834
\(134\) 2.16149 0.186725
\(135\) 1.00000 0.0860663
\(136\) 3.72240 0.319193
\(137\) −20.8050 −1.77749 −0.888744 0.458405i \(-0.848421\pi\)
−0.888744 + 0.458405i \(0.848421\pi\)
\(138\) 0 0
\(139\) 5.01420 0.425299 0.212649 0.977129i \(-0.431791\pi\)
0.212649 + 0.977129i \(0.431791\pi\)
\(140\) −1.00507 −0.0849442
\(141\) −4.16466 −0.350728
\(142\) 2.47571 0.207757
\(143\) −27.5263 −2.30187
\(144\) −0.523404 −0.0436170
\(145\) 3.74391 0.310915
\(146\) 15.9816 1.32265
\(147\) −6.18862 −0.510429
\(148\) −7.26012 −0.596779
\(149\) 17.6816 1.44854 0.724268 0.689519i \(-0.242178\pi\)
0.724268 + 0.689519i \(0.242178\pi\)
\(150\) 0.940321 0.0767769
\(151\) 16.3307 1.32898 0.664488 0.747299i \(-0.268650\pi\)
0.664488 + 0.747299i \(0.268650\pi\)
\(152\) −4.64514 −0.376770
\(153\) −1.27051 −0.102715
\(154\) 3.82249 0.308025
\(155\) 3.96180 0.318219
\(156\) 6.80575 0.544896
\(157\) 14.6183 1.16667 0.583333 0.812233i \(-0.301748\pi\)
0.583333 + 0.812233i \(0.301748\pi\)
\(158\) 1.78302 0.141850
\(159\) 10.9791 0.870697
\(160\) 5.36753 0.424340
\(161\) 0 0
\(162\) 0.940321 0.0738786
\(163\) 0.827944 0.0648496 0.0324248 0.999474i \(-0.489677\pi\)
0.0324248 + 0.999474i \(0.489677\pi\)
\(164\) 7.59183 0.592822
\(165\) 4.51292 0.351331
\(166\) 1.74581 0.135501
\(167\) 13.5622 1.04947 0.524737 0.851264i \(-0.324164\pi\)
0.524737 + 0.851264i \(0.324164\pi\)
\(168\) −2.63911 −0.203612
\(169\) 24.2033 1.86179
\(170\) −1.19469 −0.0916282
\(171\) 1.58545 0.121243
\(172\) 9.06616 0.691288
\(173\) −2.78577 −0.211798 −0.105899 0.994377i \(-0.533772\pi\)
−0.105899 + 0.994377i \(0.533772\pi\)
\(174\) 3.52047 0.266886
\(175\) 0.900767 0.0680916
\(176\) −2.36208 −0.178048
\(177\) 12.4963 0.939280
\(178\) −7.40617 −0.555116
\(179\) 3.73006 0.278798 0.139399 0.990236i \(-0.455483\pi\)
0.139399 + 0.990236i \(0.455483\pi\)
\(180\) −1.11580 −0.0831666
\(181\) −13.8263 −1.02770 −0.513850 0.857880i \(-0.671781\pi\)
−0.513850 + 0.857880i \(0.671781\pi\)
\(182\) −5.16629 −0.382951
\(183\) 8.78067 0.649086
\(184\) 0 0
\(185\) 6.50667 0.478380
\(186\) 3.72536 0.273157
\(187\) −5.73371 −0.419290
\(188\) 4.64692 0.338911
\(189\) 0.900767 0.0655212
\(190\) 1.49083 0.108156
\(191\) 0.0561299 0.00406142 0.00203071 0.999998i \(-0.499354\pi\)
0.00203071 + 0.999998i \(0.499354\pi\)
\(192\) 6.09401 0.439797
\(193\) −15.3652 −1.10601 −0.553004 0.833178i \(-0.686519\pi\)
−0.553004 + 0.833178i \(0.686519\pi\)
\(194\) 7.44462 0.534493
\(195\) −6.09945 −0.436791
\(196\) 6.90524 0.493232
\(197\) 11.4603 0.816510 0.408255 0.912868i \(-0.366137\pi\)
0.408255 + 0.912868i \(0.366137\pi\)
\(198\) 4.24360 0.301579
\(199\) −9.94742 −0.705154 −0.352577 0.935783i \(-0.614695\pi\)
−0.352577 + 0.935783i \(0.614695\pi\)
\(200\) −2.92985 −0.207172
\(201\) 2.29868 0.162136
\(202\) −5.97196 −0.420186
\(203\) 3.37239 0.236695
\(204\) 1.41763 0.0992539
\(205\) −6.80395 −0.475209
\(206\) −13.0461 −0.908966
\(207\) 0 0
\(208\) 3.19247 0.221358
\(209\) 7.15503 0.494924
\(210\) 0.847010 0.0584492
\(211\) 17.7720 1.22347 0.611736 0.791062i \(-0.290471\pi\)
0.611736 + 0.791062i \(0.290471\pi\)
\(212\) −12.2504 −0.841362
\(213\) 2.63284 0.180399
\(214\) 8.48525 0.580039
\(215\) −8.12528 −0.554140
\(216\) −2.92985 −0.199351
\(217\) 3.56866 0.242256
\(218\) −2.65762 −0.179997
\(219\) 16.9959 1.14848
\(220\) −5.03551 −0.339494
\(221\) 7.74940 0.521281
\(222\) 6.11836 0.410637
\(223\) 4.42153 0.296088 0.148044 0.988981i \(-0.452702\pi\)
0.148044 + 0.988981i \(0.452702\pi\)
\(224\) 4.83489 0.323045
\(225\) 1.00000 0.0666667
\(226\) −11.3504 −0.755017
\(227\) −4.58802 −0.304518 −0.152259 0.988341i \(-0.548655\pi\)
−0.152259 + 0.988341i \(0.548655\pi\)
\(228\) −1.76904 −0.117158
\(229\) 21.0759 1.39273 0.696366 0.717687i \(-0.254799\pi\)
0.696366 + 0.717687i \(0.254799\pi\)
\(230\) 0 0
\(231\) 4.06509 0.267463
\(232\) −10.9691 −0.720156
\(233\) 9.07587 0.594580 0.297290 0.954787i \(-0.403917\pi\)
0.297290 + 0.954787i \(0.403917\pi\)
\(234\) −5.73544 −0.374937
\(235\) −4.16466 −0.271673
\(236\) −13.9433 −0.907634
\(237\) 1.89618 0.123170
\(238\) −1.07613 −0.0697554
