Properties

Label 792.2.q.f.265.6
Level $792$
Weight $2$
Character 792.265
Analytic conductor $6.324$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(265,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.265"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,1,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 7x^{10} - 2x^{9} + 39x^{8} - 9x^{7} + 67x^{6} - 18x^{5} + 88x^{4} - 16x^{3} + 24x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 265.6
Root \(1.08357 + 1.87680i\) of defining polynomial
Character \(\chi\) \(=\) 792.265
Dual form 792.2.q.f.529.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71613 - 0.234283i) q^{3} +(0.848245 - 1.46920i) q^{5} +(-0.951006 - 1.64719i) q^{7} +(2.89022 - 0.804122i) q^{9} +(-0.500000 - 0.866025i) q^{11} +(1.04198 - 1.80476i) q^{13} +(1.11149 - 2.72008i) q^{15} -0.310342 q^{17} -2.59850 q^{19} +(-2.01796 - 2.60399i) q^{21} +(-0.113193 + 0.196056i) q^{23} +(1.06096 + 1.83764i) q^{25} +(4.77161 - 2.05711i) q^{27} +(-2.21016 - 3.82811i) q^{29} +(1.49298 - 2.58592i) q^{31} +(-1.06096 - 1.36907i) q^{33} -3.22674 q^{35} +4.20720 q^{37} +(1.36535 - 3.34132i) q^{39} +(-2.81188 + 4.87031i) q^{41} +(1.01197 + 1.75278i) q^{43} +(1.27020 - 4.92842i) q^{45} +(-0.740187 - 1.28204i) q^{47} +(1.69118 - 2.92920i) q^{49} +(-0.532589 + 0.0727080i) q^{51} +3.56433 q^{53} -1.69649 q^{55} +(-4.45937 + 0.608785i) q^{57} +(-4.93826 + 8.55332i) q^{59} +(4.18696 + 7.25203i) q^{61} +(-4.07316 - 3.99602i) q^{63} +(-1.76770 - 3.06175i) q^{65} +(-3.16867 + 5.48830i) q^{67} +(-0.148322 + 0.362978i) q^{69} +0.355974 q^{71} +11.9857 q^{73} +(2.25128 + 2.90507i) q^{75} +(-0.951006 + 1.64719i) q^{77} +(2.41844 + 4.18886i) q^{79} +(7.70678 - 4.64818i) q^{81} +(-1.45033 - 2.51204i) q^{83} +(-0.263246 + 0.455956i) q^{85} +(-4.68979 - 6.05174i) q^{87} +3.43554 q^{89} -3.96371 q^{91} +(1.95632 - 4.78757i) q^{93} +(-2.20417 + 3.81773i) q^{95} +(8.75068 + 15.1566i) q^{97} +(-2.14150 - 2.10095i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{3} - 4 q^{5} - 5 q^{7} + 5 q^{9} - 6 q^{11} - 3 q^{13} - 7 q^{15} + 14 q^{17} + 10 q^{19} + 9 q^{21} - 8 q^{23} + 2 q^{25} - 11 q^{27} - 8 q^{29} - 4 q^{31} - 2 q^{33} + 16 q^{35} + 6 q^{37}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.71613 0.234283i 0.990810 0.135263i
\(4\) 0 0
\(5\) 0.848245 1.46920i 0.379347 0.657048i −0.611621 0.791151i \(-0.709482\pi\)
0.990967 + 0.134104i \(0.0428155\pi\)
\(6\) 0 0
\(7\) −0.951006 1.64719i −0.359446 0.622579i 0.628422 0.777873i \(-0.283701\pi\)
−0.987868 + 0.155293i \(0.950368\pi\)
\(8\) 0 0
\(9\) 2.89022 0.804122i 0.963408 0.268041i
\(10\) 0 0
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) 0 0
\(13\) 1.04198 1.80476i 0.288993 0.500550i −0.684577 0.728941i \(-0.740013\pi\)
0.973570 + 0.228391i \(0.0733463\pi\)
\(14\) 0 0
\(15\) 1.11149 2.72008i 0.286986 0.702321i
\(16\) 0 0
\(17\) −0.310342 −0.0752691 −0.0376345 0.999292i \(-0.511982\pi\)
−0.0376345 + 0.999292i \(0.511982\pi\)
\(18\) 0 0
\(19\) −2.59850 −0.596137 −0.298069 0.954544i \(-0.596342\pi\)
−0.298069 + 0.954544i \(0.596342\pi\)
\(20\) 0 0
\(21\) −2.01796 2.60399i −0.440355 0.568238i
\(22\) 0 0
\(23\) −0.113193 + 0.196056i −0.0236024 + 0.0408806i −0.877585 0.479420i \(-0.840847\pi\)
0.853983 + 0.520301i \(0.174180\pi\)
\(24\) 0 0
\(25\) 1.06096 + 1.83764i 0.212192 + 0.367528i
\(26\) 0 0
\(27\) 4.77161 2.05711i 0.918297 0.395891i
\(28\) 0 0
\(29\) −2.21016 3.82811i −0.410416 0.710862i 0.584519 0.811380i \(-0.301283\pi\)
−0.994935 + 0.100518i \(0.967950\pi\)
\(30\) 0 0
\(31\) 1.49298 2.58592i 0.268148 0.464446i −0.700236 0.713912i \(-0.746922\pi\)
0.968384 + 0.249466i \(0.0802551\pi\)
\(32\) 0 0
\(33\) −1.06096 1.36907i −0.184690 0.238325i
\(34\) 0 0
\(35\) −3.22674 −0.545419
\(36\) 0 0
\(37\) 4.20720 0.691659 0.345830 0.938297i \(-0.387598\pi\)
0.345830 + 0.938297i \(0.387598\pi\)
\(38\) 0 0
\(39\) 1.36535 3.34132i 0.218631 0.535040i
\(40\) 0 0
\(41\) −2.81188 + 4.87031i −0.439142 + 0.760615i −0.997623 0.0689013i \(-0.978051\pi\)
0.558482 + 0.829517i \(0.311384\pi\)
\(42\) 0 0
\(43\) 1.01197 + 1.75278i 0.154324 + 0.267296i 0.932813 0.360362i \(-0.117347\pi\)
−0.778489 + 0.627658i \(0.784014\pi\)
\(44\) 0 0
\(45\) 1.27020 4.92842i 0.189350 0.734685i
\(46\) 0 0
\(47\) −0.740187 1.28204i −0.107967 0.187005i 0.806979 0.590580i \(-0.201101\pi\)
−0.914947 + 0.403575i \(0.867768\pi\)
\(48\) 0 0
\(49\) 1.69118 2.92920i 0.241597 0.418457i
\(50\) 0 0
\(51\) −0.532589 + 0.0727080i −0.0745773 + 0.0101812i
\(52\) 0 0
\(53\) 3.56433 0.489598 0.244799 0.969574i \(-0.421278\pi\)
0.244799 + 0.969574i \(0.421278\pi\)
\(54\) 0 0
\(55\) −1.69649 −0.228755
\(56\) 0 0
\(57\) −4.45937 + 0.608785i −0.590658 + 0.0806356i
\(58\) 0 0
\(59\) −4.93826 + 8.55332i −0.642907 + 1.11355i 0.341874 + 0.939746i \(0.388938\pi\)
−0.984781 + 0.173801i \(0.944395\pi\)
\(60\) 0 0
\(61\) 4.18696 + 7.25203i 0.536085 + 0.928527i 0.999110 + 0.0421816i \(0.0134308\pi\)
−0.463025 + 0.886345i \(0.653236\pi\)
\(62\) 0 0
\(63\) −4.07316 3.99602i −0.513170 0.503452i
\(64\) 0 0
\(65\) −1.76770 3.06175i −0.219257 0.379764i
\(66\) 0 0
\(67\) −3.16867 + 5.48830i −0.387115 + 0.670503i −0.992060 0.125764i \(-0.959862\pi\)
0.604945 + 0.796267i \(0.293195\pi\)
\(68\) 0 0
\(69\) −0.148322 + 0.362978i −0.0178558 + 0.0436974i
\(70\) 0 0
