Properties

Label 7935.2.a.bi.1.4
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,8,8,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} - 2x^{5} + 44x^{4} + 12x^{3} - 50x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.798063\) of defining polynomial
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.798063 q^{2} +1.00000 q^{3} -1.36310 q^{4} +1.00000 q^{5} -0.798063 q^{6} -0.435759 q^{7} +2.68396 q^{8} +1.00000 q^{9} -0.798063 q^{10} -4.14141 q^{11} -1.36310 q^{12} +1.76513 q^{13} +0.347763 q^{14} +1.00000 q^{15} +0.584222 q^{16} +7.75235 q^{17} -0.798063 q^{18} +0.0329352 q^{19} -1.36310 q^{20} -0.435759 q^{21} +3.30511 q^{22} +2.68396 q^{24} +1.00000 q^{25} -1.40868 q^{26} +1.00000 q^{27} +0.593981 q^{28} +2.78230 q^{29} -0.798063 q^{30} -0.294148 q^{31} -5.83417 q^{32} -4.14141 q^{33} -6.18686 q^{34} -0.435759 q^{35} -1.36310 q^{36} +7.72698 q^{37} -0.0262843 q^{38} +1.76513 q^{39} +2.68396 q^{40} +4.59797 q^{41} +0.347763 q^{42} +1.89891 q^{43} +5.64514 q^{44} +1.00000 q^{45} -11.5033 q^{47} +0.584222 q^{48} -6.81011 q^{49} -0.798063 q^{50} +7.75235 q^{51} -2.40604 q^{52} +2.47441 q^{53} -0.798063 q^{54} -4.14141 q^{55} -1.16956 q^{56} +0.0329352 q^{57} -2.22045 q^{58} +3.68016 q^{59} -1.36310 q^{60} +1.63180 q^{61} +0.234748 q^{62} -0.435759 q^{63} +3.48759 q^{64} +1.76513 q^{65} +3.30511 q^{66} -2.79862 q^{67} -10.5672 q^{68} +0.347763 q^{70} +0.419274 q^{71} +2.68396 q^{72} +3.62570 q^{73} -6.16662 q^{74} +1.00000 q^{75} -0.0448938 q^{76} +1.80466 q^{77} -1.40868 q^{78} -8.13319 q^{79} +0.584222 q^{80} +1.00000 q^{81} -3.66947 q^{82} +14.3722 q^{83} +0.593981 q^{84} +7.75235 q^{85} -1.51545 q^{86} +2.78230 q^{87} -11.1154 q^{88} -11.8324 q^{89} -0.798063 q^{90} -0.769170 q^{91} -0.294148 q^{93} +9.18036 q^{94} +0.0329352 q^{95} -5.83417 q^{96} +14.7339 q^{97} +5.43490 q^{98} -4.14141 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 8 q^{4} + 8 q^{5} + 6 q^{7} + 6 q^{8} + 8 q^{9} + 12 q^{11} + 8 q^{12} + 4 q^{13} + 8 q^{15} + 20 q^{17} + 4 q^{19} + 8 q^{20} + 6 q^{21} + 14 q^{22} + 6 q^{24} + 8 q^{25} - 22 q^{26} + 8 q^{27}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.798063 −0.564316 −0.282158 0.959368i \(-0.591050\pi\)
−0.282158 + 0.959368i \(0.591050\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.36310 −0.681548
\(5\) 1.00000 0.447214
\(6\) −0.798063 −0.325808
\(7\) −0.435759 −0.164701 −0.0823506 0.996603i \(-0.526243\pi\)
−0.0823506 + 0.996603i \(0.526243\pi\)
\(8\) 2.68396 0.948924
\(9\) 1.00000 0.333333
\(10\) −0.798063 −0.252370
\(11\) −4.14141 −1.24868 −0.624341 0.781152i \(-0.714633\pi\)
−0.624341 + 0.781152i \(0.714633\pi\)
\(12\) −1.36310 −0.393492
\(13\) 1.76513 0.489558 0.244779 0.969579i \(-0.421285\pi\)
0.244779 + 0.969579i \(0.421285\pi\)
\(14\) 0.347763 0.0929435
\(15\) 1.00000 0.258199
\(16\) 0.584222 0.146056
\(17\) 7.75235 1.88022 0.940111 0.340869i \(-0.110721\pi\)
0.940111 + 0.340869i \(0.110721\pi\)
\(18\) −0.798063 −0.188105
\(19\) 0.0329352 0.00755584 0.00377792 0.999993i \(-0.498797\pi\)
0.00377792 + 0.999993i \(0.498797\pi\)
\(20\) −1.36310 −0.304798
\(21\) −0.435759 −0.0950903
\(22\) 3.30511 0.704651
\(23\) 0 0
\(24\) 2.68396 0.547861
\(25\) 1.00000 0.200000
\(26\) −1.40868 −0.276265
\(27\) 1.00000 0.192450
\(28\) 0.593981 0.112252
\(29\) 2.78230 0.516661 0.258330 0.966057i \(-0.416828\pi\)
0.258330 + 0.966057i \(0.416828\pi\)
\(30\) −0.798063 −0.145706
\(31\) −0.294148 −0.0528305 −0.0264152 0.999651i \(-0.508409\pi\)
−0.0264152 + 0.999651i \(0.508409\pi\)
\(32\) −5.83417 −1.03135
\(33\) −4.14141 −0.720927
\(34\) −6.18686 −1.06104
\(35\) −0.435759 −0.0736567
\(36\) −1.36310 −0.227183
\(37\) 7.72698 1.27031 0.635154 0.772385i \(-0.280937\pi\)
0.635154 + 0.772385i \(0.280937\pi\)
\(38\) −0.0262843 −0.00426388
\(39\) 1.76513 0.282647
\(40\) 2.68396 0.424372
\(41\) 4.59797 0.718082 0.359041 0.933322i \(-0.383104\pi\)
0.359041 + 0.933322i \(0.383104\pi\)
\(42\) 0.347763 0.0536610
\(43\) 1.89891 0.289581 0.144790 0.989462i \(-0.453749\pi\)
0.144790 + 0.989462i \(0.453749\pi\)
\(44\) 5.64514 0.851037
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −11.5033 −1.67793 −0.838965 0.544185i \(-0.816839\pi\)
−0.838965 + 0.544185i \(0.816839\pi\)
\(48\) 0.584222 0.0843252
\(49\) −6.81011 −0.972873
\(50\) −0.798063 −0.112863
\(51\) 7.75235 1.08555
\(52\) −2.40604 −0.333657
\(53\) 2.47441 0.339886 0.169943 0.985454i \(-0.445642\pi\)
0.169943 + 0.985454i \(0.445642\pi\)
\(54\) −0.798063 −0.108603
\(55\) −4.14141 −0.558428
\(56\) −1.16956 −0.156289
\(57\) 0.0329352 0.00436237
\(58\) −2.22045 −0.291560
\(59\) 3.68016 0.479117 0.239558 0.970882i \(-0.422997\pi\)
0.239558 + 0.970882i \(0.422997\pi\)
\(60\) −1.36310 −0.175975
\(61\) 1.63180 0.208931 0.104465 0.994529i \(-0.466687\pi\)
0.104465 + 0.994529i \(0.466687\pi\)
\(62\) 0.234748 0.0298131
\(63\) −0.435759 −0.0549004
\(64\) 3.48759 0.435948
\(65\) 1.76513 0.218937
\(66\) 3.30511 0.406830
\(67\) −2.79862 −0.341906 −0.170953 0.985279i \(-0.554685\pi\)
−0.170953 + 0.985279i \(0.554685\pi\)
\(68\) −10.5672 −1.28146
\(69\) 0 0