\(239\) −3.81330 −0.246662 −0.123331 0.992366i \(-0.539358\pi\)
−0.123331 + 0.992366i \(0.539358\pi\)
\(240\) −0.523404 −0.0337856
\(241\) 22.0471 1.42018 0.710088 0.704113i \(-0.248655\pi\)
0.710088 + 0.704113i \(0.248655\pi\)
\(242\) 8.80749 0.566167
\(243\) 1.00000 0.0641500
\(244\) −9.79744 −0.627217
\(245\) −6.18862 −0.395376
\(246\) −6.39790 −0.407915
\(247\) −9.67039 −0.615312
\(248\) −11.6075 −0.737075
\(249\) 1.85661 0.117658
\(250\) 0.940321 0.0594711
\(251\) 18.1889 1.14808 0.574038 0.818829i \(-0.305376\pi\)
0.574038 + 0.818829i \(0.305376\pi\)
\(252\) −1.00507 −0.0633137
\(253\) 0 0
\(254\) 16.1499 1.01334
\(255\) −1.27051 −0.0795623
\(256\) −16.8941 −1.05588
\(257\) 8.45524 0.527423 0.263712 0.964602i \(-0.415053\pi\)
0.263712 + 0.964602i \(0.415053\pi\)
\(258\) −7.64037 −0.475669
\(259\) 5.86100 0.364185
\(260\) 6.80575 0.422074
\(261\) 3.74391 0.231742
\(262\) 10.3097 0.636936
\(263\) −13.6747 −0.843219 −0.421609 0.906778i \(-0.638535\pi\)
−0.421609 + 0.906778i \(0.638535\pi\)
\(264\) −13.2222 −0.813769
\(265\) 10.9791 0.674439
\(266\) 1.34289 0.0823381
\(267\) −7.87622 −0.482017
\(268\) −2.56486 −0.156673
\(269\) −28.9955 −1.76789 −0.883943 0.467595i \(-0.845120\pi\)
−0.883943 + 0.467595i \(0.845120\pi\)
\(270\) 0.940321 0.0572261
\(271\) −8.89950 −0.540606 −0.270303 0.962775i \(-0.587124\pi\)
−0.270303 + 0.962775i \(0.587124\pi\)
\(272\) 0.664989 0.0403209
\(273\) −5.49418 −0.332523
\(274\) −19.5633 −1.18186
\(275\) 4.51292 0.272140
\(276\) 0 0
\(277\) −19.9351 −1.19778 −0.598892 0.800830i \(-0.704392\pi\)
−0.598892 + 0.800830i \(0.704392\pi\)
\(278\) 4.71495 0.282784
\(279\) 3.96180 0.237187
\(280\) −2.63911 −0.157717
\(281\) −15.8844 −0.947585 −0.473793 0.880636i \(-0.657115\pi\)
−0.473793 + 0.880636i \(0.657115\pi\)
\(282\) −3.91612 −0.233201
\(283\) 2.37591 0.141233 0.0706165 0.997504i \(-0.477503\pi\)
0.0706165 + 0.997504i \(0.477503\pi\)
\(284\) −2.93772 −0.174321
\(285\) 1.58545 0.0939141
\(286\) −25.8836 −1.53053
\(287\) −6.12878 −0.361770
\(288\) 5.36753 0.316285
\(289\) −15.3858 −0.905048
\(290\) 3.52047 0.206729
\(291\) 7.91711 0.464109
\(292\) −18.9640 −1.10978
\(293\) −27.5667 −1.61046 −0.805231 0.592962i \(-0.797959\pi\)
−0.805231 + 0.592962i \(0.797959\pi\)
\(294\) −5.81929 −0.339388
\(295\) 12.4963 0.727563
\(296\) −19.0636 −1.10805
\(297\) 4.51292 0.261866
\(298\) 16.6264 0.963142
\(299\) 0 0
\(300\) −1.11580 −0.0644206
\(301\) −7.31899 −0.421859
\(302\) 15.3561 0.883645
\(303\) −6.35098 −0.364854
\(304\) −0.829832 −0.0475941
\(305\) 8.78067 0.502780
\(306\) −1.19469 −0.0682956
\(307\) −23.5739 −1.34543 −0.672717 0.739900i \(-0.734873\pi\)
−0.672717 + 0.739900i \(0.734873\pi\)
\(308\) −4.53582 −0.258452
\(309\) −13.8741 −0.789271
\(310\) 3.72536 0.211586
\(311\) 8.25013 0.467822 0.233911 0.972258i \(-0.424848\pi\)
0.233911 + 0.972258i \(0.424848\pi\)
\(312\) 17.8705 1.01172
\(313\) −5.04722 −0.285286 −0.142643 0.989774i \(-0.545560\pi\)
−0.142643 + 0.989774i \(0.545560\pi\)
\(314\) 13.7459 0.775725
\(315\) 0.900767 0.0507525
\(316\) −2.11576 −0.119021
\(317\) −13.4338 −0.754517 −0.377259 0.926108i \(-0.623133\pi\)
−0.377259 + 0.926108i \(0.623133\pi\)
\(318\) 10.3238 0.578932
\(319\) 16.8960 0.945993
\(320\) 6.09401 0.340665
\(321\) 9.02378 0.503658
\(322\) 0 0
\(323\) −2.01433 −0.112080
\(324\) −1.11580 −0.0619887
\(325\) −6.09945 −0.338337
\(326\) 0.778533 0.0431189
\(327\) −2.82629 −0.156294
\(328\) 19.9346 1.10070
\(329\) −3.75139 −0.206821
\(330\) 4.24360 0.233602
\(331\) 31.4909 1.73090 0.865448 0.500999i \(-0.167034\pi\)
0.865448 + 0.500999i \(0.167034\pi\)
\(332\) −2.07160 −0.113694
\(333\) 6.50667 0.356563
\(334\) 12.7528 0.697803
\(335\) 2.29868 0.125590
\(336\) −0.471465 −0.0257205
\(337\) −0.698321 −0.0380400 −0.0190200 0.999819i \(-0.506055\pi\)
−0.0190200 + 0.999819i \(0.506055\pi\)
\(338\) 22.7588 1.23792
\(339\) −12.0708 −0.655594
\(340\) 1.41763 0.0768817
\(341\) 17.8793 0.968218
\(342\) 1.49083 0.0806151
\(343\) −11.8799 −0.641453
\(344\) 23.8058 1.28352
\(345\) 0 0
\(346\) −2.61952 −0.140826
\(347\) 0.0482511 0.00259026 0.00129513 0.999999i \(-0.499588\pi\)