\(71\) 0.355974 0.0422464 0.0211232 0.999777i \(-0.493276\pi\)
0.0211232 + 0.999777i \(0.493276\pi\)
\(72\) 0 0
\(73\) 11.9857 1.40282 0.701412 0.712756i \(-0.252553\pi\)
0.701412 + 0.712756i \(0.252553\pi\)
\(74\) 0 0
\(75\) 2.25128 + 2.90507i 0.259955 + 0.335448i
\(76\) 0 0
\(77\) −0.951006 + 1.64719i −0.108377 + 0.187715i
\(78\) 0 0
\(79\) 2.41844 + 4.18886i 0.272096 + 0.471283i 0.969398 0.245494i \(-0.0789500\pi\)
−0.697303 + 0.716777i \(0.745617\pi\)
\(80\) 0 0
\(81\) 7.70678 4.64818i 0.856308 0.516465i
\(82\) 0 0
\(83\) −1.45033 2.51204i −0.159194 0.275732i 0.775384 0.631490i \(-0.217556\pi\)
−0.934578 + 0.355758i \(0.884223\pi\)
\(84\) 0 0
\(85\) −0.263246 + 0.455956i −0.0285531 + 0.0494554i
\(86\) 0 0
\(87\) −4.68979 6.05174i −0.502798 0.648814i
\(88\) 0 0
\(89\) 3.43554 0.364167 0.182083 0.983283i \(-0.441716\pi\)
0.182083 + 0.983283i \(0.441716\pi\)
\(90\) 0 0
\(91\) −3.96371 −0.415510
\(92\) 0 0
\(93\) 1.95632 4.78757i 0.202861 0.496448i
\(94\) 0 0
\(95\) −2.20417 + 3.81773i −0.226143 + 0.391690i
\(96\) 0 0
\(97\) 8.75068 + 15.1566i 0.888497 + 1.53892i 0.841653 + 0.540019i \(0.181583\pi\)
0.0468441 + 0.998902i \(0.485084\pi\)
\(98\) 0 0
\(99\) −2.14150 2.10095i −0.215229 0.211153i
\(100\) 0 0
\(101\) −8.01452 13.8816i −0.797474 1.38127i −0.921256 0.388957i \(-0.872836\pi\)
0.123782 0.992309i \(-0.460498\pi\)
\(102\) 0 0
\(103\) 1.06062 1.83704i 0.104506 0.181009i −0.809030 0.587767i \(-0.800007\pi\)
0.913536 + 0.406758i \(0.133341\pi\)
\(104\) 0 0
\(105\) −5.53752 + 0.755972i −0.540407 + 0.0737753i
\(106\) 0 0
\(107\) −20.4972 −1.98154 −0.990771 0.135548i \(-0.956721\pi\)
−0.990771 + 0.135548i \(0.956721\pi\)
\(108\) 0 0
\(109\) 14.7125 1.40920 0.704599 0.709606i \(-0.251127\pi\)
0.704599 + 0.709606i \(0.251127\pi\)
\(110\) 0 0
\(111\) 7.22011 0.985676i 0.685303 0.0935562i
\(112\) 0 0
\(113\) −3.69683 + 6.40311i −0.347769 + 0.602354i −0.985853 0.167613i \(-0.946394\pi\)
0.638084 + 0.769967i \(0.279727\pi\)
\(114\) 0 0
\(115\) 0.192031 + 0.332607i 0.0179070 + 0.0310158i
\(116\) 0 0
\(117\) 1.56030 6.05403i 0.144250 0.559695i
\(118\) 0 0
\(119\) 0.295137 + 0.511193i 0.0270552 + 0.0468610i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) −3.68452 + 9.01688i −0.332222 + 0.813025i
\(124\) 0 0
\(125\) 12.0823 1.08067
\(126\) 0 0
\(127\) −9.88973 −0.877572 −0.438786 0.898592i \(-0.644591\pi\)
−0.438786 + 0.898592i \(0.644591\pi\)
\(128\) 0 0
\(129\) 2.14732 + 2.77091i 0.189061 + 0.243965i
\(130\) 0 0
\(131\) −4.17119 + 7.22472i −0.364439 + 0.631227i −0.988686 0.150000i \(-0.952073\pi\)
0.624247 + 0.781227i \(0.285406\pi\)
\(132\) 0 0
\(133\) 2.47119 + 4.28023i 0.214279 + 0.371143i
\(134\) 0 0
\(135\) 1.02518 8.75540i 0.0882337 0.753545i
\(136\) 0 0
\(137\) −2.88841 5.00287i −0.246773 0.427424i 0.715855 0.698249i \(-0.246037\pi\)
−0.962629 + 0.270825i \(0.912704\pi\)
\(138\) 0 0
\(139\) −0.830981 + 1.43930i −0.0704829 + 0.122080i −0.899113 0.437717i \(-0.855787\pi\)
0.828630 + 0.559796i \(0.189121\pi\)
\(140\) 0 0
\(141\) −1.57062 2.02674i −0.132270 0.170682i
\(142\) 0 0
\(143\) −2.08396 −0.174269
\(144\) 0 0
\(145\) −7.49902 −0.622760
\(146\) 0 0
\(147\) 2.21602 5.42311i 0.182774 0.447291i
\(148\) 0 0
\(149\) 2.59665 4.49753i 0.212726 0.368452i −0.739841 0.672782i \(-0.765099\pi\)
0.952567 + 0.304330i \(0.0984326\pi\)
\(150\) 0 0
\(151\) −2.08868 3.61769i −0.169974 0.294404i 0.768436 0.639926i \(-0.221035\pi\)
−0.938410 + 0.345523i \(0.887702\pi\)
\(152\) 0 0
\(153\) −0.896958 + 0.249553i −0.0725148 + 0.0201752i
\(154\) 0 0
\(155\) −2.53283 4.38699i −0.203442 0.352372i
\(156\) 0 0
\(157\) −5.76686 + 9.98850i −0.460246 + 0.797169i −0.998973 0.0453114i \(-0.985572\pi\)
0.538727 + 0.842480i \(0.318905\pi\)
\(158\) 0 0
\(159\) 6.11686 0.835063i 0.485099 0.0662248i
\(160\) 0 0
\(161\) 0.430589 0.0339352
\(162\) 0 0
\(163\) 20.5911 1.61282 0.806408 0.591359i \(-0.201408\pi\)
0.806408 + 0.591359i \(0.201408\pi\)
\(164\) 0 0
\(165\) −2.91140 + 0.397459i −0.226652 + 0.0309421i
\(166\) 0 0
\(167\) −9.65241 + 16.7185i −0.746926 + 1.29371i 0.202364 + 0.979310i \(0.435138\pi\)
−0.949290 + 0.314403i \(0.898196\pi\)
\(168\) 0 0
\(169\) 4.32856 + 7.49729i 0.332966 + 0.576715i
\(170\) 0 0
\(171\) −7.51025 + 2.08951i −0.574323 + 0.159789i
\(172\) 0 0
\(173\) 3.71665 + 6.43742i 0.282571 + 0.489428i 0.972017 0.234909i \(-0.0754793\pi\)
−0.689446 + 0.724337i \(0.742146\pi\)
\(174\) 0 0
\(175\) 2.01796 3.49521i 0.152544 0.264213i
\(176\) 0 0
\(177\) −6.47081 + 15.8356i −0.486376 + 1.19027i
\(178\) 0 0
\(179\) −3.12740 −0.233752 −0.116876 0.993146i \(-0.537288\pi\)
−0.116876 + 0.993146i \(0.537288\pi\)
\(180\) 0 0
\(181\) −15.8491 −1.17805 −0.589027 0.808114i \(-0.700489\pi\)
−0.589027 + 0.808114i \(0.700489\pi\)
\(182\) 0 0
\(183\) 8.88441 + 11.4645i 0.656754 + 0.847481i
\(184\) 0 0
\(185\) 3.56873 6.18123i 0.262379 0.454453i
\(186\) 0 0
\(187\) 0.155171 + 0.268764i 0.0113472 + 0.0196540i
\(188\) 0 0
\(189\) −7.92629 5.90343i −0.576552 0.429411i
\(190\) 0 0
\(191\) 6.77407 + 11.7330i 0.490155 + 0.848973i 0.999936 0.0113314i \(-0.00360697\pi\)
−0.509781 + 0.860304i \(0.670274\pi\)
\(192\) 0 0
\(193\) −7.81877 + 13.5425i −0.562807 + 0.974811i 0.434443 + 0.900700i \(0.356945\pi\)
−0.997250 + 0.0741114i \(0.976388\pi\)
\(194\) 0 0
\(195\) −3.75093 4.84023i −0.268610 0.346616i
\(196\) 0 0
\(197\) 1.36469 0.0972301 0.0486151 0.998818i \(-0.484519\pi\)