\(70\) 0.347763 0.0415656
\(71\) 0.419274 0.0497587 0.0248793 0.999690i \(-0.492080\pi\)
0.0248793 + 0.999690i \(0.492080\pi\)
\(72\) 2.68396 0.316308
\(73\) 3.62570 0.424357 0.212178 0.977231i \(-0.431944\pi\)
0.212178 + 0.977231i \(0.431944\pi\)
\(74\) −6.16662 −0.716855
\(75\) 1.00000 0.115470
\(76\) −0.0448938 −0.00514967
\(77\) 1.80466 0.205660
\(78\) −1.40868 −0.159502
\(79\) −8.13319 −0.915055 −0.457527 0.889196i \(-0.651265\pi\)
−0.457527 + 0.889196i \(0.651265\pi\)
\(80\) 0.584222 0.0653181
\(81\) 1.00000 0.111111
\(82\) −3.66947 −0.405225
\(83\) 14.3722 1.57756 0.788779 0.614677i \(-0.210714\pi\)
0.788779 + 0.614677i \(0.210714\pi\)
\(84\) 0.593981 0.0648086
\(85\) 7.75235 0.840861
\(86\) −1.51545 −0.163415
\(87\) 2.78230 0.298294
\(88\) −11.1154 −1.18490
\(89\) −11.8324 −1.25423 −0.627114 0.778928i \(-0.715764\pi\)
−0.627114 + 0.778928i \(0.715764\pi\)
\(90\) −0.798063 −0.0841232
\(91\) −0.769170 −0.0806309
\(92\) 0 0
\(93\) −0.294148 −0.0305017
\(94\) 9.18036 0.946882
\(95\) 0.0329352 0.00337908
\(96\) −5.83417 −0.595447
\(97\) 14.7339 1.49600 0.747999 0.663699i \(-0.231015\pi\)
0.747999 + 0.663699i \(0.231015\pi\)
\(98\) 5.43490 0.549008
\(99\) −4.14141 −0.416228
\(100\) −1.36310 −0.136310
\(101\) −7.64346 −0.760552 −0.380276 0.924873i \(-0.624171\pi\)
−0.380276 + 0.924873i \(0.624171\pi\)
\(102\) −6.18686 −0.612591
\(103\) 4.13785 0.407715 0.203857 0.979001i \(-0.434652\pi\)
0.203857 + 0.979001i \(0.434652\pi\)
\(104\) 4.73753 0.464553
\(105\) −0.435759 −0.0425257
\(106\) −1.97473 −0.191803
\(107\) −5.80764 −0.561445 −0.280723 0.959789i \(-0.590574\pi\)
−0.280723 + 0.959789i \(0.590574\pi\)
\(108\) −1.36310 −0.131164
\(109\) −18.8964 −1.80994 −0.904972 0.425470i \(-0.860109\pi\)
−0.904972 + 0.425470i \(0.860109\pi\)
\(110\) 3.30511 0.315130
\(111\) 7.72698 0.733413
\(112\) −0.254580 −0.0240555
\(113\) 14.5948 1.37296 0.686482 0.727147i \(-0.259154\pi\)
0.686482 + 0.727147i \(0.259154\pi\)
\(114\) −0.0262843 −0.00246175
\(115\) 0 0
\(116\) −3.79255 −0.352129
\(117\) 1.76513 0.163186
\(118\) −2.93700 −0.270373
\(119\) −3.37815 −0.309675
\(120\) 2.68396 0.245011
\(121\) 6.15129 0.559209
\(122\) −1.30228 −0.117903
\(123\) 4.59797 0.414585
\(124\) 0.400951 0.0360065
\(125\) 1.00000 0.0894427
\(126\) 0.347763 0.0309812
\(127\) −9.86931 −0.875760 −0.437880 0.899033i \(-0.644270\pi\)
−0.437880 + 0.899033i \(0.644270\pi\)
\(128\) 8.88502 0.785333
\(129\) 1.89891 0.167190
\(130\) −1.40868 −0.123550
\(131\) −22.8252 −1.99424 −0.997121 0.0758227i \(-0.975842\pi\)
−0.997121 + 0.0758227i \(0.975842\pi\)
\(132\) 5.64514 0.491347
\(133\) −0.0143518 −0.00124446
\(134\) 2.23347 0.192943
\(135\) 1.00000 0.0860663
\(136\) 20.8070 1.78419
\(137\) 5.55454 0.474556 0.237278 0.971442i \(-0.423745\pi\)
0.237278 + 0.971442i \(0.423745\pi\)
\(138\) 0 0
\(139\) 2.66403 0.225960 0.112980 0.993597i \(-0.463960\pi\)
0.112980 + 0.993597i \(0.463960\pi\)
\(140\) 0.593981 0.0502005
\(141\) −11.5033 −0.968753
\(142\) −0.334607 −0.0280796
\(143\) −7.31012 −0.611303
\(144\) 0.584222 0.0486852
\(145\) 2.78230 0.231058
\(146\) −2.89354 −0.239471
\(147\) −6.81011 −0.561689
\(148\) −10.5326 −0.865776
\(149\) −1.23678 −0.101321 −0.0506605 0.998716i \(-0.516133\pi\)
−0.0506605 + 0.998716i \(0.516133\pi\)
\(150\) −0.798063 −0.0651615
\(151\) 11.9114 0.969336 0.484668 0.874698i \(-0.338940\pi\)
0.484668 + 0.874698i \(0.338940\pi\)
\(152\) 0.0883967 0.00716992
\(153\) 7.75235 0.626741
\(154\) −1.44023 −0.116057
\(155\) −0.294148 −0.0236265
\(156\) −2.40604 −0.192637
\(157\) 16.3259 1.30295 0.651475 0.758670i \(-0.274151\pi\)
0.651475 + 0.758670i \(0.274151\pi\)
\(158\) 6.49079 0.516380
\(159\) 2.47441 0.196233
\(160\) −5.83417 −0.461232
\(161\) 0 0
\(162\) −0.798063 −0.0627017
\(163\) 24.4859 1.91788 0.958941 0.283605i \(-0.0915305\pi\)
0.958941 + 0.283605i \(0.0915305\pi\)
\(164\) −6.26747 −0.489407
\(165\) −4.14141 −0.322409
\(166\) −11.4699 −0.890240
\(167\) 21.4305 1.65834 0.829172 0.558994i \(-0.188812\pi\)
0.829172 + 0.558994i \(0.188812\pi\)
\(168\) −1.16956 −0.0902335
\(169\) −9.88432 −0.760333
\(170\) −6.18686 −0.474511
\(171\) 0.0329352 0.00251861
\(172\) −2.58839 −0.197363
\(173\) 3.02583 0.230049 0.115025 0.993363i \(-0.463305\pi\)
0.115025 + 0.993363i \(0.463305\pi\)
\(174\) −2.22045 −0.168332
\(175\) −0.435759 −0.0329403
\(176\) −2.41951 −0.182377
\(177\) 3.68016 0.276618
\(178\) 9.44297 0.707780
\(179\) −5.76047 −0.430558 −0.215279 0.976553i \(-0.569066\pi\)
−0.215279 + 0.976553i \(0.569066\pi\)
\(180\) −1.36310 −0.101599
\(181\) 1.37306 0.102058 0.0510292 0.998697i \(-0.483750\pi\)
0.0510292 + 0.998697i \(0.483750\pi\)
\(182\) 0.613846 0.0455013
\(183\) 1.63180 0.120626
\(184\) 0 0
\(185\) 7.72698 0.568099
\(186\) 0.234748 0.0172126
\(187\) −32.1057 −2.34780
\(188\) 15.6801 1.14359
\(189\) −0.435759 −0.0316968
\(190\) −0.0262843 −0.00190687
\(191\) −16.7735 −1.21369 −0.606843 0.794822i \(-0.707564\pi\)
−0.606843 + 0.794822i \(0.707564\pi\)
\(192\) 3.48759 0.251695
\(193\) 6.17605 0.444562 0.222281 0.974983i \(-0.428650\pi\)
0.222281 + 0.974983i \(0.428650\pi\)