0.00129513 + 0.999999i \(0.499588\pi\)
\(348\) −4.17744 −0.223934
\(349\) 20.1329 1.07769 0.538846 0.842404i \(-0.318861\pi\)
0.538846 + 0.842404i \(0.318861\pi\)
\(350\) 0.847010 0.0452746
\(351\) −6.09945 −0.325564
\(352\) 24.2233 1.29110
\(353\) 18.0732 0.961941 0.480970 0.876737i \(-0.340284\pi\)
0.480970 + 0.876737i \(0.340284\pi\)
\(354\) 11.7505 0.624534
\(355\) 2.63284 0.139737
\(356\) 8.78826 0.465777
\(357\) −1.14443 −0.0605698
\(358\) 3.50745 0.185375
\(359\) 25.6829 1.35549 0.677746 0.735296i \(-0.262957\pi\)
0.677746 + 0.735296i \(0.262957\pi\)
\(360\) −2.92985 −0.154417
\(361\) −16.4863 −0.867702
\(362\) −13.0012 −0.683325
\(363\) 9.36648 0.491613
\(364\) 6.13039 0.321320
\(365\) 16.9959 0.889608
\(366\) 8.25664 0.431582
\(367\) 11.0459 0.576593 0.288296 0.957541i \(-0.406911\pi\)
0.288296 + 0.957541i \(0.406911\pi\)
\(368\) 0 0
\(369\) −6.80395 −0.354200
\(370\) 6.11836 0.318078
\(371\) 9.88958 0.513442
\(372\) −4.42056 −0.229195
\(373\) 22.4932 1.16465 0.582327 0.812955i \(-0.302142\pi\)
0.582327 + 0.812955i \(0.302142\pi\)
\(374\) −5.39152 −0.278789
\(375\) 1.00000 0.0516398
\(376\) 12.2018 0.629261
\(377\) −22.8358 −1.17610
\(378\) 0.847010 0.0435655
\(379\) 31.4499 1.61547 0.807736 0.589544i \(-0.200693\pi\)
0.807736 + 0.589544i \(0.200693\pi\)
\(380\) −1.76904 −0.0907500
\(381\) 17.1749 0.879896
\(382\) 0.0527801 0.00270047
\(383\) −6.92241 −0.353719 −0.176859 0.984236i \(-0.556594\pi\)
−0.176859 + 0.984236i \(0.556594\pi\)
\(384\) −5.00474 −0.255397
\(385\) 4.06509 0.207176
\(386\) −14.4482 −0.735393
\(387\) −8.12528 −0.413031
\(388\) −8.83389 −0.448473
\(389\) 1.27636 0.0647141 0.0323571 0.999476i \(-0.489699\pi\)
0.0323571 + 0.999476i \(0.489699\pi\)
\(390\) −5.73544 −0.290425
\(391\) 0 0
\(392\) 18.1317 0.915790
\(393\) 10.9640 0.553062
\(394\) 10.7763 0.542904
\(395\) 1.89618 0.0954074
\(396\) −5.03551 −0.253044
\(397\) 24.2092 1.21503 0.607513 0.794310i \(-0.292167\pi\)
0.607513 + 0.794310i \(0.292167\pi\)
\(398\) −9.35377 −0.468862
\(399\) 1.42812 0.0714956
\(400\) −0.523404 −0.0261702
\(401\) −29.1390 −1.45513 −0.727566 0.686038i \(-0.759348\pi\)
−0.727566 + 0.686038i \(0.759348\pi\)
\(402\) 2.16149 0.107805
\(403\) −24.1648 −1.20373
\(404\) 7.08641 0.352562
\(405\) 1.00000 0.0496904
\(406\) 3.17113 0.157380
\(407\) 29.3641 1.45553
\(408\) 3.72240 0.184286
\(409\) 20.1242 0.995078 0.497539 0.867442i \(-0.334237\pi\)
0.497539 + 0.867442i \(0.334237\pi\)
\(410\) −6.39790 −0.315970
\(411\) −20.8050 −1.02623
\(412\) 15.4807 0.762679
\(413\) 11.2563 0.553884
\(414\) 0 0
\(415\) 1.85661 0.0911374
\(416\) −32.7390 −1.60516
\(417\) 5.01420 0.245546
\(418\) 6.72802 0.329078
\(419\) 35.6028 1.73931 0.869655 0.493660i \(-0.164341\pi\)
0.869655 + 0.493660i \(0.164341\pi\)
\(420\) −1.00507 −0.0490425
\(421\) 9.23595 0.450132 0.225066 0.974343i \(-0.427740\pi\)
0.225066 + 0.974343i \(0.427740\pi\)
\(422\) 16.7113 0.813496
\(423\) −4.16466 −0.202493
\(424\) −32.1670 −1.56217
\(425\) −1.27051 −0.0616287
\(426\) 2.47571 0.119949
\(427\) 7.90934 0.382760
\(428\) −10.0687 −0.486689
\(429\) −27.5263 −1.32898
\(430\) −7.64037 −0.368451
\(431\) −13.0545 −0.628815 −0.314407 0.949288i \(-0.601806\pi\)
−0.314407 + 0.949288i \(0.601806\pi\)
\(432\) −0.523404 −0.0251823
\(433\) −25.9145 −1.24537 −0.622687 0.782471i \(-0.713959\pi\)
−0.622687 + 0.782471i \(0.713959\pi\)
\(434\) 3.35568 0.161078
\(435\) 3.74391 0.179507
\(436\) 3.15357 0.151028
\(437\) 0 0
\(438\) 15.9816 0.763632
\(439\) −4.50428 −0.214977 −0.107489 0.994206i \(-0.534281\pi\)
−0.107489 + 0.994206i \(0.534281\pi\)
\(440\) −13.2222 −0.630343
\(441\) −6.18862 −0.294696
\(442\) 7.28692 0.346604
\(443\) 14.6140 0.694334 0.347167 0.937803i \(-0.387144\pi\)
0.347167 + 0.937803i \(0.387144\pi\)
\(444\) −7.26012 −0.344550
\(445\) −7.87622 −0.373369
\(446\) 4.15766 0.196871
\(447\) 17.6816 0.836313
\(448\) 5.48928 0.259344
\(449\) −11.2963 −0.533107 −0.266553 0.963820i \(-0.585885\pi\)
−0.266553 + 0.963820i \(0.585885\pi\)
\(450\) 0.940321 0.0443271
\(451\) −30.7057 −1.44588
\(452\) 13.4685 0.633506