0.0486151 + 0.998818i \(0.484519\pi\)
\(198\) 0 0
\(199\) −1.35834 −0.0962903 −0.0481451 0.998840i \(-0.515331\pi\)
−0.0481451 + 0.998840i \(0.515331\pi\)
\(200\) 0 0
\(201\) −4.15205 + 10.1610i −0.292863 + 0.716703i
\(202\) 0 0
\(203\) −4.20375 + 7.28111i −0.295045 + 0.511033i
\(204\) 0 0
\(205\) 4.77032 + 8.26244i 0.333174 + 0.577074i
\(206\) 0 0
\(207\) −0.169500 + 0.657668i −0.0117811 + 0.0457111i
\(208\) 0 0
\(209\) 1.29925 + 2.25037i 0.0898710 + 0.155661i
\(210\) 0 0
\(211\) −7.27874 + 12.6072i −0.501089 + 0.867912i 0.498910 + 0.866654i \(0.333734\pi\)
−0.999999 + 0.00125834i \(0.999599\pi\)
\(212\) 0 0
\(213\) 0.610899 0.0833988i 0.0418581 0.00571439i
\(214\) 0 0
\(215\) 3.43358 0.234169
\(216\) 0 0
\(217\) −5.67935 −0.385539
\(218\) 0 0
\(219\) 20.5691 2.80805i 1.38993 0.189751i
\(220\) 0 0
\(221\) −0.323370 + 0.560093i −0.0217522 + 0.0376759i
\(222\) 0 0
\(223\) −10.6003 18.3602i −0.709846 1.22949i −0.964914 0.262566i \(-0.915431\pi\)
0.255068 0.966923i \(-0.417902\pi\)
\(224\) 0 0
\(225\) 4.54410 + 4.45804i 0.302940 + 0.297203i
\(226\) 0 0
\(227\) −5.99988 10.3921i −0.398226 0.689748i 0.595281 0.803518i \(-0.297041\pi\)
−0.993507 + 0.113770i \(0.963707\pi\)
\(228\) 0 0
\(229\) 4.05812 7.02888i 0.268168 0.464481i −0.700221 0.713927i \(-0.746915\pi\)
0.968389 + 0.249445i \(0.0802483\pi\)
\(230\) 0 0
\(231\) −1.24614 + 3.04960i −0.0819902 + 0.200649i
\(232\) 0 0
\(233\) −27.6506 −1.81145 −0.905726 0.423863i \(-0.860674\pi\)
−0.905726 + 0.423863i \(0.860674\pi\)
\(234\) 0 0
\(235\) −2.51144 −0.163828
\(236\) 0 0
\(237\) 5.13174 + 6.62204i 0.333342 + 0.430147i
\(238\) 0 0
\(239\) −3.61477 + 6.26097i −0.233820 + 0.404988i −0.958929 0.283646i \(-0.908456\pi\)
0.725109 + 0.688634i \(0.241789\pi\)
\(240\) 0 0
\(241\) 2.60924 + 4.51933i 0.168076 + 0.291116i 0.937743 0.347329i \(-0.112911\pi\)
−0.769668 + 0.638445i \(0.779578\pi\)
\(242\) 0 0
\(243\) 12.1369 9.78247i 0.778580 0.627546i
\(244\) 0 0
\(245\) −2.86906 4.96936i −0.183298 0.317481i
\(246\) 0 0
\(247\) −2.70758 + 4.68967i −0.172279 + 0.298396i
\(248\) 0 0
\(249\) −3.07748 3.97120i −0.195027 0.251665i
\(250\) 0 0
\(251\) 12.0710 0.761918 0.380959 0.924592i \(-0.375594\pi\)
0.380959 + 0.924592i \(0.375594\pi\)
\(252\) 0 0
\(253\) 0.226386 0.0142328
\(254\) 0 0
\(255\) −0.344943 + 0.844155i −0.0216011 + 0.0528630i
\(256\) 0 0
\(257\) −9.52708 + 16.5014i −0.594283 + 1.02933i 0.399365 + 0.916792i \(0.369231\pi\)
−0.993648 + 0.112536i \(0.964103\pi\)
\(258\) 0 0
\(259\) −4.00107 6.93006i −0.248614 0.430613i
\(260\) 0 0
\(261\) −9.46612 9.28685i −0.585938 0.574841i
\(262\) 0 0
\(263\) 10.9085 + 18.8941i 0.672649 + 1.16506i 0.977150 + 0.212551i \(0.0681770\pi\)
−0.304501 + 0.952512i \(0.598490\pi\)
\(264\) 0 0
\(265\) 3.02342 5.23673i 0.185727 0.321689i
\(266\) 0 0
\(267\) 5.89584 0.804889i 0.360820 0.0492584i
\(268\) 0 0
\(269\) 11.0157 0.671640 0.335820 0.941926i \(-0.390987\pi\)
0.335820 + 0.941926i \(0.390987\pi\)
\(270\) 0 0
\(271\) 14.7950 0.898733 0.449367 0.893347i \(-0.351650\pi\)
0.449367 + 0.893347i \(0.351650\pi\)
\(272\) 0 0
\(273\) −6.80225 + 0.928630i −0.411691 + 0.0562033i
\(274\) 0 0
\(275\) 1.06096 1.83764i 0.0639784 0.110814i
\(276\) 0 0
\(277\) −4.89355 8.47588i −0.294025 0.509266i 0.680733 0.732532i \(-0.261662\pi\)
−0.974758 + 0.223266i \(0.928328\pi\)
\(278\) 0 0
\(279\) 2.23566 8.67444i 0.133845 0.519325i
\(280\) 0 0
\(281\) −7.82471 13.5528i −0.466783 0.808492i 0.532497 0.846432i \(-0.321254\pi\)
−0.999280 + 0.0379400i \(0.987920\pi\)
\(282\) 0 0
\(283\) 3.37490 5.84549i 0.200617 0.347478i −0.748111 0.663574i \(-0.769039\pi\)
0.948727 + 0.316096i \(0.102372\pi\)
\(284\) 0 0
\(285\) −2.88821 + 7.06812i −0.171083 + 0.418680i
\(286\) 0 0
\(287\) 10.6964 0.631391
\(288\) 0 0
\(289\) −16.9037 −0.994335
\(290\) 0 0
\(291\) 18.5683 + 23.9606i 1.08849 + 1.40460i
\(292\) 0 0
\(293\) 2.00685 3.47597i 0.117241 0.203068i −0.801432 0.598086i \(-0.795928\pi\)
0.918674 + 0.395018i \(0.129262\pi\)
\(294\) 0 0
\(295\) 8.37771 + 14.5106i 0.487769 + 0.844840i
\(296\) 0 0
\(297\) −4.16732 3.10378i −0.241812 0.180100i
\(298\) 0 0
\(299\) 0.235890 + 0.408573i 0.0136418 + 0.0236284i
\(300\) 0 0
\(301\) 1.92477 3.33381i 0.110942 0.192157i
\(302\) 0 0
\(303\) −17.0062 21.9449i −0.976980 1.26070i
\(304\) 0 0
\(305\) 14.2063 0.813449
\(306\) 0 0
\(307\) 25.0796 1.43137 0.715683 0.698425i \(-0.246116\pi\)
0.715683 + 0.698425i \(0.246116\pi\)
\(308\) 0 0
\(309\) 1.38977 3.40109i 0.0790613 0.193481i
\(310\) 0 0
\(311\) −12.0638 + 20.8951i −0.684076 + 1.18485i 0.289650 + 0.957133i \(0.406461\pi\)
−0.973726 + 0.227722i \(0.926872\pi\)
\(312\) 0 0
\(313\) 0.192171 + 0.332850i 0.0108622 + 0.0188138i 0.871405 0.490564i \(-0.163209\pi\)
−0.860543 + 0.509377i \(0.829876\pi\)
\(314\) 0 0
\(315\) −9.32601 + 2.59470i −0.525461 + 0.146195i
\(316\) 0 0
\(317\) −16.5927 28.7395i −0.931942 1.61417i −0.779999 0.625781i \(-0.784780\pi\)
−0.151943 0.988389i \(-0.548553\pi\)
\(318\) 0 0
\(319\) −2.21016 + 3.82811i −0.123745 + 0.214333i
\(320\) 0 0
\(321\) −35.1760 + 4.80216i −1.96333 + 0.268030i
\(322\) 0 0
\(323\) 0.806425 0.0448707
\(324\) 0 0
\(325\) 4.42199 0.245288
\(326\) 0 0
\(327\) 25.2485 3.44688i 1.39625 0.190613i
\(328\) 0 0
\(329\) −1.40784 + 2.43846i −0.0776170 + 0.134437i
\(330\) 0 0