\(194\) −11.7586 −0.844215
\(195\) 1.76513 0.126403
\(196\) 9.28284 0.663060
\(197\) 12.5645 0.895183 0.447591 0.894238i \(-0.352282\pi\)
0.447591 + 0.894238i \(0.352282\pi\)
\(198\) 3.30511 0.234884
\(199\) 22.4562 1.59188 0.795940 0.605375i \(-0.206977\pi\)
0.795940 + 0.605375i \(0.206977\pi\)
\(200\) 2.68396 0.189785
\(201\) −2.79862 −0.197399
\(202\) 6.09996 0.429191
\(203\) −1.21241 −0.0850947
\(204\) −10.5672 −0.739852
\(205\) 4.59797 0.321136
\(206\) −3.30226 −0.230080
\(207\) 0 0
\(208\) 1.03123 0.0715027
\(209\) −0.136398 −0.00943485
\(210\) 0.347763 0.0239979
\(211\) 22.3938 1.54165 0.770826 0.637046i \(-0.219844\pi\)
0.770826 + 0.637046i \(0.219844\pi\)
\(212\) −3.37286 −0.231649
\(213\) 0.419274 0.0287282
\(214\) 4.63486 0.316832
\(215\) 1.89891 0.129504
\(216\) 2.68396 0.182620
\(217\) 0.128177 0.00870125
\(218\) 15.0805 1.02138
\(219\) 3.62570 0.245002
\(220\) 5.64514 0.380595
\(221\) 13.6839 0.920478
\(222\) −6.16662 −0.413876
\(223\) −22.0428 −1.47609 −0.738047 0.674750i \(-0.764252\pi\)
−0.738047 + 0.674750i \(0.764252\pi\)
\(224\) 2.54229 0.169864
\(225\) 1.00000 0.0666667
\(226\) −11.6476 −0.774785
\(227\) 8.93036 0.592729 0.296365 0.955075i \(-0.404226\pi\)
0.296365 + 0.955075i \(0.404226\pi\)
\(228\) −0.0448938 −0.00297316
\(229\) 15.9670 1.05513 0.527565 0.849515i \(-0.323105\pi\)
0.527565 + 0.849515i \(0.323105\pi\)
\(230\) 0 0
\(231\) 1.80466 0.118738
\(232\) 7.46760 0.490272
\(233\) 10.5728 0.692648 0.346324 0.938115i \(-0.387430\pi\)
0.346324 + 0.938115i \(0.387430\pi\)
\(234\) −1.40868 −0.0920885
\(235\) −11.5033 −0.750393
\(236\) −5.01642 −0.326541
\(237\) −8.13319 −0.528307
\(238\) 2.69598 0.174754
\(239\) 1.81371 0.117319 0.0586594 0.998278i \(-0.481317\pi\)
0.0586594 + 0.998278i \(0.481317\pi\)
\(240\) 0.584222 0.0377114
\(241\) −22.4236 −1.44443 −0.722216 0.691668i \(-0.756876\pi\)
−0.722216 + 0.691668i \(0.756876\pi\)
\(242\) −4.90912 −0.315570
\(243\) 1.00000 0.0641500
\(244\) −2.22430 −0.142396
\(245\) −6.81011 −0.435082
\(246\) −3.66947 −0.233957
\(247\) 0.0581348 0.00369903
\(248\) −0.789481 −0.0501321
\(249\) 14.3722 0.910803
\(250\) −0.798063 −0.0504739
\(251\) 7.77122 0.490515 0.245258 0.969458i \(-0.421127\pi\)
0.245258 + 0.969458i \(0.421127\pi\)
\(252\) 0.593981 0.0374173
\(253\) 0 0
\(254\) 7.87633 0.494205
\(255\) 7.75235 0.485471
\(256\) −14.0660 −0.879124
\(257\) −3.89401 −0.242901 −0.121451 0.992597i \(-0.538755\pi\)
−0.121451 + 0.992597i \(0.538755\pi\)
\(258\) −1.51545 −0.0943477
\(259\) −3.36710 −0.209221
\(260\) −2.40604 −0.149216
\(261\) 2.78230 0.172220
\(262\) 18.2159 1.12538
\(263\) −9.00577 −0.555320 −0.277660 0.960679i \(-0.589559\pi\)
−0.277660 + 0.960679i \(0.589559\pi\)
\(264\) −11.1154 −0.684105
\(265\) 2.47441 0.152002
\(266\) 0.0114536 0.000702267 0
\(267\) −11.8324 −0.724129
\(268\) 3.81478 0.233025
\(269\) 20.2302 1.23346 0.616728 0.787176i \(-0.288458\pi\)
0.616728 + 0.787176i \(0.288458\pi\)
\(270\) −0.798063 −0.0485685
\(271\) −16.4807 −1.00113 −0.500567 0.865698i \(-0.666875\pi\)
−0.500567 + 0.865698i \(0.666875\pi\)
\(272\) 4.52910 0.274617
\(273\) −0.769170 −0.0465523
\(274\) −4.43287 −0.267800
\(275\) −4.14141 −0.249737
\(276\) 0 0
\(277\) 21.1630 1.27156 0.635780 0.771871i \(-0.280679\pi\)
0.635780 + 0.771871i \(0.280679\pi\)
\(278\) −2.12606 −0.127513
\(279\) −0.294148 −0.0176102
\(280\) −1.16956 −0.0698945
\(281\) 28.5724 1.70448 0.852242 0.523147i \(-0.175242\pi\)
0.852242 + 0.523147i \(0.175242\pi\)
\(282\) 9.18036 0.546683
\(283\) 12.8180 0.761951 0.380976 0.924585i \(-0.375588\pi\)
0.380976 + 0.924585i \(0.375588\pi\)
\(284\) −0.571511 −0.0339129
\(285\) 0.0329352 0.00195091
\(286\) 5.83393 0.344968
\(287\) −2.00360 −0.118269
\(288\) −5.83417 −0.343782
\(289\) 43.0990 2.53523
\(290\) −2.22045 −0.130389
\(291\) 14.7339 0.863715
\(292\) −4.94218 −0.289219
\(293\) 19.9992 1.16837 0.584184 0.811621i \(-0.301415\pi\)
0.584184 + 0.811621i \(0.301415\pi\)
\(294\) 5.43490 0.316970
\(295\) 3.68016 0.214267
\(296\) 20.7389 1.20543
\(297\) −4.14141 −0.240309
\(298\) 0.987028 0.0571770
\(299\) 0 0
\(300\) −1.36310 −0.0786984
\(301\) −0.827466 −0.0476943
\(302\) −9.50605 −0.547011
\(303\) −7.64346 −0.439105
\(304\) 0.0192415 0.00110357
\(305\) 1.63180 0.0934366
\(306\) −6.18686 −0.353679
\(307\) −20.7190 −1.18250 −0.591248 0.806490i \(-0.701365\pi\)
−0.591248 + 0.806490i \(0.701365\pi\)
\(308\) −2.45992 −0.140167
\(309\) 4.13785 0.235394
\(310\) 0.234748 0.0133328
\(311\) −29.7519 −1.68708 −0.843539 0.537068i \(-0.819532\pi\)
−0.843539 + 0.537068i \(0.819532\pi\)
\(312\) 4.73753 0.268210
\(313\) 10.0923 0.570453 0.285226 0.958460i \(-0.407931\pi\)
0.285226 + 0.958460i \(0.407931\pi\)
\(314\) −13.0291 −0.735275
\(315\) −0.435759 −0.0245522
\(316\) 11.0863 0.623654
\(317\) −21.6756 −1.21742 −0.608712 0.793391i \(-0.708314\pi\)
−0.608712 + 0.793391i \(0.708314\pi\)
\(318\) −1.97473 −0.110738
\(319\) −11.5227 −0.645145
\(320\) 3.48759 0.194962
\(321\) −5.80764 −0.324151
\(322\) 0 0
\(323\) 0.255325 0.0142067
\(324\) −1.36310 −0.0757276
\(325\) 1.76513 0.0979117