\(453\) 16.3307 0.767284
\(454\) −4.31421 −0.202476
\(455\) −5.49418 −0.257571
\(456\) −4.64514 −0.217528
\(457\) −35.0417 −1.63918 −0.819592 0.572948i \(-0.805800\pi\)
−0.819592 + 0.572948i \(0.805800\pi\)
\(458\) 19.8181 0.926038
\(459\) −1.27051 −0.0593023
\(460\) 0 0
\(461\) 24.5923 1.14538 0.572688 0.819773i \(-0.305901\pi\)
0.572688 + 0.819773i \(0.305901\pi\)
\(462\) 3.82249 0.177838
\(463\) −40.3524 −1.87534 −0.937668 0.347531i \(-0.887020\pi\)
−0.937668 + 0.347531i \(0.887020\pi\)
\(464\) −1.95957 −0.0909710
\(465\) 3.96180 0.183724
\(466\) 8.53423 0.395341
\(467\) 30.1423 1.39482 0.697410 0.716672i \(-0.254336\pi\)
0.697410 + 0.716672i \(0.254336\pi\)
\(468\) 6.80575 0.314596
\(469\) 2.07057 0.0956101
\(470\) −3.91612 −0.180637
\(471\) 14.6183 0.673575
\(472\) −36.6123 −1.68522
\(473\) −36.6688 −1.68603
\(474\) 1.78302 0.0818969
\(475\) 1.58545 0.0727456
\(476\) 1.27695 0.0585291
\(477\) 10.9791 0.502697
\(478\) −3.58573 −0.164007
\(479\) 11.4493 0.523134 0.261567 0.965185i \(-0.415761\pi\)
0.261567 + 0.965185i \(0.415761\pi\)
\(480\) 5.36753 0.244993
\(481\) −39.6871 −1.80958
\(482\) 20.7313 0.944285
\(483\) 0 0
\(484\) −10.4511 −0.475049
\(485\) 7.91711 0.359498
\(486\) 0.940321 0.0426538
\(487\) −7.02770 −0.318456 −0.159228 0.987242i \(-0.550900\pi\)
−0.159228 + 0.987242i \(0.550900\pi\)
\(488\) −25.7260 −1.16456
\(489\) 0.827944 0.0374409
\(490\) −5.81929 −0.262889
\(491\) −42.2142 −1.90510 −0.952549 0.304384i \(-0.901549\pi\)
−0.952549 + 0.304384i \(0.901549\pi\)
\(492\) 7.59183 0.342266
\(493\) −4.75667 −0.214229
\(494\) −9.09327 −0.409125
\(495\) 4.51292 0.202841
\(496\) −2.07362 −0.0931082
\(497\) 2.37158 0.106380
\(498\) 1.74581 0.0782315
\(499\) 10.8302 0.484828 0.242414 0.970173i \(-0.422061\pi\)
0.242414 + 0.970173i \(0.422061\pi\)
\(500\) −1.11580 −0.0499000
\(501\) 13.5622 0.605914
\(502\) 17.1034 0.763364
\(503\) 15.5135 0.691712 0.345856 0.938288i \(-0.387589\pi\)
0.345856 + 0.938288i \(0.387589\pi\)
\(504\) −2.63911 −0.117555
\(505\) −6.35098 −0.282615
\(506\) 0 0
\(507\) 24.2033 1.07490
\(508\) −19.1637 −0.850251
\(509\) 25.9348 1.14954 0.574770 0.818315i \(-0.305091\pi\)
0.574770 + 0.818315i \(0.305091\pi\)
\(510\) −1.19469 −0.0529016
\(511\) 15.3094 0.677247
\(512\) −5.87637 −0.259701
\(513\) 1.58545 0.0699995
\(514\) 7.95064 0.350688
\(515\) −13.8741 −0.611367
\(516\) 9.06616 0.399116
\(517\) −18.7948 −0.826594
\(518\) 5.51122 0.242149
\(519\) −2.78577 −0.122282
\(520\) 17.8705 0.783671
\(521\) −14.9243 −0.653843 −0.326922 0.945051i \(-0.606011\pi\)
−0.326922 + 0.945051i \(0.606011\pi\)
\(522\) 3.52047 0.154087
\(523\) 21.2952 0.931173 0.465587 0.885002i \(-0.345843\pi\)
0.465587 + 0.885002i \(0.345843\pi\)
\(524\) −12.2336 −0.534429
\(525\) 0.900767 0.0393127
\(526\) −12.8586 −0.560662
\(527\) −5.03350 −0.219263
\(528\) −2.36208 −0.102796
\(529\) 0 0
\(530\) 10.3238 0.448439
\(531\) 12.4963 0.542293
\(532\) −1.59350 −0.0690868
\(533\) 41.5004 1.79758
\(534\) −7.40617 −0.320496
\(535\) 9.02378 0.390132
\(536\) −6.73477 −0.290898
\(537\) 3.73006 0.160964
\(538\) −27.2650 −1.17548
\(539\) −27.9288 −1.20298
\(540\) −1.11580 −0.0480163
\(541\) −40.6751 −1.74876 −0.874379 0.485244i \(-0.838731\pi\)
−0.874379 + 0.485244i \(0.838731\pi\)
\(542\) −8.36838 −0.359453
\(543\) −13.8263 −0.593343
\(544\) −6.81949 −0.292383
\(545\) −2.82629 −0.121065
\(546\) −5.16629 −0.221097
\(547\) −7.12983 −0.304850 −0.152425 0.988315i \(-0.548708\pi\)
−0.152425 + 0.988315i \(0.548708\pi\)
\(548\) 23.2141 0.991657
\(549\) 8.78067 0.374750
\(550\) 4.24360 0.180948
\(551\) 5.93579 0.252873
\(552\) 0 0
\(553\) 1.70802 0.0726324
\(554\) −18.7454 −0.796415
\(555\) 6.50667 0.276193
\(556\) −5.59482 −0.237273
\(557\) −6.68273 −0.283156 −0.141578 0.989927i \(-0.545218\pi\)
−0.141578 + 0.989927i \(0.545218\pi\)
\(558\) 3.72536 0.157707
\(559\) 49.5597 2.09615
\(560\) −0.471465 −0.0199230
\(561\) −5.73371 −0.242077
\(562\) −14.9365 −0.630056
\(563\) 16.7057 0.704060 0.352030 0.935989i \(-0.385491\pi\)
0.352030 + 0.935989i \(0.385491\pi\)
\(564\) 4.64692 0.195670
\(565\) −12.0708 −0.507821
