Properties

Label 792.2.q.f
Level $792$
Weight $2$
Character orbit 792.q
Analytic conductor $6.324$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(265,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.265"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,1,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 7x^{10} - 2x^{9} + 39x^{8} - 9x^{7} + 67x^{6} - 18x^{5} + 88x^{4} - 16x^{3} + 24x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{10} q^{3} + (\beta_{8} - \beta_{6} - \beta_{4}) q^{5} + (\beta_{6} - \beta_{2} - 1) q^{7} + ( - \beta_{11} + \beta_{6} - \beta_{4}) q^{9} + (\beta_{6} - 1) q^{11} + ( - \beta_{11} + \beta_{10} + \cdots - \beta_{4}) q^{13}+ \cdots + (\beta_{11} + \beta_{8} + \cdots - \beta_{5}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{3} - 4 q^{5} - 5 q^{7} + 5 q^{9} - 6 q^{11} - 3 q^{13} - 7 q^{15} + 14 q^{17} + 10 q^{19} + 9 q^{21} - 8 q^{23} + 2 q^{25} - 11 q^{27} - 8 q^{29} - 4 q^{31} - 2 q^{33} + 16 q^{35} + 6 q^{37}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} + 7x^{10} - 2x^{9} + 39x^{8} - 9x^{7} + 67x^{6} - 18x^{5} + 88x^{4} - 16x^{3} + 24x^{2} + 4x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 227 \nu^{11} + 27283 \nu^{10} - 6521 \nu^{9} + 181033 \nu^{8} - 106013 \nu^{7} + 993670 \nu^{6} + \cdots - 6600 ) / 240564 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 6647 \nu^{11} + 42545 \nu^{10} - 15881 \nu^{9} + 277191 \nu^{8} - 264513 \nu^{7} + 1665582 \nu^{6} + \cdots + 740800 ) / 721692 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3664 \nu^{11} - 19652 \nu^{10} + 1841 \nu^{9} - 132954 \nu^{8} + 26763 \nu^{7} - 657714 \nu^{6} + \cdots + 380300 ) / 360846 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 4540 \nu^{11} - 4391 \nu^{10} + 30185 \nu^{9} - 32247 \nu^{8} + 175701 \nu^{7} - 167199 \nu^{6} + \cdots + 653222 ) / 360846 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 5314 \nu^{11} + 19879 \nu^{10} - 40674 \nu^{9} + 142775 \nu^{8} - 272146 \nu^{7} + 778577 \nu^{6} + \cdots + 114850 ) / 120282 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 39985 \nu^{11} - 34235 \nu^{10} + 270815 \nu^{9} - 310833 \nu^{8} + 1567515 \nu^{7} - 1630536 \nu^{6} + \cdots + 49112 ) / 721692 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 14427 \nu^{11} - 27867 \nu^{10} - 106231 \nu^{9} - 170621 \nu^{8} - 532631 \nu^{7} + \cdots - 439952 ) / 240564 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 11815 \nu^{11} + 9948 \nu^{10} - 80210 \nu^{9} + 92862 \nu^{8} - 463938 \nu^{7} + 487779 \nu^{6} + \cdots + 201370 ) / 120282 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 41411 \nu^{11} - 5685 \nu^{10} + 305421 \nu^{9} - 119847 \nu^{8} + 1711377 \nu^{7} - 605628 \nu^{6} + \cdots + 156984 ) / 240564 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 52023 \nu^{11} - 13317 \nu^{10} + 347805 \nu^{9} - 203471 \nu^{8} + 1937689 \nu^{7} - 982652 \nu^{6} + \cdots + 70592 ) / 240564 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 86060 \nu^{11} - 17441 \nu^{10} - 607687 \nu^{9} + 33177 \nu^{8} - 3372969 \nu^{7} + \cdots - 971548 ) / 360846 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{8} - 2\beta_{6} + \beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{11} + 2\beta_{10} - 2\beta_{9} - 3\beta_{7} - \beta_{6} - \beta_{5} - 2\beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{10} + 6\beta_{8} + \beta_{7} + 8\beta_{6} - \beta_{3} - 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -6\beta_{11} - 10\beta_{10} + 9\beta_{9} - \beta_{8} + 16\beta_{7} - \beta_{6} + \beta_{4} + 10\beta_{3} + 16\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{11} + \beta_{10} - \beta_{9} - 9 \beta_{7} - \beta_{6} - \beta_{5} - 32 \beta_{4} + 7 \beta_{3} + \cdots + 39 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{10} + 11\beta_{8} + \beta_{7} + 43\beta_{6} + 32\beta_{5} - 52\beta_{3} + 44\beta_{2} - 83\beta _1 - 43 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 11 \beta_{11} - 52 \beta_{10} + 12 \beta_{9} - 167 \beta_{8} + 24 \beta_{7} - 191 \beta_{6} + \cdots + 63 \beta_1 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 167 \beta_{11} + 262 \beta_{10} - 223 \beta_{9} - 441 \beta_{7} - 167 \beta_{6} - 167 \beta_{5} + \cdots + 256 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 206 \beta_{10} + 870 \beta_{8} + 206 \beta_{7} + 1069 \beta_{6} + 87 \beta_{5} - 318 \beta_{3} + \cdots - 1069 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 870 \beta_{11} - 1454 \beta_{10} + 1149 \beta_{9} - 604 \beta_{8} + 2225 \beta_{7} + \cdots + 2324 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