\(326\) −19.5413 −1.08229
\(327\) −18.8964 −1.04497
\(328\) 12.3408 0.681405
\(329\) 5.01267 0.276357
\(330\) 3.30511 0.181940
\(331\) −18.8531 −1.03626 −0.518130 0.855302i \(-0.673372\pi\)
−0.518130 + 0.855302i \(0.673372\pi\)
\(332\) −19.5907 −1.07518
\(333\) 7.72698 0.423436
\(334\) −17.1029 −0.935829
\(335\) −2.79862 −0.152905
\(336\) −0.254580 −0.0138885
\(337\) 14.4054 0.784712 0.392356 0.919813i \(-0.371660\pi\)
0.392356 + 0.919813i \(0.371660\pi\)
\(338\) 7.88831 0.429068
\(339\) 14.5948 0.792681
\(340\) −10.5672 −0.573087
\(341\) 1.21819 0.0659685
\(342\) −0.0262843 −0.00142129
\(343\) 6.01788 0.324935
\(344\) 5.09660 0.274790
\(345\) 0 0
\(346\) −2.41480 −0.129820
\(347\) 3.99715 0.214578 0.107289 0.994228i \(-0.465783\pi\)
0.107289 + 0.994228i \(0.465783\pi\)
\(348\) −3.79255 −0.203302
\(349\) −31.1307 −1.66639 −0.833193 0.552982i \(-0.813490\pi\)
−0.833193 + 0.552982i \(0.813490\pi\)
\(350\) 0.347763 0.0185887
\(351\) 1.76513 0.0942155
\(352\) 24.1617 1.28782
\(353\) 2.10222 0.111890 0.0559451 0.998434i \(-0.482183\pi\)
0.0559451 + 0.998434i \(0.482183\pi\)
\(354\) −2.93700 −0.156100
\(355\) 0.419274 0.0222528
\(356\) 16.1286 0.854816
\(357\) −3.37815 −0.178791
\(358\) 4.59722 0.242970
\(359\) 17.3869 0.917644 0.458822 0.888528i \(-0.348272\pi\)
0.458822 + 0.888528i \(0.348272\pi\)
\(360\) 2.68396 0.141457
\(361\) −18.9989 −0.999943
\(362\) −1.09578 −0.0575931
\(363\) 6.15129 0.322859
\(364\) 1.04845 0.0549538
\(365\) 3.62570 0.189778
\(366\) −1.30228 −0.0680712
\(367\) −15.8777 −0.828810 −0.414405 0.910092i \(-0.636010\pi\)
−0.414405 + 0.910092i \(0.636010\pi\)
\(368\) 0 0
\(369\) 4.59797 0.239361
\(370\) −6.16662 −0.320587
\(371\) −1.07825 −0.0559797
\(372\) 0.400951 0.0207884
\(373\) −18.2919 −0.947119 −0.473560 0.880762i \(-0.657031\pi\)
−0.473560 + 0.880762i \(0.657031\pi\)
\(374\) 25.6224 1.32490
\(375\) 1.00000 0.0516398
\(376\) −30.8744 −1.59223
\(377\) 4.91112 0.252936
\(378\) 0.347763 0.0178870
\(379\) 17.6859 0.908466 0.454233 0.890883i \(-0.349913\pi\)
0.454233 + 0.890883i \(0.349913\pi\)
\(380\) −0.0448938 −0.00230300
\(381\) −9.86931 −0.505620
\(382\) 13.3863 0.684902
\(383\) 24.8288 1.26869 0.634345 0.773050i \(-0.281270\pi\)
0.634345 + 0.773050i \(0.281270\pi\)
\(384\) 8.88502 0.453412
\(385\) 1.80466 0.0919738
\(386\) −4.92887 −0.250873
\(387\) 1.89891 0.0965269
\(388\) −20.0837 −1.01959
\(389\) 36.5420 1.85275 0.926376 0.376600i \(-0.122907\pi\)
0.926376 + 0.376600i \(0.122907\pi\)
\(390\) −1.40868 −0.0713314
\(391\) 0 0
\(392\) −18.2781 −0.923183
\(393\) −22.8252 −1.15138
\(394\) −10.0273 −0.505166
\(395\) −8.13319 −0.409225
\(396\) 5.64514 0.283679
\(397\) 0.133574 0.00670388 0.00335194 0.999994i \(-0.498933\pi\)
0.00335194 + 0.999994i \(0.498933\pi\)
\(398\) −17.9215 −0.898323
\(399\) −0.0143518 −0.000718488 0
\(400\) 0.584222 0.0292111
\(401\) −10.9066 −0.544647 −0.272324 0.962206i \(-0.587792\pi\)
−0.272324 + 0.962206i \(0.587792\pi\)
\(402\) 2.23347 0.111395
\(403\) −0.519208 −0.0258636
\(404\) 10.4188 0.518353
\(405\) 1.00000 0.0496904
\(406\) 0.967582 0.0480203
\(407\) −32.0006 −1.58621
\(408\) 20.8070 1.03010
\(409\) 30.6038 1.51326 0.756630 0.653843i \(-0.226845\pi\)
0.756630 + 0.653843i \(0.226845\pi\)
\(410\) −3.66947 −0.181222
\(411\) 5.55454 0.273985
\(412\) −5.64029 −0.277877
\(413\) −1.60366 −0.0789111
\(414\) 0 0
\(415\) 14.3722 0.705505
\(416\) −10.2981 −0.504904
\(417\) 2.66403 0.130458
\(418\) 0.108854 0.00532423
\(419\) 36.4844 1.78238 0.891191 0.453629i \(-0.149871\pi\)
0.891191 + 0.453629i \(0.149871\pi\)
\(420\) 0.593981 0.0289833
\(421\) −23.4902 −1.14484 −0.572421 0.819960i \(-0.693996\pi\)
−0.572421 + 0.819960i \(0.693996\pi\)
\(422\) −17.8716 −0.869978
\(423\) −11.5033 −0.559310
\(424\) 6.64122 0.322526
\(425\) 7.75235 0.376044
\(426\) −0.334607 −0.0162118
\(427\) −0.711071 −0.0344112
\(428\) 7.91637 0.382652
\(429\) −7.31012 −0.352936
\(430\) −1.51545 −0.0730814
\(431\) 14.6664 0.706455 0.353227 0.935537i \(-0.385084\pi\)
0.353227 + 0.935537i \(0.385084\pi\)
\(432\) 0.584222 0.0281084
\(433\) −26.4024 −1.26882 −0.634409 0.772997i \(-0.718757\pi\)
−0.634409 + 0.772997i \(0.718757\pi\)
\(434\) −0.102294 −0.00491025
\(435\) 2.78230 0.133401
\(436\) 25.7576 1.23356
\(437\) 0 0
\(438\) −2.89354 −0.138259
\(439\) −8.76922 −0.418532 −0.209266 0.977859i \(-0.567107\pi\)
−0.209266 + 0.977859i \(0.567107\pi\)
\(440\) −11.1154 −0.529905
\(441\) −6.81011 −0.324291
\(442\) −10.9206 −0.519440
\(443\) 10.8705 0.516474 0.258237 0.966082i \(-0.416858\pi\)
0.258237 + 0.966082i \(0.416858\pi\)
\(444\) −10.5326 −0.499856
\(445\) −11.8324 −0.560908
\(446\) 17.5915 0.832982
\(447\) −1.23678 −0.0584977
\(448\) −1.51975 −0.0718013
\(449\) −32.5934 −1.53818 −0.769088 0.639143i \(-0.779289\pi\)
−0.769088 + 0.639143i \(0.779289\pi\)
\(450\) −0.798063 −0.0376210
\(451\) −19.0421 −0.896657
\(452\) −19.8941 −0.935741
\(453\) 11.9114 0.559646
\(454\) −7.12699 −0.334486
\(455\) −0.769170 −0.0360592
\(456\) 0.0883967 0.00413955
\(457\) −19.8706 −0.929508 −0.464754 0.885440i \(-0.653857\pi\)
−0.464754 + 0.885440i \(0.653857\pi\)