\(566\) 2.23412 0.0939069
\(567\) 0.900767 0.0378287
\(568\) −7.71382 −0.323665
\(569\) −2.82864 −0.118583 −0.0592913 0.998241i \(-0.518884\pi\)
−0.0592913 + 0.998241i \(0.518884\pi\)
\(570\) 1.49083 0.0624442
\(571\) −25.7150 −1.07614 −0.538070 0.842900i \(-0.680847\pi\)
−0.538070 + 0.842900i \(0.680847\pi\)
\(572\) 30.7138 1.28421
\(573\) 0.0561299 0.00234486
\(574\) −5.76302 −0.240544
\(575\) 0 0
\(576\) 6.09401 0.253917
\(577\) −28.5476 −1.18845 −0.594225 0.804299i \(-0.702541\pi\)
−0.594225 + 0.804299i \(0.702541\pi\)
\(578\) −14.4676 −0.601773
\(579\) −15.3652 −0.638555
\(580\) −4.17744 −0.173459
\(581\) 1.67237 0.0693817
\(582\) 7.44462 0.308590
\(583\) 49.5477 2.05206
\(584\) −49.7955 −2.06055
\(585\) −6.09945 −0.252181
\(586\) −25.9215 −1.07081
\(587\) 37.9216 1.56519 0.782596 0.622529i \(-0.213895\pi\)
0.782596 + 0.622529i \(0.213895\pi\)
\(588\) 6.90524 0.284767
\(589\) 6.28124 0.258814
\(590\) 11.7505 0.483762
\(591\) 11.4603 0.471412
\(592\) −3.40562 −0.139970
\(593\) −24.9412 −1.02421 −0.512106 0.858922i \(-0.671135\pi\)
−0.512106 + 0.858922i \(0.671135\pi\)
\(594\) 4.24360 0.174117
\(595\) −1.14443 −0.0469171
\(596\) −19.7291 −0.808136
\(597\) −9.94742 −0.407121
\(598\) 0 0
\(599\) 10.9837 0.448783 0.224391 0.974499i \(-0.427961\pi\)
0.224391 + 0.974499i \(0.427961\pi\)
\(600\) −2.92985 −0.119611
\(601\) 2.38656 0.0973496 0.0486748 0.998815i \(-0.484500\pi\)
0.0486748 + 0.998815i \(0.484500\pi\)
\(602\) −6.88219 −0.280497
\(603\) 2.29868 0.0936093
\(604\) −18.2218 −0.741433
\(605\) 9.36648 0.380801
\(606\) −5.97196 −0.242594
\(607\) 39.5841 1.60667 0.803335 0.595528i \(-0.203057\pi\)
0.803335 + 0.595528i \(0.203057\pi\)
\(608\) 8.50997 0.345125
\(609\) 3.37239 0.136656
\(610\) 8.25664 0.334302
\(611\) 25.4021 1.02766
\(612\) 1.41763 0.0573043
\(613\) −22.1806 −0.895867 −0.447934 0.894067i \(-0.647840\pi\)
−0.447934 + 0.894067i \(0.647840\pi\)
\(614\) −22.1670 −0.894589
\(615\) −6.80395 −0.274362
\(616\) −11.9101 −0.479872
\(617\) −20.3895 −0.820849 −0.410424 0.911895i \(-0.634619\pi\)
−0.410424 + 0.911895i \(0.634619\pi\)
\(618\) −13.0461 −0.524792
\(619\) −39.6478 −1.59358 −0.796789 0.604258i \(-0.793470\pi\)
−0.796789 + 0.604258i \(0.793470\pi\)
\(620\) −4.42056 −0.177534
\(621\) 0 0
\(622\) 7.75777 0.311058
\(623\) −7.09464 −0.284241
\(624\) 3.19247 0.127801
\(625\) 1.00000 0.0400000
\(626\) −4.74601 −0.189689
\(627\) 7.15503 0.285744
\(628\) −16.3110 −0.650881
\(629\) −8.26678 −0.329618
\(630\) 0.847010 0.0337457
\(631\) 23.4803 0.934737 0.467369 0.884063i \(-0.345202\pi\)
0.467369 + 0.884063i \(0.345202\pi\)
\(632\) −5.55553 −0.220987
\(633\) 17.7720 0.706372
\(634\) −12.6321 −0.501684
\(635\) 17.1749 0.681565
\(636\) −12.2504 −0.485760
\(637\) 37.7472 1.49560
\(638\) 15.8876 0.628997
\(639\) 2.63284 0.104154
\(640\) −5.00474 −0.197830
\(641\) 10.2947 0.406616 0.203308 0.979115i \(-0.434831\pi\)
0.203308 + 0.979115i \(0.434831\pi\)
\(642\) 8.48525 0.334886
\(643\) −0.936695 −0.0369397 −0.0184698 0.999829i \(-0.505879\pi\)
−0.0184698 + 0.999829i \(0.505879\pi\)
\(644\) 0 0
\(645\) −8.12528 −0.319933
\(646\) −1.89412 −0.0745231
\(647\) −16.1377 −0.634438 −0.317219 0.948352i \(-0.602749\pi\)
−0.317219 + 0.948352i \(0.602749\pi\)
\(648\) −2.92985 −0.115095
\(649\) 56.3949 2.21369
\(650\) −5.73544 −0.224962
\(651\) 3.56866 0.139867
\(652\) −0.923817 −0.0361795
\(653\) 15.3731 0.601597 0.300798 0.953688i \(-0.402747\pi\)
0.300798 + 0.953688i \(0.402747\pi\)
\(654\) −2.65762 −0.103921
\(655\) 10.9640 0.428400
\(656\) 3.56121 0.139042
\(657\) 16.9959 0.663074
\(658\) −3.52751 −0.137517
\(659\) −7.37808 −0.287409 −0.143705 0.989621i \(-0.545902\pi\)
−0.143705 + 0.989621i \(0.545902\pi\)
\(660\) −5.03551 −0.196007
\(661\) −40.2012 −1.56365 −0.781823 0.623501i \(-0.785710\pi\)
−0.781823 + 0.623501i \(0.785710\pi\)
\(662\) 29.6115 1.15089
\(663\) 7.74940 0.300962
\(664\) −5.43958 −0.211097
\(665\) 1.42812 0.0553803
\(666\) 6.11836 0.237082
\(667\) 0 0
\(668\) −15.1327 −0.585500
\(669\) 4.42153 0.170946
\(670\) 2.16149 0.0835058
\(671\) 39.6265 1.52976
\(672\) 4.83489 0.186510
