Properties

Label 7935.2.a.bi.1.3
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,8,8,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} - 2x^{5} + 44x^{4} + 12x^{3} - 50x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.37125\) of defining polynomial
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.37125 q^{2} +1.00000 q^{3} -0.119679 q^{4} +1.00000 q^{5} -1.37125 q^{6} -3.47202 q^{7} +2.90661 q^{8} +1.00000 q^{9} -1.37125 q^{10} +2.80654 q^{11} -0.119679 q^{12} +3.04207 q^{13} +4.76100 q^{14} +1.00000 q^{15} -3.74632 q^{16} +5.76511 q^{17} -1.37125 q^{18} -0.670825 q^{19} -0.119679 q^{20} -3.47202 q^{21} -3.84846 q^{22} +2.90661 q^{24} +1.00000 q^{25} -4.17144 q^{26} +1.00000 q^{27} +0.415527 q^{28} -5.26414 q^{29} -1.37125 q^{30} +7.53104 q^{31} -0.676078 q^{32} +2.80654 q^{33} -7.90539 q^{34} -3.47202 q^{35} -0.119679 q^{36} +6.45981 q^{37} +0.919868 q^{38} +3.04207 q^{39} +2.90661 q^{40} +2.07761 q^{41} +4.76100 q^{42} -2.75944 q^{43} -0.335883 q^{44} +1.00000 q^{45} +5.29345 q^{47} -3.74632 q^{48} +5.05492 q^{49} -1.37125 q^{50} +5.76511 q^{51} -0.364072 q^{52} +0.442976 q^{53} -1.37125 q^{54} +2.80654 q^{55} -10.0918 q^{56} -0.670825 q^{57} +7.21844 q^{58} -14.0444 q^{59} -0.119679 q^{60} +11.1325 q^{61} -10.3269 q^{62} -3.47202 q^{63} +8.41971 q^{64} +3.04207 q^{65} -3.84846 q^{66} +1.42906 q^{67} -0.689962 q^{68} +4.76100 q^{70} -13.1413 q^{71} +2.90661 q^{72} +8.08313 q^{73} -8.85800 q^{74} +1.00000 q^{75} +0.0802836 q^{76} -9.74436 q^{77} -4.17144 q^{78} +5.53536 q^{79} -3.74632 q^{80} +1.00000 q^{81} -2.84891 q^{82} +2.35317 q^{83} +0.415527 q^{84} +5.76511 q^{85} +3.78388 q^{86} -5.26414 q^{87} +8.15750 q^{88} +15.0404 q^{89} -1.37125 q^{90} -10.5621 q^{91} +7.53104 q^{93} -7.25864 q^{94} -0.670825 q^{95} -0.676078 q^{96} +10.0065 q^{97} -6.93155 q^{98} +2.80654 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 8 q^{4} + 8 q^{5} + 6 q^{7} + 6 q^{8} + 8 q^{9} + 12 q^{11} + 8 q^{12} + 4 q^{13} + 8 q^{15} + 20 q^{17} + 4 q^{19} + 8 q^{20} + 6 q^{21} + 14 q^{22} + 6 q^{24} + 8 q^{25} - 22 q^{26} + 8 q^{27}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37125 −0.969619 −0.484809 0.874620i \(-0.661111\pi\)
−0.484809 + 0.874620i \(0.661111\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.119679 −0.0598394
\(5\) 1.00000 0.447214
\(6\) −1.37125 −0.559810
\(7\) −3.47202 −1.31230 −0.656150 0.754630i \(-0.727816\pi\)
−0.656150 + 0.754630i \(0.727816\pi\)
\(8\) 2.90661 1.02764
\(9\) 1.00000 0.333333
\(10\) −1.37125 −0.433627
\(11\) 2.80654 0.846203 0.423102 0.906082i \(-0.360941\pi\)
0.423102 + 0.906082i \(0.360941\pi\)
\(12\) −0.119679 −0.0345483
\(13\) 3.04207 0.843719 0.421860 0.906661i \(-0.361377\pi\)
0.421860 + 0.906661i \(0.361377\pi\)
\(14\) 4.76100 1.27243
\(15\) 1.00000 0.258199
\(16\) −3.74632 −0.936580
\(17\) 5.76511 1.39824 0.699122 0.715002i \(-0.253574\pi\)
0.699122 + 0.715002i \(0.253574\pi\)
\(18\) −1.37125 −0.323206
\(19\) −0.670825 −0.153898 −0.0769489 0.997035i \(-0.524518\pi\)
−0.0769489 + 0.997035i \(0.524518\pi\)
\(20\) −0.119679 −0.0267610
\(21\) −3.47202 −0.757657
\(22\) −3.84846 −0.820495
\(23\) 0 0
\(24\) 2.90661 0.593308
\(25\) 1.00000 0.200000
\(26\) −4.17144 −0.818086
\(27\) 1.00000 0.192450
\(28\) 0.415527 0.0785273
\(29\) −5.26414 −0.977526 −0.488763 0.872417i \(-0.662552\pi\)
−0.488763 + 0.872417i \(0.662552\pi\)
\(30\) −1.37125 −0.250354
\(31\) 7.53104 1.35261 0.676307 0.736620i \(-0.263579\pi\)
0.676307 + 0.736620i \(0.263579\pi\)
\(32\) −0.676078 −0.119515
\(33\) 2.80654 0.488556
\(34\) −7.90539 −1.35576
\(35\) −3.47202 −0.586879
\(36\) −0.119679 −0.0199465
\(37\) 6.45981 1.06199 0.530993 0.847376i \(-0.321819\pi\)
0.530993 + 0.847376i \(0.321819\pi\)
\(38\) 0.919868 0.149222
\(39\) 3.04207 0.487122
\(40\) 2.90661 0.459575
\(41\) 2.07761 0.324467 0.162234 0.986752i \(-0.448130\pi\)
0.162234 + 0.986752i \(0.448130\pi\)
\(42\) 4.76100 0.734638
\(43\) −2.75944 −0.420811 −0.210406 0.977614i \(-0.567478\pi\)
−0.210406 + 0.977614i \(0.567478\pi\)
\(44\) −0.335883 −0.0506363
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 5.29345 0.772129 0.386065 0.922472i \(-0.373834\pi\)
0.386065 + 0.922472i \(0.373834\pi\)
\(48\) −3.74632 −0.540735
\(49\) 5.05492 0.722132
\(50\) −1.37125 −0.193924
\(51\) 5.76511 0.807277
\(52\) −0.364072 −0.0504877
\(53\) 0.442976 0.0608474 0.0304237 0.999537i \(-0.490314\pi\)
0.0304237 + 0.999537i \(0.490314\pi\)
\(54\) −1.37125 −0.186603
\(55\) 2.80654 0.378434
\(56\) −10.0918 −1.34857
\(57\) −0.670825 −0.0888530
\(58\) 7.21844 0.947828
\(59\) −14.0444 −1.82842 −0.914212 0.405237i \(-0.867189\pi\)
−0.914212 + 0.405237i \(0.867189\pi\)
\(60\) −0.119679 −0.0154505
\(61\) 11.1325 1.42537 0.712684 0.701485i \(-0.247479\pi\)
0.712684 + 0.701485i \(0.247479\pi\)
\(62\) −10.3269 −1.31152
\(63\) −3.47202 −0.437433
\(64\) 8.41971 1.05246
\(65\) 3.04207 0.377323
\(66\) −3.84846 −0.473713
\(67\) 1.42906 0.174587 0.0872936 0.996183i \(-0.472178\pi\)
0.0872936 + 0.996183i \(0.472178\pi\)
\(68\) −0.689962 −0.0836701
\(69\) 0 0