\(458\) −12.7427 −0.595426
\(459\) 7.75235 0.361849
\(460\) 0 0
\(461\) 11.4542 0.533474 0.266737 0.963769i \(-0.414054\pi\)
0.266737 + 0.963769i \(0.414054\pi\)
\(462\) −1.44023 −0.0670055
\(463\) −2.29042 −0.106445 −0.0532225 0.998583i \(-0.516949\pi\)
−0.0532225 + 0.998583i \(0.516949\pi\)
\(464\) 1.62548 0.0754612
\(465\) −0.294148 −0.0136408
\(466\) −8.43777 −0.390872
\(467\) −16.2901 −0.753817 −0.376908 0.926251i \(-0.623013\pi\)
−0.376908 + 0.926251i \(0.623013\pi\)
\(468\) −2.40604 −0.111219
\(469\) 1.21952 0.0563123
\(470\) 9.18036 0.423458
\(471\) 16.3259 0.752258
\(472\) 9.87742 0.454645
\(473\) −7.86416 −0.361595
\(474\) 6.49079 0.298132
\(475\) 0.0329352 0.00151117
\(476\) 4.60475 0.211058
\(477\) 2.47441 0.113295
\(478\) −1.44745 −0.0662048
\(479\) 17.3811 0.794162 0.397081 0.917784i \(-0.370023\pi\)
0.397081 + 0.917784i \(0.370023\pi\)
\(480\) −5.83417 −0.266292
\(481\) 13.6391 0.621890
\(482\) 17.8954 0.815115
\(483\) 0 0
\(484\) −8.38480 −0.381127
\(485\) 14.7339 0.669031
\(486\) −0.798063 −0.0362009
\(487\) 12.6674 0.574012 0.287006 0.957929i \(-0.407340\pi\)
0.287006 + 0.957929i \(0.407340\pi\)
\(488\) 4.37969 0.198259
\(489\) 24.4859 1.10729
\(490\) 5.43490 0.245524
\(491\) −16.3388 −0.737359 −0.368680 0.929557i \(-0.620190\pi\)
−0.368680 + 0.929557i \(0.620190\pi\)
\(492\) −6.26747 −0.282559
\(493\) 21.5694 0.971437
\(494\) −0.0463952 −0.00208742
\(495\) −4.14141 −0.186143
\(496\) −0.171848 −0.00771619
\(497\) −0.182702 −0.00819532
\(498\) −11.4699 −0.513981
\(499\) 16.3731 0.732961 0.366480 0.930426i \(-0.380563\pi\)
0.366480 + 0.930426i \(0.380563\pi\)
\(500\) −1.36310 −0.0609595
\(501\) 21.4305 0.957445
\(502\) −6.20192 −0.276805
\(503\) 27.6656 1.23355 0.616774 0.787140i \(-0.288439\pi\)
0.616774 + 0.787140i \(0.288439\pi\)
\(504\) −1.16956 −0.0520963
\(505\) −7.64346 −0.340129
\(506\) 0 0
\(507\) −9.88432 −0.438978
\(508\) 13.4528 0.596872
\(509\) 11.6775 0.517595 0.258797 0.965932i \(-0.416674\pi\)
0.258797 + 0.965932i \(0.416674\pi\)
\(510\) −6.18686 −0.273959
\(511\) −1.57993 −0.0698921
\(512\) −6.54451 −0.289229
\(513\) 0.0329352 0.00145412
\(514\) 3.10766 0.137073
\(515\) 4.13785 0.182336
\(516\) −2.58839 −0.113948
\(517\) 47.6399 2.09520
\(518\) 2.68716 0.118067
\(519\) 3.02583 0.132819
\(520\) 4.73753 0.207755
\(521\) 30.3093 1.32787 0.663936 0.747789i \(-0.268885\pi\)
0.663936 + 0.747789i \(0.268885\pi\)
\(522\) −2.22045 −0.0971866
\(523\) 10.2243 0.447078 0.223539 0.974695i \(-0.428239\pi\)
0.223539 + 0.974695i \(0.428239\pi\)
\(524\) 31.1129 1.35917
\(525\) −0.435759 −0.0190181
\(526\) 7.18717 0.313375
\(527\) −2.28034 −0.0993330
\(528\) −2.41951 −0.105295
\(529\) 0 0
\(530\) −1.97473 −0.0857770
\(531\) 3.68016 0.159706
\(532\) 0.0195629 0.000848157 0
\(533\) 8.11600 0.351543
\(534\) 9.44297 0.408637
\(535\) −5.80764 −0.251086
\(536\) −7.51138 −0.324442
\(537\) −5.76047 −0.248583
\(538\) −16.1450 −0.696059
\(539\) 28.2035 1.21481
\(540\) −1.36310 −0.0586583
\(541\) 11.2883 0.485323 0.242661 0.970111i \(-0.421980\pi\)
0.242661 + 0.970111i \(0.421980\pi\)
\(542\) 13.1527 0.564955
\(543\) 1.37306 0.0589234
\(544\) −45.2285 −1.93916
\(545\) −18.8964 −0.809432
\(546\) 0.613846 0.0262702
\(547\) −36.2734 −1.55094 −0.775470 0.631384i \(-0.782487\pi\)
−0.775470 + 0.631384i \(0.782487\pi\)
\(548\) −7.57137 −0.323433
\(549\) 1.63180 0.0696436
\(550\) 3.30511 0.140930
\(551\) 0.0916356 0.00390381
\(552\) 0 0
\(553\) 3.54411 0.150711
\(554\) −16.8894 −0.717561
\(555\) 7.72698 0.327992
\(556\) −3.63133 −0.154003
\(557\) 1.94642 0.0824726 0.0412363 0.999149i \(-0.486870\pi\)
0.0412363 + 0.999149i \(0.486870\pi\)
\(558\) 0.234748 0.00993769
\(559\) 3.35182 0.141767
\(560\) −0.254580 −0.0107580
\(561\) −32.1057 −1.35550
\(562\) −22.8025 −0.961867
\(563\) 38.7808 1.63441 0.817207 0.576344i \(-0.195521\pi\)
0.817207 + 0.576344i \(0.195521\pi\)
\(564\) 15.6801 0.660252
\(565\) 14.5948 0.614008
\(566\) −10.2296 −0.429981
\(567\) −0.435759 −0.0183001
\(568\) 1.12532 0.0472172
\(569\) 26.6958 1.11915 0.559574 0.828780i \(-0.310965\pi\)
0.559574 + 0.828780i \(0.310965\pi\)
\(570\) −0.0262843 −0.00110093
\(571\) −8.81258 −0.368795 −0.184397 0.982852i \(-0.559033\pi\)
−0.184397 + 0.982852i \(0.559033\pi\)
\(572\) 9.96440 0.416632
\(573\) −16.7735 −0.700722
\(574\) 1.59900 0.0667411
\(575\) 0 0
\(576\) 3.48759 0.145316
\(577\) 32.6831 1.36062 0.680308 0.732926i \(-0.261846\pi\)
0.680308 + 0.732926i \(0.261846\pi\)
\(578\) −34.3957 −1.43067
\(579\) 6.17605 0.256668
\(580\) −3.79255 −0.157477
\(581\) −6.26283 −0.259826
\(582\) −11.7586 −0.487408
\(583\) −10.2476 −0.424410
\(584\) 9.73125 0.402682
\(585\) 1.76513 0.0729790
\(586\) −15.9606 −0.659328
\(587\) −24.1319 −0.996031 −0.498016 0.867168i \(-0.665938\pi\)
−0.498016 + 0.867168i \(0.665938\pi\)
\(588\) 9.28284 0.382818
\(589\) −0.00968780 −0.000399179 0
\(590\) −2.93700 −0.120914
\(591\) 12.5645 0.516834
\(592\) 4.51428 0.185536
\(593\) 45.9118 1.88537 0.942686 0.333682i \(-0.108291\pi\)
0.942686 + 0.333682i \(0.108291\pi\)
\(594\) 3.30511 0.135610
\(595\) −3.37815 −0.138491