\(673\) 40.2647 1.55209 0.776045 0.630677i \(-0.217223\pi\)
0.776045 + 0.630677i \(0.217223\pi\)
\(674\) −0.656646 −0.0252930
\(675\) 1.00000 0.0384900
\(676\) −27.0059 −1.03869
\(677\) 8.89475 0.341853 0.170927 0.985284i \(-0.445324\pi\)
0.170927 + 0.985284i \(0.445324\pi\)
\(678\) −11.3504 −0.435909
\(679\) 7.13147 0.273681
\(680\) 3.72240 0.142747
\(681\) −4.58802 −0.175813
\(682\) 16.8123 0.643775
\(683\) 18.8086 0.719692 0.359846 0.933012i \(-0.382829\pi\)
0.359846 + 0.933012i \(0.382829\pi\)
\(684\) −1.76904 −0.0676411
\(685\) −20.8050 −0.794916
\(686\) −11.1709 −0.426507
\(687\) 21.0759 0.804094
\(688\) 4.25280 0.162137
\(689\) −66.9662 −2.55121
\(690\) 0 0
\(691\) 28.9522 1.10139 0.550697 0.834705i \(-0.314362\pi\)
0.550697 + 0.834705i \(0.314362\pi\)
\(692\) 3.10835 0.118162
\(693\) 4.06509 0.154420
\(694\) 0.0453715 0.00172228
\(695\) 5.01420 0.190199
\(696\) −10.9691 −0.415782
\(697\) 8.64448 0.327433
\(698\) 18.9314 0.716565
\(699\) 9.07587 0.343281
\(700\) −1.00507 −0.0379882
\(701\) −25.9224 −0.979074 −0.489537 0.871983i \(-0.662834\pi\)
−0.489537 + 0.871983i \(0.662834\pi\)
\(702\) −5.73544 −0.216470
\(703\) 10.3160 0.389076
\(704\) 27.5018 1.03651
\(705\) −4.16466 −0.156850
\(706\) 16.9946 0.639601
\(707\) −5.72076 −0.215151
\(708\) −13.9433 −0.524023
\(709\) 17.3151 0.650283 0.325142 0.945665i \(-0.394588\pi\)
0.325142 + 0.945665i \(0.394588\pi\)
\(710\) 2.47571 0.0929119
\(711\) 1.89618 0.0711124
\(712\) 23.0761 0.864814
\(713\) 0 0
\(714\) −1.07613 −0.0402733
\(715\) −27.5263 −1.02943
\(716\) −4.16199 −0.155541
\(717\) −3.81330 −0.142410
\(718\) 24.1502 0.901276
\(719\) −32.8202 −1.22399 −0.611993 0.790863i \(-0.709632\pi\)
−0.611993 + 0.790863i \(0.709632\pi\)
\(720\) −0.523404 −0.0195061
\(721\) −12.4973 −0.465426
\(722\) −15.5024 −0.576941
\(723\) 22.0471 0.819939
\(724\) 15.4273 0.573353
\(725\) 3.74391 0.139045
\(726\) 8.80749 0.326877
\(727\) 26.0789 0.967212 0.483606 0.875286i \(-0.339327\pi\)
0.483606 + 0.875286i \(0.339327\pi\)
\(728\) 16.0971 0.596599
\(729\) 1.00000 0.0370370
\(730\) 15.9816 0.591507
\(731\) 10.3232 0.381819
\(732\) −9.79744 −0.362124
\(733\) 18.0171 0.665477 0.332738 0.943019i \(-0.392027\pi\)
0.332738 + 0.943019i \(0.392027\pi\)
\(734\) 10.3867 0.383381
\(735\) −6.18862 −0.228271
\(736\) 0 0
\(737\) 10.3737 0.382122
\(738\) −6.39790 −0.235510
\(739\) −9.55183 −0.351370 −0.175685 0.984446i \(-0.556214\pi\)
−0.175685 + 0.984446i \(0.556214\pi\)
\(740\) −7.26012 −0.266887
\(741\) −9.67039 −0.355251
\(742\) 9.29938 0.341391
\(743\) −38.1371 −1.39911 −0.699557 0.714577i \(-0.746619\pi\)
−0.699557 + 0.714577i \(0.746619\pi\)
\(744\) −11.6075 −0.425550
\(745\) 17.6816 0.647805
\(746\) 21.1508 0.774386
\(747\) 1.85661 0.0679298
\(748\) 6.39765 0.233921
\(749\) 8.12832 0.297002
\(750\) 0.940321 0.0343357
\(751\) −52.9770 −1.93316 −0.966580 0.256367i \(-0.917475\pi\)
−0.966580 + 0.256367i \(0.917475\pi\)
\(752\) 2.17980 0.0794891
\(753\) 18.1889 0.662842
\(754\) −21.4729 −0.781999
\(755\) 16.3307 0.594336
\(756\) −1.00507 −0.0365542
\(757\) −15.1249 −0.549722 −0.274861 0.961484i \(-0.588632\pi\)
−0.274861 + 0.961484i \(0.588632\pi\)
\(758\) 29.5730 1.07414
\(759\) 0 0
\(760\) −4.64514 −0.168497
\(761\) 24.7091 0.895704 0.447852 0.894108i \(-0.352189\pi\)
0.447852 + 0.894108i \(0.352189\pi\)
\(762\) 16.1499 0.585049
\(763\) −2.54583 −0.0921653
\(764\) −0.0626296 −0.00226586
\(765\) −1.27051 −0.0459353
\(766\) −6.50928 −0.235190
\(767\) −76.2205 −2.75216
\(768\) −16.8941 −0.609612
\(769\) −33.1942 −1.19701 −0.598507 0.801117i \(-0.704239\pi\)
−0.598507 + 0.801117i \(0.704239\pi\)
\(770\) 3.82249 0.137753
\(771\) 8.45524 0.304508
\(772\) 17.1444 0.617041
\(773\) −53.2984 −1.91701 −0.958505 0.285075i \(-0.907982\pi\)
−0.958505 + 0.285075i \(0.907982\pi\)
\(774\) −7.64037 −0.274627
\(775\) 3.96180 0.142312
\(776\) −23.1959 −0.832686
\(777\) 5.86100 0.210262
\(778\) 1.20019 0.0430289
\(779\) −10.7873 −0.386497
\(780\) 6.80575 0.243685
\(781\) 11.8818 0.425164
\(782\) 0 0
\(783\) 3.74391 0.133796
\(784\) 3.23914 0.115684
\(785\) 14.6183 0.521749