\(331\) −14.6522 25.3783i −0.805356 1.39492i −0.916050 0.401063i \(-0.868641\pi\)
0.110694 0.993854i \(-0.464693\pi\)
\(332\) 0 0
\(333\) 12.1597 3.38310i 0.666350 0.185393i
\(334\) 0 0
\(335\) 5.37562 + 9.31085i 0.293702 + 0.508706i
\(336\) 0 0
\(337\) −1.29202 + 2.23785i −0.0703810 + 0.121903i −0.899068 0.437808i \(-0.855755\pi\)
0.828687 + 0.559712i \(0.189088\pi\)
\(338\) 0 0
\(339\) −4.84412 + 11.8547i −0.263096 + 0.643858i
\(340\) 0 0
\(341\) −2.98597 −0.161699
\(342\) 0 0
\(343\) −19.7474 −1.06626
\(344\) 0 0
\(345\) 0.407475 + 0.525809i 0.0219377 + 0.0283086i
\(346\) 0 0
\(347\) 3.52683 6.10865i 0.189330 0.327929i −0.755697 0.654921i \(-0.772702\pi\)
0.945027 + 0.326992i \(0.106035\pi\)
\(348\) 0 0
\(349\) −3.28361 5.68738i −0.175768 0.304439i 0.764659 0.644435i \(-0.222907\pi\)
−0.940427 + 0.339997i \(0.889574\pi\)
\(350\) 0 0
\(351\) 1.25933 10.7551i 0.0672179 0.574063i
\(352\) 0 0
\(353\) 4.84281 + 8.38799i 0.257757 + 0.446447i 0.965641 0.259881i \(-0.0836834\pi\)
−0.707884 + 0.706329i \(0.750350\pi\)
\(354\) 0 0
\(355\) 0.301953 0.522998i 0.0160260 0.0277579i
\(356\) 0 0
\(357\) 0.626259 + 0.808129i 0.0331451 + 0.0427707i
\(358\) 0 0
\(359\) 37.5152 1.97998 0.989990 0.141141i \(-0.0450771\pi\)
0.989990 + 0.141141i \(0.0450771\pi\)
\(360\) 0 0
\(361\) −12.2478 −0.644621
\(362\) 0 0
\(363\) −0.655171 + 1.60336i −0.0343876 + 0.0841544i
\(364\) 0 0
\(365\) 10.1668 17.6095i 0.532156 0.921722i
\(366\) 0 0
\(367\) −15.5496 26.9327i −0.811684 1.40588i −0.911685 0.410890i \(-0.865218\pi\)
0.100001 0.994987i \(-0.468115\pi\)
\(368\) 0 0
\(369\) −4.21062 + 16.3374i −0.219196 + 0.850490i
\(370\) 0 0
\(371\) −3.38970 5.87113i −0.175984 0.304814i
\(372\) 0 0
\(373\) 10.3862 17.9894i 0.537776 0.931455i −0.461248 0.887271i \(-0.652598\pi\)
0.999023 0.0441835i \(-0.0140686\pi\)
\(374\) 0 0
\(375\) 20.7348 2.83067i 1.07074 0.146175i
\(376\) 0 0
\(377\) −9.21175 −0.474429
\(378\) 0 0
\(379\) 18.8314 0.967303 0.483652 0.875261i \(-0.339310\pi\)
0.483652 + 0.875261i \(0.339310\pi\)
\(380\) 0 0
\(381\) −16.9721 + 2.31700i −0.869507 + 0.118703i
\(382\) 0 0
\(383\) 9.49828 16.4515i 0.485339 0.840632i −0.514519 0.857479i \(-0.672029\pi\)
0.999858 + 0.0168467i \(0.00536272\pi\)
\(384\) 0 0
\(385\) 1.61337 + 2.79444i 0.0822250 + 0.142418i
\(386\) 0 0
\(387\) 4.33426 + 4.25218i 0.220323 + 0.216150i
\(388\) 0 0
\(389\) −1.61402 2.79557i −0.0818343 0.141741i 0.822204 0.569194i \(-0.192744\pi\)
−0.904038 + 0.427452i \(0.859411\pi\)
\(390\) 0 0
\(391\) 0.0351286 0.0608446i 0.00177653 0.00307704i
\(392\) 0 0
\(393\) −5.46569 + 13.3758i −0.275708 + 0.674721i
\(394\) 0 0
\(395\) 8.20571 0.412874
\(396\) 0 0
\(397\) 36.5699 1.83539 0.917694 0.397288i \(-0.130048\pi\)
0.917694 + 0.397288i \(0.130048\pi\)
\(398\) 0 0
\(399\) 5.24368 + 6.76648i 0.262512 + 0.338748i
\(400\) 0 0
\(401\) 6.69868 11.6025i 0.334516 0.579399i −0.648876 0.760894i \(-0.724760\pi\)
0.983392 + 0.181496i \(0.0580938\pi\)
\(402\) 0 0
\(403\) −3.11131 5.38895i −0.154986 0.268443i
\(404\) 0 0
\(405\) −0.291894 15.2656i −0.0145043 0.758555i
\(406\) 0 0
\(407\) −2.10360 3.64354i −0.104272 0.180604i
\(408\) 0 0
\(409\) 7.44699 12.8986i 0.368230 0.637793i −0.621059 0.783764i \(-0.713297\pi\)
0.989289 + 0.145971i \(0.0466306\pi\)
\(410\) 0 0
\(411\) −6.12898 7.90888i −0.302320 0.390116i
\(412\) 0 0
\(413\) 18.7853 0.924362
\(414\) 0 0
\(415\) −4.92093 −0.241559
\(416\) 0 0
\(417\) −1.08887 + 2.66472i −0.0533222 + 0.130492i
\(418\) 0 0
\(419\) 18.5771 32.1765i 0.907551 1.57193i 0.0900963 0.995933i \(-0.471283\pi\)
0.817455 0.575992i \(-0.195384\pi\)
\(420\) 0 0
\(421\) −16.7812 29.0660i −0.817868 1.41659i −0.907250 0.420591i \(-0.861823\pi\)
0.0893828 0.995997i \(-0.471511\pi\)
\(422\) 0 0
\(423\) −3.17022 3.11019i −0.154142 0.151222i
\(424\) 0 0
\(425\) −0.329261 0.570297i −0.0159715 0.0276635i
\(426\) 0 0
\(427\) 7.96365 13.7934i 0.385388 0.667511i
\(428\) 0 0
\(429\) −3.57634 + 0.488236i −0.172668 + 0.0235722i
\(430\) 0 0
\(431\) 11.9350 0.574890 0.287445 0.957797i \(-0.407194\pi\)
0.287445 + 0.957797i \(0.407194\pi\)
\(432\) 0 0
\(433\) −18.0875 −0.869230 −0.434615 0.900616i \(-0.643116\pi\)
−0.434615 + 0.900616i \(0.643116\pi\)
\(434\) 0 0
\(435\) −12.8693 + 1.75690i −0.617037 + 0.0842367i
\(436\) 0 0
\(437\) 0.294133 0.509453i 0.0140703 0.0243704i
\(438\) 0 0
\(439\) −5.99501 10.3837i −0.286126 0.495585i 0.686755 0.726889i \(-0.259034\pi\)
−0.972882 + 0.231303i \(0.925701\pi\)
\(440\) 0 0
\(441\) 2.53244 9.82596i 0.120592 0.467903i
\(442\) 0 0
\(443\) −9.30925 16.1241i −0.442296 0.766079i 0.555564 0.831474i \(-0.312502\pi\)
−0.997859 + 0.0653954i \(0.979169\pi\)
\(444\) 0 0
\(445\) 2.91418 5.04751i 0.138145 0.239275i
\(446\) 0 0
\(447\) 3.40250 8.32670i 0.160933 0.393839i
\(448\) 0 0
\(449\) 33.1000 1.56208 0.781042 0.624478i \(-0.214688\pi\)
0.781042 + 0.624478i \(0.214688\pi\)
\(450\) 0 0
\(451\) 5.62376 0.264812
\(452\) 0 0
\(453\) −4.43201 5.71910i −0.208234 0.268707i
\(454\) 0 0
\(455\) −3.36220 + 5.82349i −0.157622 + 0.273010i
\(456\) 0 0
\(457\) 17.0222 + 29.4833i 0.796266 + 1.37917i 0.922032 + 0.387113i \(0.126528\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(458\) 0 0
\(459\) −1.48083 + 0.638408i −0.0691194 + 0.0297984i
\(460\) 0 0
\(461\) −9.08371 15.7335i −0.423071 0.732780i 0.573167 0.819438i \(-0.305714\pi\)
−0.996238 + 0.0866584i \(0.972381\pi\)