\(596\) 1.68585 0.0690551
\(597\) 22.4562 0.919073
\(598\) 0 0
\(599\) 11.4319 0.467094 0.233547 0.972346i \(-0.424967\pi\)
0.233547 + 0.972346i \(0.424967\pi\)
\(600\) 2.68396 0.109572
\(601\) −13.3903 −0.546200 −0.273100 0.961986i \(-0.588049\pi\)
−0.273100 + 0.961986i \(0.588049\pi\)
\(602\) 0.660370 0.0269147
\(603\) −2.79862 −0.113969
\(604\) −16.2364 −0.660649
\(605\) 6.15129 0.250086
\(606\) 6.09996 0.247794
\(607\) 39.2626 1.59362 0.796810 0.604230i \(-0.206519\pi\)
0.796810 + 0.604230i \(0.206519\pi\)
\(608\) −0.192149 −0.00779268
\(609\) −1.21241 −0.0491295
\(610\) −1.30228 −0.0527277
\(611\) −20.3048 −0.821445
\(612\) −10.5672 −0.427154
\(613\) 32.2155 1.30117 0.650586 0.759433i \(-0.274523\pi\)
0.650586 + 0.759433i \(0.274523\pi\)
\(614\) 16.5351 0.667301
\(615\) 4.59797 0.185408
\(616\) 4.84363 0.195155
\(617\) 41.9880 1.69037 0.845186 0.534472i \(-0.179489\pi\)
0.845186 + 0.534472i \(0.179489\pi\)
\(618\) −3.30226 −0.132837
\(619\) 27.5104 1.10574 0.552869 0.833268i \(-0.313533\pi\)
0.552869 + 0.833268i \(0.313533\pi\)
\(620\) 0.400951 0.0161026
\(621\) 0 0
\(622\) 23.7439 0.952044
\(623\) 5.15605 0.206573
\(624\) 1.03123 0.0412821
\(625\) 1.00000 0.0400000
\(626\) −8.05432 −0.321915
\(627\) −0.136398 −0.00544721
\(628\) −22.2538 −0.888022
\(629\) 59.9023 2.38846
\(630\) 0.347763 0.0138552
\(631\) −42.7335 −1.70119 −0.850597 0.525817i \(-0.823759\pi\)
−0.850597 + 0.525817i \(0.823759\pi\)
\(632\) −21.8292 −0.868317
\(633\) 22.3938 0.890073
\(634\) 17.2985 0.687012
\(635\) −9.86931 −0.391652
\(636\) −3.37286 −0.133743
\(637\) −12.0207 −0.476278
\(638\) 9.19581 0.364066
\(639\) 0.419274 0.0165862
\(640\) 8.88502 0.351211
\(641\) −0.388556 −0.0153470 −0.00767352 0.999971i \(-0.502443\pi\)
−0.00767352 + 0.999971i \(0.502443\pi\)
\(642\) 4.63486 0.182923
\(643\) 44.3007 1.74705 0.873525 0.486778i \(-0.161828\pi\)
0.873525 + 0.486778i \(0.161828\pi\)
\(644\) 0 0
\(645\) 1.89891 0.0747694
\(646\) −0.203765 −0.00801704
\(647\) −5.05019 −0.198543 −0.0992717 0.995060i \(-0.531651\pi\)
−0.0992717 + 0.995060i \(0.531651\pi\)
\(648\) 2.68396 0.105436
\(649\) −15.2411 −0.598265
\(650\) −1.40868 −0.0552531
\(651\) 0.128177 0.00502367
\(652\) −33.3766 −1.30713
\(653\) −22.5591 −0.882806 −0.441403 0.897309i \(-0.645519\pi\)
−0.441403 + 0.897309i \(0.645519\pi\)
\(654\) 15.0805 0.589694
\(655\) −22.8252 −0.891852
\(656\) 2.68624 0.104880
\(657\) 3.62570 0.141452
\(658\) −4.00042 −0.155953
\(659\) −25.3177 −0.986236 −0.493118 0.869962i \(-0.664143\pi\)
−0.493118 + 0.869962i \(0.664143\pi\)
\(660\) 5.64514 0.219737
\(661\) −12.4677 −0.484938 −0.242469 0.970159i \(-0.577957\pi\)
−0.242469 + 0.970159i \(0.577957\pi\)
\(662\) 15.0460 0.584778
\(663\) 13.6839 0.531438
\(664\) 38.5745 1.49698
\(665\) −0.0143518 −0.000556538 0
\(666\) −6.16662 −0.238952
\(667\) 0 0
\(668\) −29.2119 −1.13024
\(669\) −22.0428 −0.852223
\(670\) 2.23347 0.0862866
\(671\) −6.75796 −0.260888
\(672\) 2.54229 0.0980710
\(673\) 4.86176 0.187407 0.0937036 0.995600i \(-0.470129\pi\)
0.0937036 + 0.995600i \(0.470129\pi\)
\(674\) −11.4964 −0.442825
\(675\) 1.00000 0.0384900
\(676\) 13.4733 0.518203
\(677\) 13.8248 0.531329 0.265665 0.964065i \(-0.414409\pi\)
0.265665 + 0.964065i \(0.414409\pi\)
\(678\) −11.6476 −0.447322
\(679\) −6.42042 −0.246393
\(680\) 20.8070 0.797913
\(681\) 8.93036 0.342212
\(682\) −0.972189 −0.0372271
\(683\) −34.4929 −1.31983 −0.659916 0.751339i \(-0.729408\pi\)
−0.659916 + 0.751339i \(0.729408\pi\)
\(684\) −0.0448938 −0.00171656
\(685\) 5.55454 0.212228
\(686\) −4.80264 −0.183366
\(687\) 15.9670 0.609180
\(688\) 1.10938 0.0422949
\(689\) 4.36765 0.166394
\(690\) 0 0
\(691\) 35.2516 1.34103 0.670517 0.741894i \(-0.266072\pi\)
0.670517 + 0.741894i \(0.266072\pi\)
\(692\) −4.12449 −0.156790
\(693\) 1.80466 0.0685532
\(694\) −3.18998 −0.121090
\(695\) 2.66403 0.101052
\(696\) 7.46760 0.283058
\(697\) 35.6451 1.35015
\(698\) 24.8442 0.940368
\(699\) 10.5728 0.399901
\(700\) 0.593981 0.0224504
\(701\) 6.15056 0.232303 0.116152 0.993231i \(-0.462944\pi\)
0.116152 + 0.993231i \(0.462944\pi\)
\(702\) −1.40868 −0.0531673
\(703\) 0.254489 0.00959825
\(704\) −14.4435 −0.544361
\(705\) −11.5033 −0.433240
\(706\) −1.67771 −0.0631413
\(707\) 3.33070 0.125264
\(708\) −5.01642 −0.188529
\(709\) −3.15128 −0.118349 −0.0591744 0.998248i \(-0.518847\pi\)
−0.0591744 + 0.998248i \(0.518847\pi\)
\(710\) −0.334607 −0.0125576
\(711\) −8.13319 −0.305018
\(712\) −31.7576 −1.19017
\(713\) 0 0
\(714\) 2.69598 0.100894
\(715\) −7.31012 −0.273383
\(716\) 7.85207 0.293446
\(717\) 1.81371 0.0677341
\(718\) −13.8758 −0.517841
\(719\) −37.4680 −1.39732 −0.698661 0.715453i \(-0.746220\pi\)
−0.698661 + 0.715453i \(0.746220\pi\)
\(720\) 0.584222 0.0217727
\(721\) −1.80310 −0.0671511
\(722\) 15.1623 0.564283
\(723\) −22.4236 −0.833943
\(724\) −1.87161 −0.0695577
\(725\) 2.78230 0.103332
\(726\) −4.90912 −0.182194
\(727\) −5.64033 −0.209188 −0.104594 0.994515i \(-0.533354\pi\)
−0.104594 + 0.994515i \(0.533354\pi\)
\(728\) −2.06442 −0.0765126
\(729\) 1.00000 0.0370370
\(730\) −2.89354 −0.107095