\(70\) 4.76100 0.569048
\(71\) −13.1413 −1.55958 −0.779790 0.626041i \(-0.784674\pi\)
−0.779790 + 0.626041i \(0.784674\pi\)
\(72\) 2.90661 0.342547
\(73\) 8.08313 0.946059 0.473030 0.881047i \(-0.343160\pi\)
0.473030 + 0.881047i \(0.343160\pi\)
\(74\) −8.85800 −1.02972
\(75\) 1.00000 0.115470
\(76\) 0.0802836 0.00920916
\(77\) −9.74436 −1.11047
\(78\) −4.17144 −0.472322
\(79\) 5.53536 0.622776 0.311388 0.950283i \(-0.399206\pi\)
0.311388 + 0.950283i \(0.399206\pi\)
\(80\) −3.74632 −0.418851
\(81\) 1.00000 0.111111
\(82\) −2.84891 −0.314610
\(83\) 2.35317 0.258294 0.129147 0.991625i \(-0.458776\pi\)
0.129147 + 0.991625i \(0.458776\pi\)
\(84\) 0.415527 0.0453378
\(85\) 5.76511 0.625314
\(86\) 3.78388 0.408026
\(87\) −5.26414 −0.564375
\(88\) 8.15750 0.869592
\(89\) 15.0404 1.59428 0.797139 0.603795i \(-0.206346\pi\)
0.797139 + 0.603795i \(0.206346\pi\)
\(90\) −1.37125 −0.144542
\(91\) −10.5621 −1.10721
\(92\) 0 0
\(93\) 7.53104 0.780932
\(94\) −7.25864 −0.748671
\(95\) −0.670825 −0.0688252
\(96\) −0.676078 −0.0690019
\(97\) 10.0065 1.01600 0.508001 0.861356i \(-0.330385\pi\)
0.508001 + 0.861356i \(0.330385\pi\)
\(98\) −6.93155 −0.700193
\(99\) 2.80654 0.282068
\(100\) −0.119679 −0.0119679
\(101\) 11.5918 1.15343 0.576715 0.816946i \(-0.304334\pi\)
0.576715 + 0.816946i \(0.304334\pi\)
\(102\) −7.90539 −0.782751
\(103\) −11.0664 −1.09040 −0.545201 0.838305i \(-0.683547\pi\)
−0.545201 + 0.838305i \(0.683547\pi\)
\(104\) 8.84211 0.867040
\(105\) −3.47202 −0.338834
\(106\) −0.607429 −0.0589987
\(107\) −9.52021 −0.920354 −0.460177 0.887827i \(-0.652214\pi\)
−0.460177 + 0.887827i \(0.652214\pi\)
\(108\) −0.119679 −0.0115161
\(109\) 3.85799 0.369529 0.184764 0.982783i \(-0.440848\pi\)
0.184764 + 0.982783i \(0.440848\pi\)
\(110\) −3.84846 −0.366936
\(111\) 6.45981 0.613138
\(112\) 13.0073 1.22907
\(113\) 9.57568 0.900804 0.450402 0.892826i \(-0.351281\pi\)
0.450402 + 0.892826i \(0.351281\pi\)
\(114\) 0.919868 0.0861535
\(115\) 0 0
\(116\) 0.630006 0.0584946
\(117\) 3.04207 0.281240
\(118\) 19.2583 1.77287
\(119\) −20.0166 −1.83492
\(120\) 2.90661 0.265336
\(121\) −3.12334 −0.283940
\(122\) −15.2654 −1.38206
\(123\) 2.07761 0.187331
\(124\) −0.901306 −0.0809397
\(125\) 1.00000 0.0894427
\(126\) 4.76100 0.424144
\(127\) −8.48093 −0.752561 −0.376281 0.926506i \(-0.622797\pi\)
−0.376281 + 0.926506i \(0.622797\pi\)
\(128\) −10.1934 −0.900974
\(129\) −2.75944 −0.242955
\(130\) −4.17144 −0.365859
\(131\) 3.17550 0.277445 0.138723 0.990331i \(-0.455700\pi\)
0.138723 + 0.990331i \(0.455700\pi\)
\(132\) −0.335883 −0.0292349
\(133\) 2.32912 0.201960
\(134\) −1.95959 −0.169283
\(135\) 1.00000 0.0860663
\(136\) 16.7569 1.43689
\(137\) −15.6431 −1.33648 −0.668240 0.743945i \(-0.732952\pi\)
−0.668240 + 0.743945i \(0.732952\pi\)
\(138\) 0 0
\(139\) −21.5530 −1.82810 −0.914049 0.405603i \(-0.867061\pi\)
−0.914049 + 0.405603i \(0.867061\pi\)
\(140\) 0.415527 0.0351185
\(141\) 5.29345 0.445789
\(142\) 18.0199 1.51220
\(143\) 8.53770 0.713958
\(144\) −3.74632 −0.312193
\(145\) −5.26414 −0.437163
\(146\) −11.0840 −0.917317
\(147\) 5.05492 0.416923
\(148\) −0.773102 −0.0635486
\(149\) 4.73586 0.387977 0.193988 0.981004i \(-0.437858\pi\)
0.193988 + 0.981004i \(0.437858\pi\)
\(150\) −1.37125 −0.111962
\(151\) −21.1299 −1.71953 −0.859765 0.510690i \(-0.829390\pi\)
−0.859765 + 0.510690i \(0.829390\pi\)
\(152\) −1.94982 −0.158152
\(153\) 5.76511 0.466081
\(154\) 13.3619 1.07674
\(155\) 7.53104 0.604908
\(156\) −0.364072 −0.0291491
\(157\) −20.1000 −1.60416 −0.802079 0.597218i \(-0.796273\pi\)
−0.802079 + 0.597218i \(0.796273\pi\)
\(158\) −7.59035 −0.603856
\(159\) 0.442976 0.0351302
\(160\) −0.676078 −0.0534487
\(161\) 0 0
\(162\) −1.37125 −0.107735
\(163\) −9.35235 −0.732533 −0.366266 0.930510i \(-0.619364\pi\)
−0.366266 + 0.930510i \(0.619364\pi\)
\(164\) −0.248645 −0.0194159
\(165\) 2.80654 0.218489
\(166\) −3.22678 −0.250447
\(167\) −10.2986 −0.796927 −0.398464 0.917184i \(-0.630457\pi\)
−0.398464 + 0.917184i \(0.630457\pi\)
\(168\) −10.0918 −0.778599
\(169\) −3.74579 −0.288138
\(170\) −7.90539 −0.606316
\(171\) −0.670825 −0.0512993
\(172\) 0.330247 0.0251811
\(173\) 3.96885 0.301746 0.150873 0.988553i \(-0.451792\pi\)
0.150873 + 0.988553i \(0.451792\pi\)
\(174\) 7.21844 0.547229
\(175\) −3.47202 −0.262460
\(176\) −10.5142 −0.792537
\(177\) −14.0444 −1.05564
\(178\) −20.6241 −1.54584
\(179\) 18.9645 1.41747 0.708735 0.705475i \(-0.249266\pi\)
0.708735 + 0.705475i \(0.249266\pi\)
\(180\) −0.119679 −0.00892033
\(181\) −22.0972 −1.64247 −0.821235 0.570590i \(-0.806714\pi\)
−0.821235 + 0.570590i \(0.806714\pi\)
\(182\) 14.4833 1.07357
\(183\) 11.1325 0.822937
\(184\) 0 0
\(185\) 6.45981 0.474935
\(186\) −10.3269 −0.757207
\(187\) 16.1800 1.18320
\(188\) −0.633514 −0.0462038
\(189\) −3.47202 −0.252552
\(190\) 0.919868 0.0667342
\(191\) 15.1417 1.09562 0.547808 0.836604i \(-0.315462\pi\)
0.547808 + 0.836604i \(0.315462\pi\)
\(192\) 8.41971 0.607640
\(193\) 22.2054 1.59838 0.799191 0.601077i \(-0.205261\pi\)
0.799191 + 0.601077i \(0.205261\pi\)