\(786\) 10.3097 0.367735
\(787\) 10.2904 0.366812 0.183406 0.983037i \(-0.441288\pi\)
0.183406 + 0.983037i \(0.441288\pi\)
\(788\) −12.7873 −0.455530
\(789\) −13.6747 −0.486832
\(790\) 1.78302 0.0634370
\(791\) −10.8730 −0.386598
\(792\) −13.2222 −0.469830
\(793\) −53.5572 −1.90187
\(794\) 22.7644 0.807879
\(795\) 10.9791 0.389387
\(796\) 11.0993 0.393404
\(797\) −2.58303 −0.0914956 −0.0457478 0.998953i \(-0.514567\pi\)
−0.0457478 + 0.998953i \(0.514567\pi\)
\(798\) 1.34289 0.0475380
\(799\) 5.29124 0.187191
\(800\) 5.36753 0.189771
\(801\) −7.87622 −0.278293
\(802\) −27.4000 −0.967527
\(803\) 76.7013 2.70673
\(804\) −2.56486 −0.0904555
\(805\) 0 0
\(806\) −22.7226 −0.800371
\(807\) −28.9955 −1.02069
\(808\) 18.6074 0.654607
\(809\) −22.6860 −0.797596 −0.398798 0.917039i \(-0.630573\pi\)
−0.398798 + 0.917039i \(0.630573\pi\)
\(810\) 0.940321 0.0330395
\(811\) 32.5759 1.14390 0.571948 0.820290i \(-0.306188\pi\)
0.571948 + 0.820290i \(0.306188\pi\)
\(812\) −3.76290 −0.132052
\(813\) −8.89950 −0.312119
\(814\) 27.6117 0.967789
\(815\) 0.827944 0.0290016
\(816\) 0.664989 0.0232793
\(817\) −12.8823 −0.450693
\(818\) 18.9232 0.661634
\(819\) −5.49418 −0.191982
\(820\) 7.59183 0.265118
\(821\) 15.1522 0.528814 0.264407 0.964411i \(-0.414824\pi\)
0.264407 + 0.964411i \(0.414824\pi\)
\(822\) −19.5633 −0.682350
\(823\) −33.0458 −1.15190 −0.575952 0.817484i \(-0.695368\pi\)
−0.575952 + 0.817484i \(0.695368\pi\)
\(824\) 40.6491 1.41608
\(825\) 4.51292 0.157120
\(826\) 10.5845 0.368282
\(827\) −37.7559 −1.31290 −0.656451 0.754369i \(-0.727943\pi\)
−0.656451 + 0.754369i \(0.727943\pi\)
\(828\) 0 0
\(829\) 22.1388 0.768913 0.384456 0.923143i \(-0.374389\pi\)
0.384456 + 0.923143i \(0.374389\pi\)
\(830\) 1.74581 0.0605979
\(831\) −19.9351 −0.691540
\(832\) −37.1701 −1.28864
\(833\) 7.86269 0.272426
\(834\) 4.71495 0.163265
\(835\) 13.5622 0.469339
\(836\) −7.98356 −0.276117
\(837\) 3.96180 0.136940
\(838\) 33.4780 1.15648
\(839\) 13.2454 0.457282 0.228641 0.973511i \(-0.426572\pi\)
0.228641 + 0.973511i \(0.426572\pi\)
\(840\) −2.63911 −0.0910580
\(841\) −14.9832 −0.516661
\(842\) 8.68475 0.299296
\(843\) −15.8844 −0.547089
\(844\) −19.8299 −0.682573
\(845\) 24.2033 0.832618
\(846\) −3.91612 −0.134639
\(847\) 8.43701 0.289899
\(848\) −5.74648 −0.197335
\(849\) 2.37591 0.0815409
\(850\) −1.19469 −0.0409774
\(851\) 0 0
\(852\) −2.93772 −0.100644
\(853\) −1.64644 −0.0563730 −0.0281865 0.999603i \(-0.508973\pi\)
−0.0281865 + 0.999603i \(0.508973\pi\)
\(854\) 7.43731 0.254500
\(855\) 1.58545 0.0542213
\(856\) −26.4383 −0.903643
\(857\) 6.64062 0.226839 0.113420 0.993547i \(-0.463820\pi\)
0.113420 + 0.993547i \(0.463820\pi\)
\(858\) −25.8836 −0.883651
\(859\) −16.5104 −0.563326 −0.281663 0.959513i \(-0.590886\pi\)
−0.281663 + 0.959513i \(0.590886\pi\)
\(860\) 9.06616 0.309154
\(861\) −6.12878 −0.208868
\(862\) −12.2754 −0.418103
\(863\) −45.9851 −1.56535 −0.782676 0.622430i \(-0.786146\pi\)
−0.782676 + 0.622430i \(0.786146\pi\)
\(864\) 5.36753 0.182607
\(865\) −2.78577 −0.0947190
\(866\) −24.3680 −0.828058
\(867\) −15.3858 −0.522529
\(868\) −3.98190 −0.135154
\(869\) 8.55733 0.290288
\(870\) 3.52047 0.119355
\(871\) −14.0207 −0.475072
\(872\) 8.28061 0.280417
\(873\) 7.91711 0.267954
\(874\) 0 0
\(875\) 0.900767 0.0304515
\(876\) −18.9640 −0.640734
\(877\) −52.7762 −1.78213 −0.891063 0.453879i \(-0.850040\pi\)
−0.891063 + 0.453879i \(0.850040\pi\)
\(878\) −4.23546 −0.142940
\(879\) −27.5667 −0.929800
\(880\) −2.36208 −0.0796257
\(881\) 5.29724 0.178469 0.0892343 0.996011i \(-0.471558\pi\)
0.0892343 + 0.996011i \(0.471558\pi\)
\(882\) −5.81929 −0.195946
\(883\) −1.61448 −0.0543315 −0.0271657 0.999631i \(-0.508648\pi\)
−0.0271657 + 0.999631i \(0.508648\pi\)
\(884\) −8.64676 −0.290822
\(885\) 12.4963 0.420059
\(886\) 13.7419 0.461668
\(887\) −31.8760 −1.07029 −0.535146 0.844760i \(-0.679743\pi\)
−0.535146 + 0.844760i \(0.679743\pi\)
\(888\) −19.0636 −0.639731
\(889\) 15.4706 0.518867
\(890\) −7.40617 −0.248255
\(891\) 4.51292 0.151189
\(892\) −4.93353 −0.165187
\(893\) −6.60288 −0.220957
\(894\) 16.6264 0.556070