\(731\) 14.7210 0.544476
\(732\) −2.22430 −0.0822125
\(733\) −38.0852 −1.40671 −0.703355 0.710839i \(-0.748315\pi\)
−0.703355 + 0.710839i \(0.748315\pi\)
\(734\) 12.6714 0.467711
\(735\) −6.81011 −0.251195
\(736\) 0 0
\(737\) 11.5902 0.426932
\(738\) −3.66947 −0.135075
\(739\) 14.7309 0.541884 0.270942 0.962596i \(-0.412665\pi\)
0.270942 + 0.962596i \(0.412665\pi\)
\(740\) −10.5326 −0.387187
\(741\) 0.0581348 0.00213563
\(742\) 0.860508 0.0315902
\(743\) −35.6893 −1.30931 −0.654657 0.755926i \(-0.727187\pi\)
−0.654657 + 0.755926i \(0.727187\pi\)
\(744\) −0.789481 −0.0289438
\(745\) −1.23678 −0.0453121
\(746\) 14.5981 0.534474
\(747\) 14.3722 0.525853
\(748\) 43.7631 1.60014
\(749\) 2.53073 0.0924708
\(750\) −0.798063 −0.0291411
\(751\) 2.53770 0.0926020 0.0463010 0.998928i \(-0.485257\pi\)
0.0463010 + 0.998928i \(0.485257\pi\)
\(752\) −6.72049 −0.245071
\(753\) 7.77122 0.283199
\(754\) −3.91938 −0.142735
\(755\) 11.9114 0.433500
\(756\) 0.593981 0.0216029
\(757\) 14.5108 0.527405 0.263703 0.964604i \(-0.415056\pi\)
0.263703 + 0.964604i \(0.415056\pi\)
\(758\) −14.1145 −0.512661
\(759\) 0 0
\(760\) 0.0883967 0.00320649
\(761\) −13.0355 −0.472535 −0.236268 0.971688i \(-0.575924\pi\)
−0.236268 + 0.971688i \(0.575924\pi\)
\(762\) 7.87633 0.285329
\(763\) 8.23426 0.298100
\(764\) 22.8639 0.827185
\(765\) 7.75235 0.280287
\(766\) −19.8149 −0.715941
\(767\) 6.49596 0.234556
\(768\) −14.0660 −0.507562
\(769\) −29.6026 −1.06750 −0.533748 0.845643i \(-0.679217\pi\)
−0.533748 + 0.845643i \(0.679217\pi\)
\(770\) −1.44023 −0.0519022
\(771\) −3.89401 −0.140239
\(772\) −8.41855 −0.302990
\(773\) 7.63028 0.274442 0.137221 0.990540i \(-0.456183\pi\)
0.137221 + 0.990540i \(0.456183\pi\)
\(774\) −1.51545 −0.0544717
\(775\) −0.294148 −0.0105661
\(776\) 39.5452 1.41959
\(777\) −3.36710 −0.120794
\(778\) −29.1628 −1.04554
\(779\) 0.151435 0.00542572
\(780\) −2.40604 −0.0861500
\(781\) −1.73639 −0.0621328
\(782\) 0 0
\(783\) 2.78230 0.0994314
\(784\) −3.97862 −0.142094
\(785\) 16.3259 0.582697
\(786\) 18.2159 0.649740
\(787\) −41.6700 −1.48538 −0.742688 0.669637i \(-0.766450\pi\)
−0.742688 + 0.669637i \(0.766450\pi\)
\(788\) −17.1266 −0.610110
\(789\) −9.00577 −0.320614
\(790\) 6.49079 0.230932
\(791\) −6.35981 −0.226129
\(792\) −11.1154 −0.394968
\(793\) 2.88034 0.102284
\(794\) −0.106600 −0.00378311
\(795\) 2.47441 0.0877583
\(796\) −30.6100 −1.08494
\(797\) 1.17201 0.0415149 0.0207574 0.999785i \(-0.493392\pi\)
0.0207574 + 0.999785i \(0.493392\pi\)
\(798\) 0.0114536 0.000405454 0
\(799\) −89.1777 −3.15488
\(800\) −5.83417 −0.206269
\(801\) −11.8324 −0.418076
\(802\) 8.70412 0.307353
\(803\) −15.0155 −0.529887
\(804\) 3.81478 0.134537
\(805\) 0 0
\(806\) 0.414361 0.0145952
\(807\) 20.2302 0.712136
\(808\) −20.5147 −0.721706
\(809\) 12.7810 0.449356 0.224678 0.974433i \(-0.427867\pi\)
0.224678 + 0.974433i \(0.427867\pi\)
\(810\) −0.798063 −0.0280411
\(811\) −10.9206 −0.383475 −0.191738 0.981446i \(-0.561412\pi\)
−0.191738 + 0.981446i \(0.561412\pi\)
\(812\) 1.65264 0.0579961
\(813\) −16.4807 −0.578005
\(814\) 25.5385 0.895124
\(815\) 24.4859 0.857703
\(816\) 4.52910 0.158550
\(817\) 0.0625409 0.00218803
\(818\) −24.4237 −0.853956
\(819\) −0.769170 −0.0268770
\(820\) −6.26747 −0.218870
\(821\) 15.2276 0.531447 0.265723 0.964049i \(-0.414389\pi\)
0.265723 + 0.964049i \(0.414389\pi\)
\(822\) −4.43287 −0.154614
\(823\) −8.64508 −0.301349 −0.150674 0.988583i \(-0.548144\pi\)
−0.150674 + 0.988583i \(0.548144\pi\)
\(824\) 11.1058 0.386890
\(825\) −4.14141 −0.144185
\(826\) 1.27982 0.0445308
\(827\) 33.1850 1.15395 0.576977 0.816760i \(-0.304232\pi\)
0.576977 + 0.816760i \(0.304232\pi\)
\(828\) 0 0
\(829\) 12.4212 0.431405 0.215702 0.976459i \(-0.430796\pi\)
0.215702 + 0.976459i \(0.430796\pi\)
\(830\) −11.4699 −0.398128
\(831\) 21.1630 0.734135
\(832\) 6.15604 0.213422
\(833\) −52.7944 −1.82922
\(834\) −2.12606 −0.0736195
\(835\) 21.4305 0.741634
\(836\) 0.185924 0.00643030
\(837\) −0.294148 −0.0101672
\(838\) −29.1169 −1.00583
\(839\) 21.2806 0.734686 0.367343 0.930085i \(-0.380267\pi\)
0.367343 + 0.930085i \(0.380267\pi\)
\(840\) −1.16956 −0.0403536
\(841\) −21.2588 −0.733062
\(842\) 18.7467 0.646053
\(843\) 28.5724 0.984085
\(844\) −30.5249 −1.05071
\(845\) −9.88432 −0.340031
\(846\) 9.18036 0.315627
\(847\) −2.68048 −0.0921024
\(848\) 1.44561 0.0496423
\(849\) 12.8180 0.439913
\(850\) −6.18686 −0.212208
\(851\) 0 0
\(852\) −0.571511 −0.0195796
\(853\) −19.9771 −0.684004 −0.342002 0.939699i \(-0.611105\pi\)
−0.342002 + 0.939699i \(0.611105\pi\)
\(854\) 0.567479 0.0194187
\(855\) 0.0329352 0.00112636
\(856\) −15.5875 −0.532769
\(857\) −16.9170 −0.577873 −0.288936 0.957348i \(-0.593302\pi\)
−0.288936 + 0.957348i \(0.593302\pi\)
\(858\) 5.83393 0.199167
\(859\) 8.46825 0.288933 0.144466 0.989510i \(-0.453853\pi\)
0.144466 + 0.989510i \(0.453853\pi\)
\(860\) −2.58839 −0.0882635
\(861\) −2.00360 −0.0682827
\(862\) −11.7047 −0.398663
\(863\) 37.3603 1.27176 0.635879 0.771789i \(-0.280638\pi\)
0.635879 + 0.771789i \(0.280638\pi\)
\(864\) −5.83417 −0.198482