\(462\) 0 0
\(463\) −8.69997 + 15.0688i −0.404322 + 0.700306i −0.994242 0.107155i \(-0.965826\pi\)
0.589920 + 0.807461i \(0.299159\pi\)
\(464\) 0 0
\(465\) −5.37447 6.93526i −0.249235 0.321615i
\(466\) 0 0
\(467\) 23.2774 1.07715 0.538575 0.842578i \(-0.318963\pi\)
0.538575 + 0.842578i \(0.318963\pi\)
\(468\) 0 0
\(469\) 12.0537 0.556589
\(470\) 0 0
\(471\) −7.55656 + 18.4927i −0.348188 + 0.852097i
\(472\) 0 0
\(473\) 1.01197 1.75278i 0.0465303 0.0805929i
\(474\) 0 0
\(475\) −2.75691 4.77511i −0.126496 0.219097i
\(476\) 0 0
\(477\) 10.3017 2.86616i 0.471683 0.131232i
\(478\) 0 0
\(479\) −15.9737 27.6672i −0.729855 1.26415i −0.956944 0.290272i \(-0.906254\pi\)
0.227089 0.973874i \(-0.427079\pi\)
\(480\) 0 0
\(481\) 4.38381 7.59298i 0.199884 0.346210i
\(482\) 0 0
\(483\) 0.738949 0.100880i 0.0336233 0.00459019i
\(484\) 0 0
\(485\) 29.6909 1.34819
\(486\) 0 0
\(487\) −29.7548 −1.34832 −0.674159 0.738586i \(-0.735494\pi\)
−0.674159 + 0.738586i \(0.735494\pi\)
\(488\) 0 0
\(489\) 35.3370 4.82414i 1.59799 0.218155i
\(490\) 0 0
\(491\) 0.884768 1.53246i 0.0399290 0.0691591i −0.845370 0.534181i \(-0.820620\pi\)
0.885299 + 0.465022i \(0.153953\pi\)
\(492\) 0 0
\(493\) 0.685906 + 1.18802i 0.0308916 + 0.0535059i
\(494\) 0 0
\(495\) −4.90323 + 1.36418i −0.220384 + 0.0613155i
\(496\) 0 0
\(497\) −0.338534 0.586357i −0.0151853 0.0263017i
\(498\) 0 0
\(499\) 7.94578 13.7625i 0.355702 0.616094i −0.631536 0.775347i \(-0.717575\pi\)
0.987238 + 0.159253i \(0.0509085\pi\)
\(500\) 0 0
\(501\) −12.6480 + 30.9525i −0.565069 + 1.38286i
\(502\) 0 0
\(503\) 14.5272 0.647735 0.323867 0.946102i \(-0.395017\pi\)
0.323867 + 0.946102i \(0.395017\pi\)
\(504\) 0 0
\(505\) −27.1931 −1.21008
\(506\) 0 0
\(507\) 9.18488 + 11.8522i 0.407915 + 0.526376i
\(508\) 0 0
\(509\) −14.9830 + 25.9514i −0.664112 + 1.15028i 0.315413 + 0.948954i \(0.397857\pi\)
−0.979525 + 0.201321i \(0.935476\pi\)
\(510\) 0 0
\(511\) −11.3985 19.7428i −0.504240 0.873369i
\(512\) 0 0
\(513\) −12.3990 + 5.34541i −0.547431 + 0.236005i
\(514\) 0 0
\(515\) −1.79932 3.11652i −0.0792877 0.137330i
\(516\) 0 0
\(517\) −0.740187 + 1.28204i −0.0325534 + 0.0563841i
\(518\) 0 0
\(519\) 7.88644 + 10.1767i 0.346176 + 0.446708i
\(520\) 0 0
\(521\) −11.3725 −0.498237 −0.249118 0.968473i \(-0.580141\pi\)
−0.249118 + 0.968473i \(0.580141\pi\)
\(522\) 0 0
\(523\) 13.1069 0.573124 0.286562 0.958062i \(-0.407488\pi\)
0.286562 + 0.958062i \(0.407488\pi\)
\(524\) 0 0
\(525\) 2.64422 6.47102i 0.115403 0.282419i
\(526\) 0 0
\(527\) −0.463336 + 0.802522i −0.0201832 + 0.0349584i
\(528\) 0 0
\(529\) 11.4744 + 19.8742i 0.498886 + 0.864096i
\(530\) 0 0
\(531\) −7.39476 + 28.6920i −0.320905 + 1.24512i
\(532\) 0 0
\(533\) 5.85983 + 10.1495i 0.253817 + 0.439625i
\(534\) 0 0
\(535\) −17.3867 + 30.1146i −0.751691 + 1.30197i
\(536\) 0 0
\(537\) −5.36702 + 0.732696i −0.231604 + 0.0316182i
\(538\) 0 0
\(539\) −3.38235 −0.145688
\(540\) 0 0
\(541\) −25.4013 −1.09209 −0.546043 0.837757i \(-0.683866\pi\)
−0.546043 + 0.837757i \(0.683866\pi\)
\(542\) 0 0
\(543\) −27.1991 + 3.71317i −1.16723 + 0.159348i
\(544\) 0 0
\(545\) 12.4798 21.6156i 0.534574 0.925910i
\(546\) 0 0
\(547\) 2.20859 + 3.82539i 0.0944325 + 0.163562i 0.909372 0.415985i \(-0.136563\pi\)
−0.814939 + 0.579547i \(0.803230\pi\)
\(548\) 0 0
\(549\) 17.9328 + 17.5931i 0.765352 + 0.750857i
\(550\) 0 0
\(551\) 5.74310 + 9.94734i 0.244664 + 0.423771i
\(552\) 0 0
\(553\) 4.59990 7.96726i 0.195608 0.338802i
\(554\) 0 0
\(555\) 4.67626 11.4439i 0.198496 0.485767i
\(556\) 0 0
\(557\) −4.65681 −0.197315 −0.0986577 0.995121i \(-0.531455\pi\)
−0.0986577 + 0.995121i \(0.531455\pi\)
\(558\) 0 0
\(559\) 4.21779 0.178394
\(560\) 0 0
\(561\) 0.329261 + 0.424881i 0.0139014 + 0.0179385i
\(562\) 0 0
\(563\) 2.92737 5.07036i 0.123374 0.213690i −0.797722 0.603025i \(-0.793962\pi\)
0.921096 + 0.389335i \(0.127295\pi\)
\(564\) 0 0
\(565\) 6.27164 + 10.8628i 0.263850 + 0.457002i
\(566\) 0 0
\(567\) −14.9856 8.27408i −0.629337 0.347479i
\(568\) 0 0
\(569\) 15.6601 + 27.1240i 0.656504 + 1.13710i 0.981515 + 0.191388i \(0.0612987\pi\)
−0.325011 + 0.945710i \(0.605368\pi\)
\(570\) 0 0
\(571\) −2.97698 + 5.15628i −0.124583 + 0.215784i −0.921570 0.388213i \(-0.873093\pi\)
0.796987 + 0.603996i \(0.206426\pi\)
\(572\) 0 0
\(573\) 14.3741 + 18.5484i 0.600485 + 0.774870i
\(574\) 0 0
\(575\) −0.480374 −0.0200330
\(576\) 0 0
\(577\) −15.4452 −0.642993 −0.321497 0.946911i \(-0.604186\pi\)
−0.321497 + 0.946911i \(0.604186\pi\)
\(578\) 0 0
\(579\) −10.2453 + 25.0725i −0.425779 + 1.04198i
\(580\) 0 0
\(581\) −2.75854 + 4.77793i −0.114443 + 0.198222i
\(582\) 0 0
\(583\) −1.78217 3.08680i −0.0738097 0.127842i
\(584\) 0 0
\(585\) −7.57109 7.42770i −0.313026 0.307098i
\(586\) 0 0
\(587\) −20.0341 34.7001i −0.826896 1.43223i −0.900462 0.434935i \(-0.856771\pi\)
0.0735662 0.997290i \(-0.476562\pi\)
\(588\) 0 0
\(589\) −3.87952 + 6.71953i −0.159853 + 0.276873i
\(590\) 0 0
\(591\) 2.34199 0.319724i 0.0963365 0.0131517i
\(592\) 0 0
\(593\) 20.1031 0.825537 0.412769 0.910836i \(-0.364562\pi\)
0.412769 + 0.910836i \(0.364562\pi\)
\(594\) 0 0
\(595\) 1.00139 0.0410532
\(596\) 0 0
\(597\) −2.33109 + 0.318237i −0.0954053 + 0.0130246i
\(598\) 0 0
\(599\) −12.1189 + 20.9906i −0.495166 + 0.857652i −0.999984 0.00557313i \(-0.998226\pi\)
0.504819 + 0.863225i \(0.331559\pi\)