\(194\) −13.7213 −0.985135
\(195\) 3.04207 0.217847
\(196\) −0.604967 −0.0432120
\(197\) −15.4762 −1.10263 −0.551317 0.834296i \(-0.685875\pi\)
−0.551317 + 0.834296i \(0.685875\pi\)
\(198\) −3.84846 −0.273498
\(199\) 17.1307 1.21436 0.607180 0.794564i \(-0.292301\pi\)
0.607180 + 0.794564i \(0.292301\pi\)
\(200\) 2.90661 0.205528
\(201\) 1.42906 0.100798
\(202\) −15.8953 −1.11839
\(203\) 18.2772 1.28281
\(204\) −0.689962 −0.0483070
\(205\) 2.07761 0.145106
\(206\) 15.1747 1.05727
\(207\) 0 0
\(208\) −11.3966 −0.790210
\(209\) −1.88270 −0.130229
\(210\) 4.76100 0.328540
\(211\) 1.27592 0.0878377 0.0439189 0.999035i \(-0.486016\pi\)
0.0439189 + 0.999035i \(0.486016\pi\)
\(212\) −0.0530148 −0.00364107
\(213\) −13.1413 −0.900424
\(214\) 13.0546 0.892392
\(215\) −2.75944 −0.188192
\(216\) 2.90661 0.197769
\(217\) −26.1479 −1.77504
\(218\) −5.29026 −0.358302
\(219\) 8.08313 0.546208
\(220\) −0.335883 −0.0226452
\(221\) 17.5379 1.17973
\(222\) −8.85800 −0.594510
\(223\) 17.3376 1.16101 0.580504 0.814257i \(-0.302855\pi\)
0.580504 + 0.814257i \(0.302855\pi\)
\(224\) 2.34736 0.156839
\(225\) 1.00000 0.0666667
\(226\) −13.1306 −0.873436
\(227\) −23.7748 −1.57799 −0.788993 0.614402i \(-0.789397\pi\)
−0.788993 + 0.614402i \(0.789397\pi\)
\(228\) 0.0802836 0.00531691
\(229\) −5.27824 −0.348796 −0.174398 0.984675i \(-0.555798\pi\)
−0.174398 + 0.984675i \(0.555798\pi\)
\(230\) 0 0
\(231\) −9.74436 −0.641132
\(232\) −15.3008 −1.00455
\(233\) 27.7882 1.82047 0.910233 0.414097i \(-0.135903\pi\)
0.910233 + 0.414097i \(0.135903\pi\)
\(234\) −4.17144 −0.272695
\(235\) 5.29345 0.345307
\(236\) 1.68082 0.109412
\(237\) 5.53536 0.359560
\(238\) 27.4477 1.77917
\(239\) 13.4464 0.869776 0.434888 0.900485i \(-0.356788\pi\)
0.434888 + 0.900485i \(0.356788\pi\)
\(240\) −3.74632 −0.241824
\(241\) 17.7246 1.14174 0.570869 0.821041i \(-0.306606\pi\)
0.570869 + 0.821041i \(0.306606\pi\)
\(242\) 4.28287 0.275314
\(243\) 1.00000 0.0641500
\(244\) −1.33232 −0.0852932
\(245\) 5.05492 0.322947
\(246\) −2.84891 −0.181640
\(247\) −2.04070 −0.129847
\(248\) 21.8898 1.39000
\(249\) 2.35317 0.149126
\(250\) −1.37125 −0.0867253
\(251\) 12.5848 0.794343 0.397172 0.917744i \(-0.369992\pi\)
0.397172 + 0.917744i \(0.369992\pi\)
\(252\) 0.415527 0.0261758
\(253\) 0 0
\(254\) 11.6295 0.729697
\(255\) 5.76511 0.361025
\(256\) −2.86180 −0.178863
\(257\) −16.1913 −1.00999 −0.504994 0.863123i \(-0.668505\pi\)
−0.504994 + 0.863123i \(0.668505\pi\)
\(258\) 3.78388 0.235574
\(259\) −22.4286 −1.39364
\(260\) −0.364072 −0.0225788
\(261\) −5.26414 −0.325842
\(262\) −4.35440 −0.269016
\(263\) 7.31656 0.451158 0.225579 0.974225i \(-0.427573\pi\)
0.225579 + 0.974225i \(0.427573\pi\)
\(264\) 8.15750 0.502059
\(265\) 0.442976 0.0272118
\(266\) −3.19380 −0.195824
\(267\) 15.0404 0.920457
\(268\) −0.171028 −0.0104472
\(269\) 27.0700 1.65048 0.825242 0.564779i \(-0.191039\pi\)
0.825242 + 0.564779i \(0.191039\pi\)
\(270\) −1.37125 −0.0834515
\(271\) 27.8541 1.69202 0.846009 0.533169i \(-0.178999\pi\)
0.846009 + 0.533169i \(0.178999\pi\)
\(272\) −21.5979 −1.30957
\(273\) −10.5621 −0.639250
\(274\) 21.4506 1.29588
\(275\) 2.80654 0.169241
\(276\) 0 0
\(277\) −5.77947 −0.347255 −0.173627 0.984811i \(-0.555549\pi\)
−0.173627 + 0.984811i \(0.555549\pi\)
\(278\) 29.5545 1.77256
\(279\) 7.53104 0.450872
\(280\) −10.0918 −0.603100
\(281\) −9.91216 −0.591310 −0.295655 0.955295i \(-0.595538\pi\)
−0.295655 + 0.955295i \(0.595538\pi\)
\(282\) −7.25864 −0.432246
\(283\) 7.41805 0.440957 0.220479 0.975392i \(-0.429238\pi\)
0.220479 + 0.975392i \(0.429238\pi\)
\(284\) 1.57273 0.0933244
\(285\) −0.670825 −0.0397363
\(286\) −11.7073 −0.692267
\(287\) −7.21349 −0.425799
\(288\) −0.676078 −0.0398383
\(289\) 16.2365 0.955087
\(290\) 7.21844 0.423881
\(291\) 10.0065 0.586589
\(292\) −0.967380 −0.0566116
\(293\) 1.68483 0.0984291 0.0492145 0.998788i \(-0.484328\pi\)
0.0492145 + 0.998788i \(0.484328\pi\)
\(294\) −6.93155 −0.404256
\(295\) −14.0444 −0.817696
\(296\) 18.7761 1.09134
\(297\) 2.80654 0.162852
\(298\) −6.49404 −0.376190
\(299\) 0 0
\(300\) −0.119679 −0.00690966
\(301\) 9.58084 0.552230
\(302\) 28.9744 1.66729
\(303\) 11.5918 0.665933
\(304\) 2.51313 0.144138
\(305\) 11.1325 0.637444
\(306\) −7.90539 −0.451921
\(307\) −8.68397 −0.495620 −0.247810 0.968809i \(-0.579711\pi\)
−0.247810 + 0.968809i \(0.579711\pi\)
\(308\) 1.16619 0.0664500
\(309\) −11.0664 −0.629544
\(310\) −10.3269 −0.586530
\(311\) 10.8008 0.612459 0.306229 0.951958i \(-0.400933\pi\)
0.306229 + 0.951958i \(0.400933\pi\)
\(312\) 8.84211 0.500586
\(313\) 4.41578 0.249595 0.124797 0.992182i \(-0.460172\pi\)
0.124797 + 0.992182i \(0.460172\pi\)
\(314\) 27.5621 1.55542
\(315\) −3.47202 −0.195626
\(316\) −0.662465 −0.0372666
\(317\) −25.0524 −1.40708 −0.703541 0.710655i \(-0.748399\pi\)
−0.703541 + 0.710655i \(0.748399\pi\)
\(318\) −0.607429 −0.0340629
\(319\) −14.7740 −0.827186
\(320\) 8.41971 0.470676
\(321\) −9.52021 −0.531366
\(322\) 0 0
\(323\) −3.86738 −0.215187
\(324\) −0.119679 −0.00664882
\(325\) 3.04207 0.168744