\(865\) 3.02583 0.102881
\(866\) 21.0708 0.716014
\(867\) 43.0990 1.46372
\(868\) −0.174718 −0.00593032
\(869\) 33.6829 1.14261
\(870\) −2.22045 −0.0752804
\(871\) −4.93992 −0.167383
\(872\) −50.7172 −1.71750
\(873\) 14.7339 0.498666
\(874\) 0 0
\(875\) −0.435759 −0.0147313
\(876\) −4.94218 −0.166981
\(877\) −4.54697 −0.153540 −0.0767701 0.997049i \(-0.524461\pi\)
−0.0767701 + 0.997049i \(0.524461\pi\)
\(878\) 6.99838 0.236184
\(879\) 19.9992 0.674558
\(880\) −2.41951 −0.0815615
\(881\) 42.8081 1.44224 0.721121 0.692809i \(-0.243627\pi\)
0.721121 + 0.692809i \(0.243627\pi\)
\(882\) 5.43490 0.183003
\(883\) 18.3344 0.617003 0.308501 0.951224i \(-0.400173\pi\)
0.308501 + 0.951224i \(0.400173\pi\)
\(884\) −18.6525 −0.627350
\(885\) 3.68016 0.123707
\(886\) −8.67536 −0.291454
\(887\) −25.2764 −0.848699 −0.424350 0.905498i \(-0.639497\pi\)
−0.424350 + 0.905498i \(0.639497\pi\)
\(888\) 20.7389 0.695953
\(889\) 4.30064 0.144239
\(890\) 9.44297 0.316529
\(891\) −4.14141 −0.138743
\(892\) 30.0464 1.00603
\(893\) −0.378863 −0.0126782
\(894\) 0.987028 0.0330112
\(895\) −5.76047 −0.192551
\(896\) −3.87173 −0.129345
\(897\) 0 0
\(898\) 26.0116 0.868017
\(899\) −0.818408 −0.0272954
\(900\) −1.36310 −0.0454365
\(901\) 19.1825 0.639062
\(902\) 15.1968 0.505997
\(903\) −0.827466 −0.0275363
\(904\) 39.1719 1.30284
\(905\) 1.37306 0.0456419
\(906\) −9.50605 −0.315817
\(907\) 24.6138 0.817288 0.408644 0.912694i \(-0.366002\pi\)
0.408644 + 0.912694i \(0.366002\pi\)
\(908\) −12.1729 −0.403973
\(909\) −7.64346 −0.253517
\(910\) 0.613846 0.0203488
\(911\) 24.1205 0.799147 0.399574 0.916701i \(-0.369158\pi\)
0.399574 + 0.916701i \(0.369158\pi\)
\(912\) 0.0192415 0.000637148 0
\(913\) −59.5214 −1.96987
\(914\) 15.8580 0.524536
\(915\) 1.63180 0.0539457
\(916\) −21.7646 −0.719122
\(917\) 9.94626 0.328454
\(918\) −6.18686 −0.204197
\(919\) −14.6891 −0.484548 −0.242274 0.970208i \(-0.577893\pi\)
−0.242274 + 0.970208i \(0.577893\pi\)
\(920\) 0 0
\(921\) −20.7190 −0.682715
\(922\) −9.14115 −0.301048
\(923\) 0.740072 0.0243598
\(924\) −2.45992 −0.0809254
\(925\) 7.72698 0.254062
\(926\) 1.82790 0.0600686
\(927\) 4.13785 0.135905
\(928\) −16.2324 −0.532856
\(929\) 45.5423 1.49419 0.747097 0.664715i \(-0.231447\pi\)
0.747097 + 0.664715i \(0.231447\pi\)
\(930\) 0.234748 0.00769770
\(931\) −0.224292 −0.00735088
\(932\) −14.4118 −0.472073
\(933\) −29.7519 −0.974035
\(934\) 13.0005 0.425390
\(935\) −32.1057 −1.04997
\(936\) 4.73753 0.154851
\(937\) −19.5261 −0.637889 −0.318945 0.947773i \(-0.603328\pi\)
−0.318945 + 0.947773i \(0.603328\pi\)
\(938\) −0.973255 −0.0317779
\(939\) 10.0923 0.329351
\(940\) 15.6801 0.511429
\(941\) 21.6317 0.705172 0.352586 0.935779i \(-0.385302\pi\)
0.352586 + 0.935779i \(0.385302\pi\)
\(942\) −13.0291 −0.424511
\(943\) 0 0
\(944\) 2.15003 0.0699777
\(945\) −0.435759 −0.0141752
\(946\) 6.27609 0.204053
\(947\) 0.315793 0.0102619 0.00513095 0.999987i \(-0.498367\pi\)
0.00513095 + 0.999987i \(0.498367\pi\)
\(948\) 11.0863 0.360067
\(949\) 6.39983 0.207747
\(950\) −0.0262843 −0.000852776 0
\(951\) −21.6756 −0.702880
\(952\) −9.06684 −0.293858
\(953\) 7.54727 0.244480 0.122240 0.992501i \(-0.460992\pi\)
0.122240 + 0.992501i \(0.460992\pi\)
\(954\) −1.97473 −0.0639344
\(955\) −16.7735 −0.542777
\(956\) −2.47225 −0.0799584
\(957\) −11.5227 −0.372475
\(958\) −13.8712 −0.448158
\(959\) −2.42044 −0.0781600
\(960\) 3.48759 0.112561
\(961\) −30.9135 −0.997209
\(962\) −10.8849 −0.350942
\(963\) −5.80764 −0.187148
\(964\) 30.5655 0.984450
\(965\) 6.17605 0.198814
\(966\) 0 0
\(967\) −16.4316 −0.528404 −0.264202 0.964467i \(-0.585109\pi\)
−0.264202 + 0.964467i \(0.585109\pi\)
\(968\) 16.5098 0.530646
\(969\) 0.255325 0.00820222
\(970\) −11.7586 −0.377545
\(971\) 7.52999 0.241649 0.120825 0.992674i \(-0.461446\pi\)
0.120825 + 0.992674i \(0.461446\pi\)
\(972\) −1.36310 −0.0437213
\(973\) −1.16087 −0.0372159
\(974\) −10.1093 −0.323924
\(975\) 1.76513 0.0565293
\(976\) 0.953335 0.0305155
\(977\) −4.88019 −0.156131 −0.0780655 0.996948i \(-0.524874\pi\)
−0.0780655 + 0.996948i \(0.524874\pi\)
\(978\) −19.5413 −0.624861
\(979\) 49.0027 1.56613
\(980\) 9.28284 0.296529
\(981\) −18.8964 −0.603315
\(982\) 13.0394 0.416103
\(983\) −25.8720 −0.825190 −0.412595 0.910915i \(-0.635377\pi\)
−0.412595 + 0.910915i \(0.635377\pi\)
\(984\) 12.3408 0.393409
\(985\) 12.5645 0.400338
\(986\) −17.2137 −0.548197
\(987\) 5.01267 0.159555
\(988\) −0.0792433 −0.00252106
\(989\) 0 0
\(990\) 3.30511 0.105043
\(991\) 48.0783 1.52726 0.763628 0.645656i \(-0.223416\pi\)
0.763628 + 0.645656i \(0.223416\pi\)
\(992\) 1.71611 0.0544865
\(993\) −18.8531 −0.598286
\(994\) 0.145808 0.00462475
\(995\) 22.4562 0.711911
\(996\) −19.5907 −0.620756
\(997\) −19.3684 −0.613403 −0.306701 0.951806i \(-0.599225\pi\)
−0.306701 + 0.951806i \(0.599225\pi\)
\(998\) −13.0668 −0.413621
\(999\) 7.72698 0.244471
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bi.1.4 yes 8
23.22 odd 2 7935.2.a.bh.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7935.2.a.bh.1.4 8 23.22 odd 2
7935.2.a.bi.1.4 yes 8 1.1 even 1 trivial