\(895\) 3.73006 0.124682
\(896\) −4.50810 −0.150605
\(897\) 0 0
\(898\) −10.6222 −0.354467
\(899\) 14.8326 0.494695
\(900\) −1.11580 −0.0371932
\(901\) −13.9490 −0.464708
\(902\) −28.8732 −0.961373
\(903\) −7.31899 −0.243561
\(904\) 35.3655 1.17624
\(905\) −13.8263 −0.459602
\(906\) 15.3561 0.510173
\(907\) 38.5836 1.28115 0.640574 0.767896i \(-0.278696\pi\)
0.640574 + 0.767896i \(0.278696\pi\)
\(908\) 5.11930 0.169890
\(909\) −6.35098 −0.210649
\(910\) −5.16629 −0.171261
\(911\) −37.4135 −1.23957 −0.619783 0.784774i \(-0.712779\pi\)
−0.619783 + 0.784774i \(0.712779\pi\)
\(912\) −0.829832 −0.0274785
\(913\) 8.37874 0.277296
\(914\) −32.9505 −1.08991
\(915\) 8.78067 0.290280
\(916\) −23.5164 −0.777003
\(917\) 9.87604 0.326135
\(918\) −1.19469 −0.0394305
\(919\) 11.9517 0.394250 0.197125 0.980378i \(-0.436839\pi\)
0.197125 + 0.980378i \(0.436839\pi\)
\(920\) 0 0
\(921\) −23.5739 −0.776787
\(922\) 23.1246 0.761569
\(923\) −16.0589 −0.528584
\(924\) −4.53582 −0.149217
\(925\) 6.50667 0.213938
\(926\) −37.9442 −1.24692
\(927\) −13.8741 −0.455686
\(928\) 20.0955 0.659668
\(929\) 11.9971 0.393613 0.196806 0.980442i \(-0.436943\pi\)
0.196806 + 0.980442i \(0.436943\pi\)
\(930\) 3.72536 0.122159
\(931\) −9.81176 −0.321568
\(932\) −10.1268 −0.331715
\(933\) 8.25013 0.270097
\(934\) 28.3435 0.927426
\(935\) −5.73371 −0.187512
\(936\) 17.8705 0.584114
\(937\) −10.0805 −0.329316 −0.164658 0.986351i \(-0.552652\pi\)
−0.164658 + 0.986351i \(0.552652\pi\)
\(938\) 1.94700 0.0635719
\(939\) −5.04722 −0.164710
\(940\) 4.64692 0.151566
\(941\) −1.51673 −0.0494441 −0.0247220 0.999694i \(-0.507870\pi\)
−0.0247220 + 0.999694i \(0.507870\pi\)
\(942\) 13.7459 0.447865
\(943\) 0 0
\(944\) −6.54061 −0.212879
\(945\) 0.900767 0.0293020
\(946\) −34.4804 −1.12105
\(947\) −39.5098 −1.28389 −0.641947 0.766749i \(-0.721873\pi\)
−0.641947 + 0.766749i \(0.721873\pi\)
\(948\) −2.11576 −0.0687166
\(949\) −103.666 −3.36513
\(950\) 1.49083 0.0483691
\(951\) −13.4338 −0.435621
\(952\) 3.35301 0.108672
\(953\) 6.03918 0.195628 0.0978142 0.995205i \(-0.468815\pi\)
0.0978142 + 0.995205i \(0.468815\pi\)
\(954\) 10.3238 0.334247
\(955\) 0.0561299 0.00181632
\(956\) 4.25487 0.137612
\(957\) 16.8960 0.546169
\(958\) 10.7661 0.347836
\(959\) −18.7404 −0.605160
\(960\) 6.09401 0.196683
\(961\) −15.3042 −0.493683
\(962\) −37.3186 −1.20320
\(963\) 9.02378 0.290787
\(964\) −24.6000 −0.792314
\(965\) −15.3652 −0.494622
\(966\) 0 0
\(967\) −34.1074 −1.09682 −0.548410 0.836210i \(-0.684767\pi\)
−0.548410 + 0.836210i \(0.684767\pi\)
\(968\) −27.4424 −0.882031
\(969\) −2.01433 −0.0647096
\(970\) 7.44462 0.239032
\(971\) −20.2923 −0.651211 −0.325606 0.945506i \(-0.605568\pi\)
−0.325606 + 0.945506i \(0.605568\pi\)
\(972\) −1.11580 −0.0357892
\(973\) 4.51662 0.144796
\(974\) −6.60830 −0.211743
\(975\) −6.09945 −0.195339
\(976\) −4.59583 −0.147109
\(977\) 29.2983 0.937334 0.468667 0.883375i \(-0.344734\pi\)
0.468667 + 0.883375i \(0.344734\pi\)
\(978\) 0.778533 0.0248947
\(979\) −35.5448 −1.13602
\(980\) 6.90524 0.220580
\(981\) −2.82629 −0.0902366
\(982\) −39.6949 −1.26671
\(983\) −30.8443 −0.983780 −0.491890 0.870657i \(-0.663694\pi\)
−0.491890 + 0.870657i \(0.663694\pi\)
\(984\) 19.9346 0.635490
\(985\) 11.4603 0.365155
\(986\) −4.47279 −0.142443
\(987\) −3.75139 −0.119408
\(988\) 10.7902 0.343282
\(989\) 0 0
\(990\) 4.24360 0.134870
\(991\) 40.2423 1.27834 0.639170 0.769065i \(-0.279278\pi\)
0.639170 + 0.769065i \(0.279278\pi\)
\(992\) 21.2651 0.675167
\(993\) 31.4909 0.999333
\(994\) 2.23004 0.0707326
\(995\) −9.94742 −0.315354
\(996\) −2.07160 −0.0656411
\(997\) −2.43066 −0.0769797 −0.0384898 0.999259i \(-0.512255\pi\)
−0.0384898 + 0.999259i \(0.512255\pi\)
\(998\) 10.1839 0.322366
\(999\) 6.50667 0.205862
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bw.1.14 25
23.17 odd 22 345.2.m.c.151.3 yes 50
23.19 odd 22 345.2.m.c.16.3 50
23.22 odd 2 7935.2.a.bv.1.14 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.c.16.3 50 23.19 odd 22
345.2.m.c.151.3 yes 50 23.17 odd 22
7935.2.a.bv.1.14 25 23.22 odd 2
7935.2.a.bw.1.14 25 1.1 even 1 trivial