\(326\) 12.8244 0.710278
\(327\) 3.85799 0.213347
\(328\) 6.03878 0.333436
\(329\) −18.3790 −1.01327
\(330\) −3.84846 −0.211851
\(331\) 7.19813 0.395645 0.197823 0.980238i \(-0.436613\pi\)
0.197823 + 0.980238i \(0.436613\pi\)
\(332\) −0.281625 −0.0154562
\(333\) 6.45981 0.353995
\(334\) 14.1219 0.772716
\(335\) 1.42906 0.0780778
\(336\) 13.0073 0.709606
\(337\) 34.7407 1.89245 0.946223 0.323516i \(-0.104865\pi\)
0.946223 + 0.323516i \(0.104865\pi\)
\(338\) 5.13641 0.279384
\(339\) 9.57568 0.520079
\(340\) −0.689962 −0.0374184
\(341\) 21.1362 1.14459
\(342\) 0.919868 0.0497407
\(343\) 6.75334 0.364646
\(344\) −8.02061 −0.432442
\(345\) 0 0
\(346\) −5.44228 −0.292579
\(347\) 4.63077 0.248593 0.124296 0.992245i \(-0.460333\pi\)
0.124296 + 0.992245i \(0.460333\pi\)
\(348\) 0.630006 0.0337719
\(349\) −18.3425 −0.981853 −0.490926 0.871201i \(-0.663342\pi\)
−0.490926 + 0.871201i \(0.663342\pi\)
\(350\) 4.76100 0.254486
\(351\) 3.04207 0.162374
\(352\) −1.89744 −0.101134
\(353\) −18.6381 −0.992007 −0.496004 0.868320i \(-0.665200\pi\)
−0.496004 + 0.868320i \(0.665200\pi\)
\(354\) 19.2583 1.02357
\(355\) −13.1413 −0.697465
\(356\) −1.80002 −0.0954007
\(357\) −20.0166 −1.05939
\(358\) −26.0050 −1.37441
\(359\) 15.3875 0.812120 0.406060 0.913846i \(-0.366902\pi\)
0.406060 + 0.913846i \(0.366902\pi\)
\(360\) 2.90661 0.153192
\(361\) −18.5500 −0.976315
\(362\) 30.3007 1.59257
\(363\) −3.12334 −0.163933
\(364\) 1.26406 0.0662550
\(365\) 8.08313 0.423091
\(366\) −15.2654 −0.797935
\(367\) 26.9544 1.40701 0.703505 0.710691i \(-0.251617\pi\)
0.703505 + 0.710691i \(0.251617\pi\)
\(368\) 0 0
\(369\) 2.07761 0.108156
\(370\) −8.85800 −0.460505
\(371\) −1.53802 −0.0798500
\(372\) −0.901306 −0.0467305
\(373\) −14.9334 −0.773224 −0.386612 0.922243i \(-0.626355\pi\)
−0.386612 + 0.922243i \(0.626355\pi\)
\(374\) −22.1868 −1.14725
\(375\) 1.00000 0.0516398
\(376\) 15.3860 0.793471
\(377\) −16.0139 −0.824758
\(378\) 4.76100 0.244879
\(379\) 32.1952 1.65376 0.826878 0.562381i \(-0.190115\pi\)
0.826878 + 0.562381i \(0.190115\pi\)
\(380\) 0.0802836 0.00411846
\(381\) −8.48093 −0.434491
\(382\) −20.7630 −1.06233
\(383\) −30.3742 −1.55205 −0.776023 0.630704i \(-0.782766\pi\)
−0.776023 + 0.630704i \(0.782766\pi\)
\(384\) −10.1934 −0.520177
\(385\) −9.74436 −0.496619
\(386\) −30.4492 −1.54982
\(387\) −2.75944 −0.140270
\(388\) −1.19756 −0.0607970
\(389\) −21.1940 −1.07458 −0.537290 0.843398i \(-0.680552\pi\)
−0.537290 + 0.843398i \(0.680552\pi\)
\(390\) −4.17144 −0.211229
\(391\) 0 0
\(392\) 14.6927 0.742092
\(393\) 3.17550 0.160183
\(394\) 21.2217 1.06913
\(395\) 5.53536 0.278514
\(396\) −0.335883 −0.0168788
\(397\) 36.7191 1.84288 0.921439 0.388524i \(-0.127015\pi\)
0.921439 + 0.388524i \(0.127015\pi\)
\(398\) −23.4904 −1.17747
\(399\) 2.32912 0.116602
\(400\) −3.74632 −0.187316
\(401\) 17.9254 0.895153 0.447577 0.894246i \(-0.352287\pi\)
0.447577 + 0.894246i \(0.352287\pi\)
\(402\) −1.95959 −0.0977356
\(403\) 22.9100 1.14123
\(404\) −1.38730 −0.0690206
\(405\) 1.00000 0.0496904
\(406\) −25.0626 −1.24383
\(407\) 18.1297 0.898656
\(408\) 16.7569 0.829590
\(409\) 3.72064 0.183974 0.0919868 0.995760i \(-0.470678\pi\)
0.0919868 + 0.995760i \(0.470678\pi\)
\(410\) −2.84891 −0.140698
\(411\) −15.6431 −0.771618
\(412\) 1.32441 0.0652490
\(413\) 48.7624 2.39944
\(414\) 0 0
\(415\) 2.35317 0.115513
\(416\) −2.05668 −0.100837
\(417\) −21.5530 −1.05545
\(418\) 2.58164 0.126272
\(419\) 21.9694 1.07327 0.536637 0.843813i \(-0.319695\pi\)
0.536637 + 0.843813i \(0.319695\pi\)
\(420\) 0.415527 0.0202757
\(421\) −5.01874 −0.244598 −0.122299 0.992493i \(-0.539027\pi\)
−0.122299 + 0.992493i \(0.539027\pi\)
\(422\) −1.74960 −0.0851691
\(423\) 5.29345 0.257376
\(424\) 1.28756 0.0625292
\(425\) 5.76511 0.279649
\(426\) 18.0199 0.873068
\(427\) −38.6522 −1.87051
\(428\) 1.13937 0.0550734
\(429\) 8.53770 0.412204
\(430\) 3.78388 0.182475
\(431\) 25.6688 1.23642 0.618212 0.786011i \(-0.287857\pi\)
0.618212 + 0.786011i \(0.287857\pi\)
\(432\) −3.74632 −0.180245
\(433\) 39.1736 1.88256 0.941281 0.337625i \(-0.109624\pi\)
0.941281 + 0.337625i \(0.109624\pi\)
\(434\) 35.8553 1.72111
\(435\) −5.26414 −0.252396
\(436\) −0.461720 −0.0221124
\(437\) 0 0
\(438\) −11.0840 −0.529613
\(439\) −27.1017 −1.29349 −0.646746 0.762705i \(-0.723871\pi\)
−0.646746 + 0.762705i \(0.723871\pi\)
\(440\) 8.15750 0.388894
\(441\) 5.05492 0.240711
\(442\) −24.0488 −1.14388
\(443\) −2.91033 −0.138274 −0.0691369 0.997607i \(-0.522025\pi\)
−0.0691369 + 0.997607i \(0.522025\pi\)
\(444\) −0.773102 −0.0366898
\(445\) 15.0404 0.712983
\(446\) −23.7741 −1.12574
\(447\) 4.73586 0.223999
\(448\) −29.2334 −1.38115
\(449\) 28.4901 1.34453 0.672266 0.740310i \(-0.265321\pi\)
0.672266 + 0.740310i \(0.265321\pi\)
\(450\) −1.37125 −0.0646413
\(451\) 5.83088 0.274565
\(452\) −1.14601 −0.0539036
\(453\) −21.1299 −0.992771
\(454\) 32.6011 1.53005
\(455\) −10.5621 −0.495161
\(456\) −1.94982 −0.0913089
\(457\) −19.1164 −0.894226 −0.447113 0.894477i \(-0.647548\pi\)
−0.447113 + 0.894477i \(0.647548\pi\)