\(600\) 0 0
\(601\) −14.0758 24.3800i −0.574164 0.994481i −0.996132 0.0878702i \(-0.971994\pi\)
0.421968 0.906611i \(-0.361339\pi\)
\(602\) 0 0
\(603\) −4.74491 + 18.4104i −0.193228 + 0.749730i
\(604\) 0 0
\(605\) 0.848245 + 1.46920i 0.0344861 + 0.0597316i
\(606\) 0 0
\(607\) −13.7737 + 23.8567i −0.559056 + 0.968313i 0.438520 + 0.898722i \(0.355503\pi\)
−0.997576 + 0.0695916i \(0.977830\pi\)
\(608\) 0 0
\(609\) −5.50835 + 13.4802i −0.223210 + 0.546246i
\(610\) 0 0
\(611\) −3.08504 −0.124807
\(612\) 0 0
\(613\) −34.2328 −1.38265 −0.691325 0.722544i \(-0.742973\pi\)
−0.691325 + 0.722544i \(0.742973\pi\)
\(614\) 0 0
\(615\) 10.1223 + 13.0618i 0.408169 + 0.526704i
\(616\) 0 0
\(617\) 0.106873 0.185109i 0.00430253 0.00745221i −0.863866 0.503721i \(-0.831964\pi\)
0.868169 + 0.496269i \(0.165297\pi\)
\(618\) 0 0
\(619\) −15.2272 26.3743i −0.612032 1.06007i −0.990897 0.134619i \(-0.957019\pi\)
0.378865 0.925452i \(-0.376314\pi\)
\(620\) 0 0
\(621\) −0.136804 + 1.16836i −0.00548977 + 0.0468845i
\(622\) 0 0
\(623\) −3.26722 5.65899i −0.130898 0.226723i
\(624\) 0 0
\(625\) 4.94391 8.56311i 0.197757 0.342524i
\(626\) 0 0
\(627\) 2.75691 + 3.55754i 0.110100 + 0.142074i
\(628\) 0 0
\(629\) −1.30567 −0.0520605
\(630\) 0 0
\(631\) −27.6272 −1.09982 −0.549910 0.835224i \(-0.685338\pi\)
−0.549910 + 0.835224i \(0.685338\pi\)
\(632\) 0 0
\(633\) −9.53765 + 23.3408i −0.379087 + 0.927715i
\(634\) 0 0
\(635\) −8.38891 + 14.5300i −0.332904 + 0.576606i
\(636\) 0 0
\(637\) −3.52434 6.10433i −0.139639 0.241862i
\(638\) 0 0
\(639\) 1.02884 0.286247i 0.0407005 0.0113237i
\(640\) 0 0
\(641\) 11.6370 + 20.1559i 0.459634 + 0.796110i 0.998941 0.0459993i \(-0.0146472\pi\)
−0.539307 + 0.842109i \(0.681314\pi\)
\(642\) 0 0
\(643\) 7.21107 12.4899i 0.284377 0.492555i −0.688081 0.725634i \(-0.741547\pi\)
0.972458 + 0.233079i \(0.0748800\pi\)
\(644\) 0 0
\(645\) 5.89249 0.804431i 0.232016 0.0316744i
\(646\) 0 0
\(647\) 0.518760 0.0203946 0.0101973 0.999948i \(-0.496754\pi\)
0.0101973 + 0.999948i \(0.496754\pi\)
\(648\) 0 0
\(649\) 9.87652 0.387687
\(650\) 0 0
\(651\) −9.74651 + 1.33058i −0.381996 + 0.0521494i
\(652\) 0 0
\(653\) −14.3977 + 24.9375i −0.563424 + 0.975880i 0.433770 + 0.901024i \(0.357183\pi\)
−0.997194 + 0.0748561i \(0.976150\pi\)
\(654\) 0 0
\(655\) 7.07639 + 12.2567i 0.276497 + 0.478907i
\(656\) 0 0
\(657\) 34.6414 9.63799i 1.35149 0.376014i
\(658\) 0 0
\(659\) 15.0559 + 26.0776i 0.586494 + 1.01584i 0.994687 + 0.102942i \(0.0328257\pi\)
−0.408193 + 0.912896i \(0.633841\pi\)
\(660\) 0 0
\(661\) 24.1247 41.7853i 0.938344 1.62526i 0.169784 0.985481i \(-0.445693\pi\)
0.768560 0.639778i \(-0.220974\pi\)
\(662\) 0 0
\(663\) −0.423725 + 1.03695i −0.0164561 + 0.0402720i
\(664\) 0 0
\(665\) 8.38470 0.325145
\(666\) 0 0
\(667\) 1.00070 0.0387472
\(668\) 0 0
\(669\) −22.4929 29.0251i −0.869627 1.12217i
\(670\) 0 0
\(671\) 4.18696 7.25203i 0.161636 0.279961i
\(672\) 0 0
\(673\) −1.29571 2.24423i −0.0499458 0.0865087i 0.839972 0.542630i \(-0.182572\pi\)
−0.889917 + 0.456122i \(0.849238\pi\)
\(674\) 0 0
\(675\) 8.84273 + 6.58599i 0.340357 + 0.253495i
\(676\) 0 0
\(677\) −6.00135 10.3946i −0.230651 0.399499i 0.727349 0.686268i \(-0.240752\pi\)
−0.958000 + 0.286769i \(0.907419\pi\)
\(678\) 0 0
\(679\) 16.6439 28.8281i 0.638734 1.10632i
\(680\) 0 0
\(681\) −12.7313 16.4285i −0.487864 0.629543i
\(682\) 0 0
\(683\) −10.4104 −0.398341 −0.199171 0.979965i \(-0.563825\pi\)
−0.199171 + 0.979965i \(0.563825\pi\)
\(684\) 0 0
\(685\) −9.80030 −0.374450
\(686\) 0 0
\(687\) 5.31753 13.0132i 0.202876 0.496486i
\(688\) 0 0
\(689\) 3.71395 6.43276i 0.141490 0.245069i
\(690\) 0 0
\(691\) 23.0332 + 39.8948i 0.876226 + 1.51767i 0.855451 + 0.517884i \(0.173280\pi\)
0.0207750 + 0.999784i \(0.493387\pi\)
\(692\) 0 0
\(693\) −1.42408 + 5.52547i −0.0540962 + 0.209895i
\(694\) 0 0
\(695\) 1.40975 + 2.44176i 0.0534749 + 0.0926212i
\(696\) 0 0
\(697\) 0.872645 1.51146i 0.0330538 0.0572508i
\(698\) 0 0
\(699\) −47.4521 + 6.47808i −1.79480 + 0.245023i
\(700\) 0 0
\(701\) −18.3855 −0.694410 −0.347205 0.937789i \(-0.612869\pi\)
−0.347205 + 0.937789i \(0.612869\pi\)
\(702\) 0 0
\(703\) −10.9324 −0.412324
\(704\) 0 0
\(705\) −4.30996 + 0.588388i −0.162323 + 0.0221600i
\(706\) 0 0
\(707\) −15.2437 + 26.4029i −0.573299 + 0.992982i
\(708\) 0 0
\(709\) −11.3938 19.7347i −0.427904 0.741152i 0.568782 0.822488i \(-0.307415\pi\)
−0.996687 + 0.0813360i \(0.974081\pi\)
\(710\) 0 0
\(711\) 10.3582 + 10.1620i 0.388462 + 0.381105i
\(712\) 0 0
\(713\) 0.337991 + 0.585418i 0.0126579 + 0.0219241i
\(714\) 0 0
\(715\) −1.76770 + 3.06175i −0.0661084 + 0.114503i
\(716\) 0 0
\(717\) −4.73659 + 11.5915i −0.176891 + 0.432894i
\(718\) 0 0
\(719\) 8.21384 0.306325 0.153162 0.988201i \(-0.451054\pi\)
0.153162 + 0.988201i \(0.451054\pi\)
\(720\) 0 0
\(721\) −4.03461 −0.150257
\(722\) 0 0
\(723\) 5.53660 + 7.14447i 0.205908 + 0.265706i
\(724\) 0 0
\(725\) 4.68979 8.12295i 0.174174 0.301679i
\(726\) 0 0
\(727\) 12.9220 + 22.3816i 0.479252 + 0.830088i 0.999717 0.0237945i \(-0.00757475\pi\)
−0.520465 + 0.853883i \(0.674241\pi\)
\(728\) 0 0
\(729\) 18.5366 19.6315i 0.686540 0.727092i
\(730\) 0 0
\(731\) −0.314056 0.543961i −0.0116158 0.0201191i
\(732\) 0 0
\(733\) −17.1099 + 29.6352i −0.631968 + 1.09460i 0.355181 + 0.934798i \(0.384419\pi\)
−0.987149 + 0.159803i \(0.948914\pi\)