\(458\) 7.23777 0.338199
\(459\) 5.76511 0.269092
\(460\) 0 0
\(461\) −27.1735 −1.26560 −0.632798 0.774317i \(-0.718094\pi\)
−0.632798 + 0.774317i \(0.718094\pi\)
\(462\) 13.3619 0.621653
\(463\) −27.1271 −1.26070 −0.630352 0.776310i \(-0.717089\pi\)
−0.630352 + 0.776310i \(0.717089\pi\)
\(464\) 19.7211 0.915531
\(465\) 7.53104 0.349244
\(466\) −38.1045 −1.76516
\(467\) −0.770602 −0.0356592 −0.0178296 0.999841i \(-0.505676\pi\)
−0.0178296 + 0.999841i \(0.505676\pi\)
\(468\) −0.364072 −0.0168292
\(469\) −4.96172 −0.229111
\(470\) −7.25864 −0.334816
\(471\) −20.1000 −0.926161
\(472\) −40.8215 −1.87896
\(473\) −7.74448 −0.356092
\(474\) −7.59035 −0.348636
\(475\) −0.670825 −0.0307796
\(476\) 2.39556 0.109800
\(477\) 0.442976 0.0202825
\(478\) −18.4384 −0.843351
\(479\) 22.9715 1.04959 0.524797 0.851228i \(-0.324141\pi\)
0.524797 + 0.851228i \(0.324141\pi\)
\(480\) −0.676078 −0.0308586
\(481\) 19.6512 0.896018
\(482\) −24.3048 −1.10705
\(483\) 0 0
\(484\) 0.373798 0.0169908
\(485\) 10.0065 0.454370
\(486\) −1.37125 −0.0622011
\(487\) −3.07813 −0.139484 −0.0697418 0.997565i \(-0.522218\pi\)
−0.0697418 + 0.997565i \(0.522218\pi\)
\(488\) 32.3577 1.46477
\(489\) −9.35235 −0.422928
\(490\) −6.93155 −0.313136
\(491\) −18.4761 −0.833813 −0.416906 0.908949i \(-0.636886\pi\)
−0.416906 + 0.908949i \(0.636886\pi\)
\(492\) −0.248645 −0.0112098
\(493\) −30.3483 −1.36682
\(494\) 2.79830 0.125902
\(495\) 2.80654 0.126145
\(496\) −28.2137 −1.26683
\(497\) 45.6267 2.04664
\(498\) −3.22678 −0.144596
\(499\) 34.5390 1.54618 0.773088 0.634299i \(-0.218711\pi\)
0.773088 + 0.634299i \(0.218711\pi\)
\(500\) −0.119679 −0.00535220
\(501\) −10.2986 −0.460106
\(502\) −17.2568 −0.770210
\(503\) 37.1739 1.65750 0.828752 0.559617i \(-0.189052\pi\)
0.828752 + 0.559617i \(0.189052\pi\)
\(504\) −10.0918 −0.449524
\(505\) 11.5918 0.515829
\(506\) 0 0
\(507\) −3.74579 −0.166356
\(508\) 1.01499 0.0450328
\(509\) −26.0697 −1.15552 −0.577760 0.816207i \(-0.696073\pi\)
−0.577760 + 0.816207i \(0.696073\pi\)
\(510\) −7.90539 −0.350057
\(511\) −28.0648 −1.24151
\(512\) 24.3109 1.07440
\(513\) −0.670825 −0.0296177
\(514\) 22.2024 0.979304
\(515\) −11.0664 −0.487643
\(516\) 0.330247 0.0145383
\(517\) 14.8563 0.653378
\(518\) 30.7552 1.35130
\(519\) 3.96885 0.174213
\(520\) 8.84211 0.387752
\(521\) −2.30920 −0.101168 −0.0505839 0.998720i \(-0.516108\pi\)
−0.0505839 + 0.998720i \(0.516108\pi\)
\(522\) 7.21844 0.315943
\(523\) −19.7119 −0.861941 −0.430970 0.902366i \(-0.641829\pi\)
−0.430970 + 0.902366i \(0.641829\pi\)
\(524\) −0.380041 −0.0166022
\(525\) −3.47202 −0.151531
\(526\) −10.0328 −0.437452
\(527\) 43.4173 1.89129
\(528\) −10.5142 −0.457571
\(529\) 0 0
\(530\) −0.607429 −0.0263850
\(531\) −14.0444 −0.609475
\(532\) −0.278746 −0.0120852
\(533\) 6.32023 0.273759
\(534\) −20.6241 −0.892493
\(535\) −9.52021 −0.411595
\(536\) 4.15371 0.179413
\(537\) 18.9645 0.818377
\(538\) −37.1196 −1.60034
\(539\) 14.1868 0.611070
\(540\) −0.119679 −0.00515016
\(541\) −2.06261 −0.0886786 −0.0443393 0.999017i \(-0.514118\pi\)
−0.0443393 + 0.999017i \(0.514118\pi\)
\(542\) −38.1949 −1.64061
\(543\) −22.0972 −0.948280
\(544\) −3.89766 −0.167111
\(545\) 3.85799 0.165258
\(546\) 14.4833 0.619829
\(547\) −11.2357 −0.480404 −0.240202 0.970723i \(-0.577214\pi\)
−0.240202 + 0.970723i \(0.577214\pi\)
\(548\) 1.87215 0.0799743
\(549\) 11.1325 0.475123
\(550\) −3.84846 −0.164099
\(551\) 3.53132 0.150439
\(552\) 0 0
\(553\) −19.2189 −0.817270
\(554\) 7.92509 0.336705
\(555\) 6.45981 0.274204
\(556\) 2.57943 0.109392
\(557\) 35.8299 1.51816 0.759081 0.650996i \(-0.225648\pi\)
0.759081 + 0.650996i \(0.225648\pi\)
\(558\) −10.3269 −0.437174
\(559\) −8.39443 −0.355046
\(560\) 13.0073 0.549659
\(561\) 16.1800 0.683120
\(562\) 13.5920 0.573345
\(563\) 19.2385 0.810806 0.405403 0.914138i \(-0.367131\pi\)
0.405403 + 0.914138i \(0.367131\pi\)
\(564\) −0.633514 −0.0266758
\(565\) 9.57568 0.402852
\(566\) −10.1720 −0.427560
\(567\) −3.47202 −0.145811
\(568\) −38.1964 −1.60269
\(569\) 8.42493 0.353192 0.176596 0.984283i \(-0.443491\pi\)
0.176596 + 0.984283i \(0.443491\pi\)
\(570\) 0.919868 0.0385290
\(571\) −4.53814 −0.189915 −0.0949576 0.995481i \(-0.530272\pi\)
−0.0949576 + 0.995481i \(0.530272\pi\)
\(572\) −1.02178 −0.0427228
\(573\) 15.1417 0.632554
\(574\) 9.89148 0.412863
\(575\) 0 0
\(576\) 8.41971 0.350821
\(577\) −17.1015 −0.711945 −0.355973 0.934496i \(-0.615850\pi\)
−0.355973 + 0.934496i \(0.615850\pi\)
\(578\) −22.2642 −0.926070
\(579\) 22.2054 0.922827
\(580\) 0.630006 0.0261596
\(581\) −8.17026 −0.338959
\(582\) −13.7213 −0.568768
\(583\) 1.24323 0.0514892
\(584\) 23.4945 0.972209
\(585\) 3.04207 0.125774
\(586\) −2.31033 −0.0954387
\(587\) 17.1876 0.709410 0.354705 0.934978i \(-0.384581\pi\)
0.354705 + 0.934978i \(0.384581\pi\)
\(588\) −0.604967 −0.0249484
\(589\) −5.05201 −0.208164
\(590\) 19.2583 0.792853
\(591\) −15.4762 −0.636606
\(592\) −24.2005 −0.994635
\(593\) −3.94806 −0.162127 −0.0810637 0.996709i \(-0.525832\pi\)
−0.0810637 + 0.996709i \(0.525832\pi\)
\(594\) −3.84846 −0.157904
\(595\) −20.0166 −0.820599
\(596\) −0.566782 −0.0232163
\(597\) 17.1307 0.701111
\(598\) 0 0
\(599\) 0.565506 0.0231059 0.0115530 0.999933i \(-0.496322\pi\)
0.0115530 + 0.999933i \(0.496322\pi\)
\(600\) 2.90661 0.118662
\(601\) 42.3726 1.72841 0.864207 0.503136i \(-0.167820\pi\)
0.864207 + 0.503136i \(0.167820\pi\)
\(602\) −13.1377 −0.535453
\(603\) 1.42906 0.0581958
\(604\) 2.52881 0.102896
\(605\) −3.12334 −0.126982
\(606\) −15.8953 −0.645701
\(607\) −28.8537 −1.17114 −0.585568 0.810623i \(-0.699128\pi\)
−0.585568 + 0.810623i \(0.699128\pi\)
\(608\) 0.453530 0.0183931
\(609\) 18.2772 0.740629
\(610\) −15.2654 −0.618078
\(611\) 16.1031 0.651460
\(612\) −0.689962 −0.0278900
\(613\) 0.225157 0.00909401 0.00454700 0.999990i \(-0.498553\pi\)
0.00454700 + 0.999990i \(0.498553\pi\)
\(614\) 11.9079 0.480563
\(615\) 2.07761 0.0837771
\(616\) −28.3230 −1.14117
\(617\) 18.0884 0.728213 0.364106 0.931357i \(-0.381374\pi\)
0.364106 + 0.931357i \(0.381374\pi\)
\(618\) 15.1747 0.610418
\(619\) −45.9641 −1.84745 −0.923726 0.383053i \(-0.874873\pi\)
−0.923726 + 0.383053i \(0.874873\pi\)
\(620\) −0.901306 −0.0361973
\(621\) 0 0
\(622\) −14.8106 −0.593851
\(623\) −52.2206 −2.09217
\(624\) −11.3966 −0.456228
\(625\) 1.00000 0.0400000
\(626\) −6.05513 −0.242012
\(627\) −1.88270 −0.0751877
\(628\) 2.40555 0.0959919
\(629\) 37.2415 1.48492
\(630\) 4.76100 0.189683
\(631\) 30.8156 1.22675 0.613374 0.789792i \(-0.289812\pi\)
0.613374 + 0.789792i \(0.289812\pi\)
\(632\) 16.0891 0.639990
\(633\) 1.27592 0.0507131
\(634\) 34.3530 1.36433
\(635\) −8.48093 −0.336556
\(636\) −0.0530148 −0.00210217
\(637\) 15.3774 0.609277
\(638\) 20.2588 0.802055
\(639\) −13.1413 −0.519860
\(640\) −10.1934 −0.402928
\(641\) 26.0052 1.02714 0.513571 0.858047i \(-0.328322\pi\)
0.513571 + 0.858047i \(0.328322\pi\)
\(642\) 13.0546 0.515223
\(643\) −13.3526 −0.526576 −0.263288 0.964717i \(-0.584807\pi\)
−0.263288 + 0.964717i \(0.584807\pi\)
\(644\) 0 0
\(645\) −2.75944 −0.108653
\(646\) 5.30314 0.208649
\(647\) −41.5075 −1.63183 −0.815914 0.578173i \(-0.803766\pi\)
−0.815914 + 0.578173i \(0.803766\pi\)
\(648\) 2.90661 0.114182
\(649\) −39.4161 −1.54722
\(650\) −4.17144 −0.163617
\(651\) −26.1479 −1.02482
\(652\) 1.11928 0.0438343
\(653\) 0.611199 0.0239181 0.0119590 0.999928i \(-0.496193\pi\)
0.0119590 + 0.999928i \(0.496193\pi\)
\(654\) −5.29026 −0.206866
\(655\) 3.17550 0.124077
\(656\) −7.78337 −0.303890
\(657\) 8.08313 0.315353
\(658\) 25.2021 0.982481
\(659\) −30.7554 −1.19806 −0.599031 0.800726i \(-0.704447\pi\)
−0.599031 + 0.800726i \(0.704447\pi\)
\(660\) −0.335883 −0.0130742
\(661\) −30.9944 −1.20554 −0.602772 0.797913i \(-0.705937\pi\)
−0.602772 + 0.797913i \(0.705937\pi\)
\(662\) −9.87043 −0.383625
\(663\) 17.5379 0.681115
\(664\) 6.83974 0.265433
\(665\) 2.32912 0.0903193
\(666\) −8.85800 −0.343241
\(667\) 0 0
\(668\) 1.23252 0.0476877
\(669\) 17.3376 0.670309
\(670\) −1.95959 −0.0757057
\(671\) 31.2437 1.20615
\(672\) 2.34736 0.0905512
\(673\) 20.5577 0.792442 0.396221 0.918155i \(-0.370321\pi\)
0.396221 + 0.918155i \(0.370321\pi\)
\(674\) −47.6381 −1.83495
\(675\) 1.00000 0.0384900
\(676\) 0.448292 0.0172420
\(677\) −30.7164 −1.18053 −0.590264 0.807210i \(-0.700976\pi\)
−0.590264 + 0.807210i \(0.700976\pi\)
\(678\) −13.1306 −0.504279
\(679\) −34.7426 −1.33330
\(680\) 16.7569 0.642598
\(681\) −23.7748 −0.911051
\(682\) −28.9829 −1.10981
\(683\) −4.93111 −0.188683 −0.0943417 0.995540i \(-0.530075\pi\)
−0.0943417 + 0.995540i \(0.530075\pi\)
\(684\) 0.0802836 0.00306972
\(685\) −15.6431 −0.597692
\(686\) −9.26051 −0.353568
\(687\) −5.27824 −0.201377
\(688\) 10.3378 0.394123
\(689\) 1.34756 0.0513381
\(690\) 0 0
\(691\) 19.6070 0.745884 0.372942 0.927855i \(-0.378349\pi\)
0.372942 + 0.927855i \(0.378349\pi\)
\(692\) −0.474987 −0.0180563
\(693\) −9.74436 −0.370158
\(694\) −6.34993 −0.241040
\(695\) −21.5530 −0.817550
\(696\) −15.3008 −0.579974
\(697\) 11.9776 0.453685
\(698\) 25.1521 0.952023
\(699\) 27.7882 1.05105
\(700\) 0.415527 0.0157055
\(701\) 5.90139 0.222892 0.111446 0.993770i \(-0.464452\pi\)
0.111446 + 0.993770i \(0.464452\pi\)
\(702\) −4.17144 −0.157441
\(703\) −4.33340 −0.163437
\(704\) 23.6302 0.890598
\(705\) 5.29345 0.199363
\(706\) 25.5575 0.961869
\(707\) −40.2471 −1.51365
\(708\) 1.68082 0.0631689
\(709\) 12.1381 0.455855 0.227928 0.973678i \(-0.426805\pi\)
0.227928 + 0.973678i \(0.426805\pi\)
\(710\) 18.0199 0.676276
\(711\) 5.53536 0.207592
\(712\) 43.7165 1.63834
\(713\) 0 0
\(714\) 27.4477 1.02720
\(715\) 8.53770 0.319292
\(716\) −2.26964 −0.0848206
\(717\) 13.4464 0.502165
\(718\) −21.1001 −0.787447
\(719\) 5.26194 0.196237 0.0981186 0.995175i \(-0.468718\pi\)
0.0981186 + 0.995175i \(0.468718\pi\)
\(720\) −3.74632 −0.139617
\(721\) 38.4227 1.43094
\(722\) 25.4366 0.946654
\(723\) 17.7246 0.659183
\(724\) 2.64456 0.0982844
\(725\) −5.26414 −0.195505
\(726\) 4.28287 0.158952
\(727\) −2.53017 −0.0938388 −0.0469194 0.998899i \(-0.514940\pi\)
−0.0469194 + 0.998899i \(0.514940\pi\)
\(728\) −30.7000 −1.13782
\(729\) 1.00000 0.0370370