\(734\) 0 0
\(735\) −6.08793 7.85591i −0.224557 0.289770i
\(736\) 0 0
\(737\) 6.33735 0.233439
\(738\) 0 0
\(739\) 38.8028 1.42738 0.713692 0.700460i \(-0.247022\pi\)
0.713692 + 0.700460i \(0.247022\pi\)
\(740\) 0 0
\(741\) −3.54786 + 8.68243i −0.130334 + 0.318957i
\(742\) 0 0
\(743\) −0.675496 + 1.16999i −0.0247816 + 0.0429229i −0.878150 0.478385i \(-0.841222\pi\)
0.853369 + 0.521308i \(0.174556\pi\)
\(744\) 0 0
\(745\) −4.40519 7.63001i −0.161394 0.279542i
\(746\) 0 0
\(747\) −6.21175 6.09411i −0.227276 0.222972i
\(748\) 0 0
\(749\) 19.4930 + 33.7628i 0.712258 + 1.23367i
\(750\) 0 0
\(751\) −9.26715 + 16.0512i −0.338163 + 0.585715i −0.984087 0.177686i \(-0.943139\pi\)
0.645924 + 0.763402i \(0.276472\pi\)
\(752\) 0 0
\(753\) 20.7155 2.82804i 0.754915 0.103060i
\(754\) 0 0
\(755\) −7.08683 −0.257916
\(756\) 0 0
\(757\) −17.5676 −0.638504 −0.319252 0.947670i \(-0.603432\pi\)
−0.319252 + 0.947670i \(0.603432\pi\)
\(758\) 0 0
\(759\) 0.388509 0.0530385i 0.0141020 0.00192518i
\(760\) 0 0
\(761\) −5.90148 + 10.2217i −0.213928 + 0.370535i −0.952941 0.303157i \(-0.901959\pi\)
0.739012 + 0.673692i \(0.235293\pi\)
\(762\) 0 0
\(763\) −13.9916 24.2342i −0.506531 0.877338i
\(764\) 0 0
\(765\) −0.394196 + 1.52950i −0.0142522 + 0.0552990i
\(766\) 0 0
\(767\) 10.2911 + 17.8247i 0.371591 + 0.643614i
\(768\) 0 0
\(769\) 4.87237 8.43919i 0.175702 0.304325i −0.764702 0.644384i \(-0.777114\pi\)
0.940404 + 0.340059i \(0.110447\pi\)
\(770\) 0 0
\(771\) −12.4837 + 30.5506i −0.449591 + 1.10025i
\(772\) 0 0
\(773\) −31.8568 −1.14581 −0.572905 0.819622i \(-0.694184\pi\)
−0.572905 + 0.819622i \(0.694184\pi\)
\(774\) 0 0
\(775\) 6.33599 0.227596
\(776\) 0 0
\(777\) −8.48996 10.9555i −0.304576 0.393027i
\(778\) 0 0
\(779\) 7.30667 12.6555i 0.261789 0.453431i
\(780\) 0 0
\(781\) −0.177987 0.308283i −0.00636888 0.0110312i
\(782\) 0 0
\(783\) −18.4209 13.7197i −0.658308 0.490302i
\(784\) 0 0
\(785\) 9.78342 + 16.9454i 0.349185 + 0.604807i
\(786\) 0 0
\(787\) 3.02390 5.23755i 0.107790 0.186699i −0.807084 0.590436i \(-0.798956\pi\)
0.914875 + 0.403738i \(0.132289\pi\)
\(788\) 0 0
\(789\) 23.1471 + 29.8692i 0.824058 + 1.06337i
\(790\) 0 0
\(791\) 14.0628 0.500017
\(792\) 0 0
\(793\) 17.4509 0.619699
\(794\) 0 0
\(795\) 3.96172 9.69525i 0.140508 0.343855i
\(796\) 0 0
\(797\) −10.8921 + 18.8657i −0.385819 + 0.668258i −0.991882 0.127158i \(-0.959414\pi\)
0.606063 + 0.795416i \(0.292748\pi\)
\(798\) 0 0
\(799\) 0.229711 + 0.397872i 0.00812660 + 0.0140757i
\(800\) 0 0
\(801\) 9.92948 2.76259i 0.350841 0.0976115i
\(802\) 0 0
\(803\) −5.99286 10.3799i −0.211484 0.366300i
\(804\) 0 0
\(805\) 0.365245 0.632623i 0.0128732 0.0222970i
\(806\) 0 0
\(807\) 18.9044 2.58080i 0.665467 0.0908483i
\(808\) 0 0
\(809\) −1.07452 −0.0377779 −0.0188890 0.999822i \(-0.506013\pi\)
−0.0188890 + 0.999822i \(0.506013\pi\)
\(810\) 0 0
\(811\) 6.38538 0.224221 0.112110 0.993696i \(-0.464239\pi\)
0.112110 + 0.993696i \(0.464239\pi\)
\(812\) 0 0
\(813\) 25.3902 3.46622i 0.890474 0.121566i
\(814\) 0 0
\(815\) 17.4663 30.2525i 0.611816 1.05970i
\(816\) 0 0
\(817\) −2.62960 4.55460i −0.0919980 0.159345i
\(818\) 0 0
\(819\) −11.4560 + 3.18731i −0.400305 + 0.111373i
\(820\) 0 0
\(821\) −0.291474 0.504848i −0.0101725 0.0176193i 0.860894 0.508784i \(-0.169905\pi\)
−0.871067 + 0.491164i \(0.836571\pi\)
\(822\) 0 0
\(823\) −12.4989 + 21.6488i −0.435685 + 0.754628i −0.997351 0.0727357i \(-0.976827\pi\)
0.561667 + 0.827364i \(0.310160\pi\)
\(824\) 0 0
\(825\) 1.39022 3.40220i 0.0484013 0.118449i
\(826\) 0 0
\(827\) 9.64913 0.335533 0.167767 0.985827i \(-0.446345\pi\)
0.167767 + 0.985827i \(0.446345\pi\)
\(828\) 0 0
\(829\) −8.07397 −0.280421 −0.140210 0.990122i \(-0.544778\pi\)
−0.140210 + 0.990122i \(0.544778\pi\)
\(830\) 0 0
\(831\) −10.3837 13.3993i −0.360208 0.464815i
\(832\) 0 0
\(833\) −0.524843 + 0.909055i −0.0181847 + 0.0314969i
\(834\) 0 0
\(835\) 16.3752 + 28.3627i 0.566688 + 0.981532i
\(836\) 0 0
\(837\) 1.80441 15.4103i 0.0623695 0.532657i
\(838\) 0 0
\(839\) 20.4457 + 35.4130i 0.705864 + 1.22259i 0.966379 + 0.257123i \(0.0827744\pi\)
−0.260515 + 0.965470i \(0.583892\pi\)
\(840\) 0 0
\(841\) 4.73039 8.19328i 0.163117 0.282527i
\(842\) 0 0
\(843\) −16.6034 21.4252i −0.571853 0.737923i
\(844\) 0 0
\(845\) 14.6867 0.505239
\(846\) 0 0
\(847\) 1.90201 0.0653539
\(848\) 0 0
\(849\) 4.42227 10.8223i 0.151772 0.371421i
\(850\) 0 0
\(851\) −0.476226 + 0.824848i −0.0163248 + 0.0282754i
\(852\) 0 0
\(853\) 11.5669 + 20.0345i 0.396043 + 0.685967i 0.993234 0.116132i \(-0.0370497\pi\)
−0.597191 + 0.802099i \(0.703716\pi\)
\(854\) 0 0
\(855\) −3.30061 + 12.8065i −0.112878 + 0.437973i
\(856\) 0 0
\(857\) −18.0922 31.3367i −0.618019 1.07044i −0.989847 0.142138i \(-0.954602\pi\)
0.371828 0.928302i \(-0.378731\pi\)
\(858\) 0 0
\(859\) 2.36582 4.09773i 0.0807208 0.139813i −0.822839 0.568275i \(-0.807611\pi\)
0.903560 + 0.428462i \(0.140944\pi\)
\(860\) 0 0
\(861\) 18.3565 2.50600i 0.625589 0.0854042i
\(862\) 0 0
\(863\) −51.6542 −1.75833 −0.879164 0.476519i \(-0.841898\pi\)
−0.879164 + 0.476519i \(0.841898\pi\)
\(864\) 0 0
\(865\) 12.6105 0.428770
\(866\) 0 0
\(867\) −29.0090 + 3.96025i −0.985196 + 0.134497i
\(868\) 0 0
\(869\) 2.41844 4.18886i 0.0820399 0.142097i
\(870\) 0 0
\(871\) 6.60338 + 11.4374i 0.223747 + 0.387541i
\(872\) 0 0