\(730\) −11.0840 −0.410237
\(731\) −15.9085 −0.588397
\(732\) −1.33232 −0.0492441
\(733\) 32.0597 1.18415 0.592075 0.805883i \(-0.298309\pi\)
0.592075 + 0.805883i \(0.298309\pi\)
\(734\) −36.9612 −1.36426
\(735\) 5.05492 0.186454
\(736\) 0 0
\(737\) 4.01071 0.147736
\(738\) −2.84891 −0.104870
\(739\) 18.1504 0.667673 0.333836 0.942631i \(-0.391657\pi\)
0.333836 + 0.942631i \(0.391657\pi\)
\(740\) −0.773102 −0.0284198
\(741\) −2.04070 −0.0749670
\(742\) 2.10901 0.0774241
\(743\) 19.6818 0.722054 0.361027 0.932555i \(-0.382426\pi\)
0.361027 + 0.932555i \(0.382426\pi\)
\(744\) 21.8898 0.802518
\(745\) 4.73586 0.173509
\(746\) 20.4774 0.749732
\(747\) 2.35317 0.0860980
\(748\) −1.93640 −0.0708019
\(749\) 33.0544 1.20778
\(750\) −1.37125 −0.0500709
\(751\) 20.1462 0.735144 0.367572 0.929995i \(-0.380189\pi\)
0.367572 + 0.929995i \(0.380189\pi\)
\(752\) −19.8310 −0.723161
\(753\) 12.5848 0.458614
\(754\) 21.9590 0.799700
\(755\) −21.1299 −0.768997
\(756\) 0.415527 0.0151126
\(757\) 31.5113 1.14530 0.572648 0.819801i \(-0.305916\pi\)
0.572648 + 0.819801i \(0.305916\pi\)
\(758\) −44.1476 −1.60351
\(759\) 0 0
\(760\) −1.94982 −0.0707275
\(761\) 28.7809 1.04331 0.521653 0.853158i \(-0.325316\pi\)
0.521653 + 0.853158i \(0.325316\pi\)
\(762\) 11.6295 0.421291
\(763\) −13.3950 −0.484932
\(764\) −1.81214 −0.0655610
\(765\) 5.76511 0.208438
\(766\) 41.6505 1.50489
\(767\) −42.7241 −1.54268
\(768\) −2.86180 −0.103266
\(769\) −4.35790 −0.157150 −0.0785750 0.996908i \(-0.525037\pi\)
−0.0785750 + 0.996908i \(0.525037\pi\)
\(770\) 13.3619 0.481531
\(771\) −16.1913 −0.583117
\(772\) −2.65752 −0.0956463
\(773\) −46.4278 −1.66989 −0.834947 0.550331i \(-0.814502\pi\)
−0.834947 + 0.550331i \(0.814502\pi\)
\(774\) 3.78388 0.136009
\(775\) 7.53104 0.270523
\(776\) 29.0848 1.04408
\(777\) −22.4286 −0.804621
\(778\) 29.0623 1.04193
\(779\) −1.39371 −0.0499348
\(780\) −0.364072 −0.0130359
\(781\) −36.8814 −1.31972
\(782\) 0 0
\(783\) −5.26414 −0.188125
\(784\) −18.9374 −0.676334
\(785\) −20.1000 −0.717401
\(786\) −4.35440 −0.155316
\(787\) −22.9768 −0.819034 −0.409517 0.912302i \(-0.634303\pi\)
−0.409517 + 0.912302i \(0.634303\pi\)
\(788\) 1.85217 0.0659810
\(789\) 7.31656 0.260476
\(790\) −7.59035 −0.270053
\(791\) −33.2469 −1.18213
\(792\) 8.15750 0.289864
\(793\) 33.8658 1.20261
\(794\) −50.3510 −1.78689
\(795\) 0.442976 0.0157107
\(796\) −2.05018 −0.0726666
\(797\) 51.8980 1.83832 0.919161 0.393882i \(-0.128868\pi\)
0.919161 + 0.393882i \(0.128868\pi\)
\(798\) −3.19380 −0.113059
\(799\) 30.5173 1.07963
\(800\) −0.676078 −0.0239030
\(801\) 15.0404 0.531426
\(802\) −24.5802 −0.867957
\(803\) 22.6856 0.800558
\(804\) −0.171028 −0.00603169
\(805\) 0 0
\(806\) −31.4153 −1.10656
\(807\) 27.0700 0.952908
\(808\) 33.6929 1.18531
\(809\) −21.2426 −0.746851 −0.373425 0.927660i \(-0.621817\pi\)
−0.373425 + 0.927660i \(0.621817\pi\)
\(810\) −1.37125 −0.0481807
\(811\) 4.03607 0.141726 0.0708629 0.997486i \(-0.477425\pi\)
0.0708629 + 0.997486i \(0.477425\pi\)
\(812\) −2.18739 −0.0767625
\(813\) 27.8541 0.976887
\(814\) −24.8603 −0.871354
\(815\) −9.35235 −0.327599
\(816\) −21.5979 −0.756079
\(817\) 1.85110 0.0647619
\(818\) −5.10192 −0.178384
\(819\) −10.5621 −0.369071
\(820\) −0.248645 −0.00868308
\(821\) 12.1581 0.424321 0.212160 0.977235i \(-0.431950\pi\)
0.212160 + 0.977235i \(0.431950\pi\)
\(822\) 21.4506 0.748175
\(823\) 17.1088 0.596376 0.298188 0.954507i \(-0.403618\pi\)
0.298188 + 0.954507i \(0.403618\pi\)
\(824\) −32.1656 −1.12054
\(825\) 2.80654 0.0977111
\(826\) −66.8653 −2.32654
\(827\) −27.7573 −0.965216 −0.482608 0.875836i \(-0.660310\pi\)
−0.482608 + 0.875836i \(0.660310\pi\)
\(828\) 0 0
\(829\) −14.5103 −0.503964 −0.251982 0.967732i \(-0.581082\pi\)
−0.251982 + 0.967732i \(0.581082\pi\)
\(830\) −3.22678 −0.112003
\(831\) −5.77947 −0.200488
\(832\) 25.6134 0.887984
\(833\) 29.1422 1.00972
\(834\) 29.5545 1.02339
\(835\) −10.2986 −0.356397
\(836\) 0.225319 0.00779282
\(837\) 7.53104 0.260311
\(838\) −30.1254 −1.04067
\(839\) 28.4461 0.982070 0.491035 0.871140i \(-0.336619\pi\)
0.491035 + 0.871140i \(0.336619\pi\)
\(840\) −10.0918 −0.348200
\(841\) −1.28884 −0.0444427
\(842\) 6.88193 0.237167
\(843\) −9.91216 −0.341393
\(844\) −0.152700 −0.00525616
\(845\) −3.74579 −0.128859
\(846\) −7.25864 −0.249557
\(847\) 10.8443 0.372615
\(848\) −1.65953 −0.0569884
\(849\) 7.41805 0.254587
\(850\) −7.90539 −0.271153
\(851\) 0 0
\(852\) 1.57273 0.0538809
\(853\) 19.9093 0.681681 0.340841 0.940121i \(-0.389288\pi\)
0.340841 + 0.940121i \(0.389288\pi\)
\(854\) 53.0018 1.81368
\(855\) −0.670825 −0.0229417
\(856\) −27.6715 −0.945792
\(857\) 11.9881 0.409505 0.204752 0.978814i \(-0.434361\pi\)
0.204752 + 0.978814i \(0.434361\pi\)
\(858\) −11.7073 −0.399681
\(859\) 49.4277 1.68645 0.843226 0.537559i \(-0.180653\pi\)
0.843226 + 0.537559i \(0.180653\pi\)
\(860\) 0.330247 0.0112613
\(861\) −7.21349 −0.245835
\(862\) −35.1983 −1.19886
\(863\) 56.2795 1.91578 0.957889 0.287139i \(-0.0927042\pi\)
0.957889 + 0.287139i \(0.0927042\pi\)
\(864\) −0.676078 −0.0230006
\(865\) 3.96885 0.134945
\(866\) −53.7167 −1.82537
\(867\) 16.2365 0.551420
\(868\) 3.12935 0.106217
\(869\) 15.5352 0.526995
\(870\) 7.21844 0.244728
\(871\) 4.34730 0.147303
\(872\) 11.2137 0.379742
\(873\) 10.0065 0.338667
\(874\) 0 0
\(875\) −3.47202 −0.117376
\(876\) −0.967380 −0.0326847
\(877\) −15.2399 −0.514615 −0.257308 0.966330i \(-0.582835\pi\)
−0.257308 + 0.966330i \(0.582835\pi\)
\(878\) 37.1631 1.25419
\(879\) 1.68483 0.0568281
\(880\) −10.5142 −0.354433
\(881\) 13.4652 0.453654 0.226827 0.973935i \(-0.427165\pi\)
0.226827 + 0.973935i \(0.427165\pi\)
\(882\) −6.93155 −0.233398
\(883\) −36.6299 −1.23269 −0.616347 0.787475i \(-0.711388\pi\)
−0.616347 + 0.787475i \(0.711388\pi\)
\(884\) −2.09891 −0.0705941
\(885\) −14.0444 −0.472097
\(886\) 3.99078 0.134073
\(887\) 35.2368 1.18314 0.591568 0.806255i \(-0.298509\pi\)
0.591568 + 0.806255i \(0.298509\pi\)
\(888\) 18.7761 0.630085
\(889\) 29.4460 0.987586
\(890\) −20.6241 −0.691322
\(891\) 2.80654 0.0940226
\(892\) −2.07494 −0.0694741
\(893\) −3.55098 −0.118829
\(894\) −6.49404 −0.217193
\(895\) 18.9645 0.633912
\(896\) 35.3915 1.18235
\(897\) 0 0
\(898\) −39.0670 −1.30368
\(899\) −39.6444 −1.32222
\(900\) −0.119679 −0.00398929
\(901\) 2.55380 0.0850795
\(902\) −7.99558 −0.266224
\(903\) 9.58084 0.318830
\(904\) 27.8327 0.925702
\(905\) −22.0972 −0.734535
\(906\) 28.9744 0.962609
\(907\) −3.75149 −0.124566 −0.0622831 0.998059i \(-0.519838\pi\)
−0.0622831 + 0.998059i \(0.519838\pi\)
\(908\) 2.84534 0.0944258
\(909\) 11.5918 0.384477
\(910\) 14.4833 0.480117
\(911\) 30.5307 1.01153 0.505763 0.862672i \(-0.331211\pi\)
0.505763 + 0.862672i \(0.331211\pi\)
\(912\) 2.51313 0.0832179
\(913\) 6.60427 0.218569
\(914\) 26.2133 0.867059
\(915\) 11.1325 0.368029
\(916\) 0.631693 0.0208717
\(917\) −11.0254 −0.364091
\(918\) −7.90539 −0.260917
\(919\) 29.6084 0.976692 0.488346 0.872650i \(-0.337600\pi\)
0.488346 + 0.872650i \(0.337600\pi\)
\(920\) 0 0
\(921\) −8.68397 −0.286146
\(922\) 37.2616 1.22715
\(923\) −39.9767 −1.31585
\(924\) 1.16619 0.0383650
\(925\) 6.45981 0.212397
\(926\) 37.1980 1.22240
\(927\) −11.0664 −0.363467
\(928\) 3.55897 0.116829
\(929\) 29.8571 0.979579 0.489789 0.871841i \(-0.337074\pi\)
0.489789 + 0.871841i \(0.337074\pi\)
\(930\) −10.3269 −0.338633
\(931\) −3.39097 −0.111135
\(932\) −3.32566 −0.108936
\(933\) 10.8008 0.353603
\(934\) 1.05669 0.0345759
\(935\) 16.1800 0.529143
\(936\) 8.84211 0.289013
\(937\) −8.56968 −0.279959 −0.139980 0.990154i \(-0.544704\pi\)
−0.139980 + 0.990154i \(0.544704\pi\)
\(938\) 6.80375 0.222150
\(939\) 4.41578 0.144104
\(940\) −0.633514 −0.0206630
\(941\) 8.81651 0.287410 0.143705 0.989621i \(-0.454098\pi\)
0.143705 + 0.989621i \(0.454098\pi\)
\(942\) 27.5621 0.898023
\(943\) 0 0
\(944\) 52.6148 1.71246
\(945\) −3.47202 −0.112945
\(946\) 10.6196 0.345273
\(947\) 13.1947 0.428771 0.214385 0.976749i \(-0.431225\pi\)
0.214385 + 0.976749i \(0.431225\pi\)
\(948\) −0.662465 −0.0215159
\(949\) 24.5895 0.798208
\(950\) 0.919868 0.0298444
\(951\) −25.0524 −0.812379
\(952\) −58.1803 −1.88563
\(953\) 14.6848 0.475688 0.237844 0.971303i \(-0.423559\pi\)
0.237844 + 0.971303i \(0.423559\pi\)
\(954\) −0.607429 −0.0196662
\(955\) 15.1417 0.489974
\(956\) −1.60925 −0.0520469
\(957\) −14.7740 −0.477576
\(958\) −31.4996 −1.01771
\(959\) 54.3132 1.75386
\(960\) 8.41971 0.271745
\(961\) 25.7166 0.829566
\(962\) −26.9467 −0.868796
\(963\) −9.52021 −0.306785
\(964\) −2.12125 −0.0683210
\(965\) 22.2054 0.714818
\(966\) 0 0
\(967\) −37.9550 −1.22055 −0.610275 0.792189i \(-0.708941\pi\)
−0.610275 + 0.792189i \(0.708941\pi\)
\(968\) −9.07832 −0.291788
\(969\) −3.86738 −0.124238
\(970\) −13.7213 −0.440566
\(971\) −2.62391 −0.0842054 −0.0421027 0.999113i \(-0.513406\pi\)
−0.0421027 + 0.999113i \(0.513406\pi\)
\(972\) −0.119679 −0.00383870
\(973\) 74.8323 2.39901
\(974\) 4.22089 0.135246
\(975\) 3.04207 0.0974243
\(976\) −41.7058 −1.33497
\(977\) 11.9010 0.380747 0.190374 0.981712i \(-0.439030\pi\)
0.190374 + 0.981712i \(0.439030\pi\)
\(978\) 12.8244 0.410079
\(979\) 42.2115 1.34908
\(980\) −0.604967 −0.0193250
\(981\) 3.85799 0.123176
\(982\) 25.3352 0.808480
\(983\) −8.92531 −0.284673 −0.142337 0.989818i \(-0.545462\pi\)
−0.142337 + 0.989818i \(0.545462\pi\)
\(984\) 6.03878 0.192509
\(985\) −15.4762 −0.493113
\(986\) 41.6151 1.32529
\(987\) −18.3790 −0.585009
\(988\) 0.244229 0.00776994
\(989\) 0 0
\(990\) −3.84846 −0.122312
\(991\) −13.6460 −0.433479 −0.216739 0.976229i \(-0.569542\pi\)
−0.216739 + 0.976229i \(0.569542\pi\)
\(992\) −5.09157 −0.161658
\(993\) 7.19813 0.228426
\(994\) −62.5655 −1.98446
\(995\) 17.1307 0.543078
\(996\) −0.281625 −0.00892362
\(997\) −11.5027 −0.364293 −0.182147 0.983271i \(-0.558305\pi\)
−0.182147 + 0.983271i \(0.558305\pi\)
\(998\) −47.3615 −1.49920
\(999\) 6.45981 0.204379
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bi.1.3 yes 8
23.22 odd 2 7935.2.a.bh.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7935.2.a.bh.1.3 8 23.22 odd 2
7935.2.a.bi.1.3 yes 8 1.1 even 1 trivial