\(873\) 37.4792 + 36.7694i 1.26848 + 1.24446i
\(874\) 0 0
\(875\) −11.4903 19.9018i −0.388443 0.672804i
\(876\) 0 0
\(877\) −7.62276 + 13.2030i −0.257402 + 0.445834i −0.965545 0.260235i \(-0.916200\pi\)
0.708143 + 0.706069i \(0.249533\pi\)
\(878\) 0 0
\(879\) 2.62966 6.43539i 0.0886962 0.217060i
\(880\) 0 0
\(881\) −29.7320 −1.00170 −0.500849 0.865535i \(-0.666979\pi\)
−0.500849 + 0.865535i \(0.666979\pi\)
\(882\) 0 0
\(883\) −41.5017 −1.39664 −0.698322 0.715783i \(-0.746070\pi\)
−0.698322 + 0.715783i \(0.746070\pi\)
\(884\) 0 0
\(885\) 17.7768 + 22.9394i 0.597562 + 0.771099i
\(886\) 0 0
\(887\) 8.27111 14.3260i 0.277717 0.481020i −0.693100 0.720841i \(-0.743756\pi\)
0.970817 + 0.239822i \(0.0770890\pi\)
\(888\) 0 0
\(889\) 9.40519 + 16.2903i 0.315440 + 0.546358i
\(890\) 0 0
\(891\) −7.87883 4.35017i −0.263951 0.145736i
\(892\) 0 0
\(893\) 1.92338 + 3.33139i 0.0643634 + 0.111481i
\(894\) 0 0
\(895\) −2.65280 + 4.59478i −0.0886732 + 0.153587i
\(896\) 0 0
\(897\) 0.500540 + 0.645900i 0.0167125 + 0.0215660i
\(898\) 0 0
\(899\) −13.1989 −0.440209
\(900\) 0 0
\(901\) −1.10616 −0.0368516
\(902\) 0 0
\(903\) 2.52211 6.17220i 0.0839307 0.205398i
\(904\) 0 0
\(905\) −13.4439 + 23.2855i −0.446890 + 0.774037i
\(906\) 0 0
\(907\) −15.3512 26.5891i −0.509729 0.882877i −0.999936 0.0112711i \(-0.996412\pi\)
0.490207 0.871606i \(-0.336921\pi\)
\(908\) 0 0
\(909\) −34.3262 33.6761i −1.13853 1.11697i
\(910\) 0 0
\(911\) −1.03736 1.79676i −0.0343693 0.0595294i 0.848329 0.529469i \(-0.177609\pi\)
−0.882698 + 0.469940i \(0.844276\pi\)
\(912\) 0 0
\(913\) −1.45033 + 2.51204i −0.0479988 + 0.0831363i
\(914\) 0 0
\(915\) 24.3798 3.32829i 0.805973 0.110030i
\(916\) 0 0
\(917\) 15.8673 0.523985
\(918\) 0 0
\(919\) 51.3954 1.69538 0.847688 0.530495i \(-0.177994\pi\)
0.847688 + 0.530495i \(0.177994\pi\)
\(920\) 0 0
\(921\) 43.0398 5.87572i 1.41821 0.193611i
\(922\) 0 0
\(923\) 0.370917 0.642448i 0.0122089 0.0211464i
\(924\) 0 0
\(925\) 4.46368 + 7.73131i 0.146765 + 0.254204i
\(926\) 0 0
\(927\) 1.58821 6.16232i 0.0521637 0.202397i
\(928\) 0 0
\(929\) 12.9604 + 22.4481i 0.425218 + 0.736500i 0.996441 0.0842954i \(-0.0268639\pi\)
−0.571222 + 0.820795i \(0.693531\pi\)
\(930\) 0 0
\(931\) −4.39452 + 7.61154i −0.144025 + 0.249458i
\(932\) 0 0
\(933\) −15.8077 + 38.6852i −0.517522 + 1.26650i
\(934\) 0 0
\(935\) 0.526492 0.0172181
\(936\) 0 0
\(937\) −26.1718 −0.854994 −0.427497 0.904017i \(-0.640605\pi\)
−0.427497 + 0.904017i \(0.640605\pi\)
\(938\) 0 0
\(939\) 0.407772 + 0.526192i 0.0133071 + 0.0171716i
\(940\) 0 0
\(941\) 26.6558 46.1692i 0.868954 1.50507i 0.00588670 0.999983i \(-0.498126\pi\)
0.863067 0.505089i \(-0.168540\pi\)
\(942\) 0 0
\(943\) −0.636571 1.10257i −0.0207296 0.0359047i
\(944\) 0 0
\(945\) −15.3968 + 6.63777i −0.500857 + 0.215927i
\(946\) 0 0
\(947\) −9.79973 16.9736i −0.318448 0.551569i 0.661716 0.749754i \(-0.269828\pi\)
−0.980164 + 0.198186i \(0.936495\pi\)
\(948\) 0 0
\(949\) 12.4889 21.6313i 0.405406 0.702183i
\(950\) 0 0
\(951\) −35.2085 45.4334i −1.14171 1.47328i
\(952\) 0 0
\(953\) −22.3925 −0.725366 −0.362683 0.931913i \(-0.618139\pi\)
−0.362683 + 0.931913i \(0.618139\pi\)
\(954\) 0 0
\(955\) 22.9843 0.743754
\(956\) 0 0
\(957\) −2.89607 + 7.08734i −0.0936165 + 0.229101i
\(958\) 0 0
\(959\) −5.49378 + 9.51551i −0.177404 + 0.307272i
\(960\) 0 0
\(961\) 11.0420 + 19.1253i 0.356193 + 0.616945i
\(962\) 0 0
\(963\) −59.2416 + 16.4823i −1.90903 + 0.531134i
\(964\) 0 0
\(965\) 13.2645 + 22.9747i 0.426998 + 0.739582i
\(966\) 0 0
\(967\) −14.4070 + 24.9536i −0.463297 + 0.802453i −0.999123 0.0418750i \(-0.986667\pi\)
0.535826 + 0.844328i \(0.320000\pi\)
\(968\) 0 0
\(969\) 1.38393 0.188932i 0.0444583 0.00606936i
\(970\) 0 0
\(971\) −8.45080 −0.271199 −0.135599 0.990764i \(-0.543296\pi\)
−0.135599 + 0.990764i \(0.543296\pi\)
\(972\) 0 0
\(973\) 3.16107 0.101339
\(974\) 0 0
\(975\) 7.58873 1.03600i 0.243034 0.0331785i
\(976\) 0 0
\(977\) 18.1286 31.3996i 0.579985 1.00456i −0.415495 0.909595i \(-0.636392\pi\)
0.995480 0.0949684i \(-0.0302750\pi\)
\(978\) 0 0
\(979\) −1.71777 2.97527i −0.0549002 0.0950899i
\(980\) 0 0
\(981\) 42.5223 11.8306i 1.35763 0.377722i
\(982\) 0 0
\(983\) −15.7602 27.2974i −0.502672 0.870653i −0.999995 0.00308781i \(-0.999017\pi\)
0.497323 0.867565i \(-0.334316\pi\)
\(984\) 0 0
\(985\) 1.15759 2.00501i 0.0368839 0.0638848i
\(986\) 0 0
\(987\) −1.84476 + 4.51455i −0.0587193 + 0.143700i
\(988\) 0 0
\(989\) −0.458191 −0.0145696
\(990\) 0 0
\(991\) −35.9833 −1.14305 −0.571524 0.820586i \(-0.693647\pi\)
−0.571524 + 0.820586i \(0.693647\pi\)
\(992\) 0 0
\(993\) −31.0908 40.1198i −0.986636 1.27316i
\(994\) 0 0
\(995\) −1.15221 + 1.99568i −0.0365274 + 0.0632673i
\(996\) 0 0
\(997\) −2.42083 4.19300i −0.0766684 0.132794i 0.825142 0.564925i \(-0.191095\pi\)
−0.901811 + 0.432132i \(0.857762\pi\)
\(998\) 0 0
\(999\) 20.0751 8.65467i 0.635149 0.273822i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.q.f.265.6 12
3.2 odd 2 2376.2.q.f.793.2 12
9.2 odd 6 2376.2.q.f.1585.2 12
9.4 even 3 7128.2.a.ba.1.2 6
9.5 odd 6 7128.2.a.w.1.5 6
9.7 even 3 inner 792.2.q.f.529.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.q.f.265.6 12 1.1 even 1 trivial
792.2.q.f.529.6 yes 12 9.7 even 3 inner
2376.2.q.f.793.2 12 3.2 odd 2
2376.2.q.f.1585.2 12 9.2 odd 6
7128.2.a.w.1.5 6 9.5 odd 6
7128.2.a.ba.1.2 6 9.4 even 3