265.1
−1.17557 2.03615i
−0.189597 0.328392i
0.613168 + 1.06204i
0.322589 + 0.558741i
−0.654157 1.13303i
1.08357 + 1.87680i
−1.17557 + 2.03615i
−0.189597 + 0.328392i
0.613168 1.06204i
0.322589 0.558741i
−0.654157 + 1.13303i
1.08357 1.87680i
0 −1.72146 0.191265i 0 1.26394 2.18921i 0 0.129686 + 0.224623i 0 2.92684 + 0.658510i 0
265.2 0 −1.40604 + 1.01146i 0 −1.42811 + 2.47355i 0 −1.52684 2.64457i 0 0.953888 2.84431i 0
265.3 0 −0.215092 1.71864i 0 −0.748050 + 1.29566i 0 −1.94143 3.36265i 0 −2.90747 + 0.739331i 0
265.4 0 0.893881 + 1.48357i 0 −1.29187 + 2.23759i 0 −0.251298 0.435260i 0 −1.40195 + 2.65227i 0
265.5 0 1.23257 1.21686i 0 −0.644157 + 1.11571i 0 2.04089 + 3.53492i 0 0.0384795 2.99975i 0
265.6 0 1.71613 0.234283i 0 0.848245 1.46920i 0 −0.951006 1.64719i 0 2.89022 0.804122i 0
529.1 0 −1.72146 + 0.191265i 0 1.26394 + 2.18921i 0 0.129686 0.224623i 0 2.92684 0.658510i 0
529.2 0 −1.40604 1.01146i 0 −1.42811 2.47355i 0 −1.52684 + 2.64457i 0 0.953888 + 2.84431i 0
529.3 0 −0.215092 + 1.71864i 0 −0.748050 1.29566i 0 −1.94143 + 3.36265i 0 −2.90747 0.739331i 0
529.4 0 0.893881 1.48357i 0 −1.29187 2.23759i 0 −0.251298 + 0.435260i 0 −1.40195 2.65227i 0
529.5 0 1.23257 + 1.21686i 0 −0.644157 1.11571i 0 2.04089 3.53492i 0 0.0384795 + 2.99975i 0
529.6 0 1.71613 + 0.234283i 0 0.848245 + 1.46920i 0 −0.951006 + 1.64719i 0 2.89022 + 0.804122i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 265.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 792.2.q.f 12
3.b odd 2 1 2376.2.q.f 12
9.c even 3 1 inner 792.2.q.f 12
9.c even 3 1 7128.2.a.ba 6
9.d odd 6 1 2376.2.q.f 12
9.d odd 6 1 7128.2.a.w 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
792.2.q.f 12 1.a even 1 1 trivial
792.2.q.f 12 9.c even 3 1 inner
2376.2.q.f 12 3.b odd 2 1
2376.2.q.f 12 9.d odd 6 1
7128.2.a.w 6 9.d odd 6 1
7128.2.a.ba 6 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} + 4 T_{5}^{11} + 22 T_{5}^{10} + 50 T_{5}^{9} + 196 T_{5}^{8} + 391 T_{5}^{7} + 1127 T_{5}^{6} + \cdots + 3721 \) acting on \(S_{2}^{\mathrm{new}}(792, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} - T^{11} + \cdots + 729 \) Copy content Toggle raw display
$5$ \( T^{12} + 4 T^{11} + \cdots + 3721 \) Copy content Toggle raw display
$7$ \( T^{12} + 5 T^{11} + \cdots + 144 \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{6} \) Copy content Toggle raw display
$13$ \( T^{12} + 3 T^{11} + \cdots + 4624 \) Copy content Toggle raw display
$17$ \( (T^{6} - 7 T^{5} + 6 T^{4} + \cdots + 12)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} - 5 T^{5} - 18 T^{4} + \cdots - 72)^{2} \) Copy content Toggle raw display
$23$ \( T^{12} + 8 T^{11} + \cdots + 256 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 169312144 \) Copy content Toggle raw display
$31$ \( T^{12} + 4 T^{11} + \cdots + 2601 \) Copy content Toggle raw display
$37$ \( (T^{6} - 3 T^{5} + \cdots + 19819)^{2} \) Copy content Toggle raw display
$41$ \( T^{12} + 91 T^{10} + \cdots + 1354896 \) Copy content Toggle raw display
$43$ \( T^{12} + 5 T^{11} + \cdots + 394384 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 244078129 \) Copy content Toggle raw display
$53$ \( (T^{6} - 14 T^{5} + \cdots - 36261)^{2} \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 2306016441 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 205520896 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 10217368561 \) Copy content Toggle raw display
$71$ \( (T^{6} - 7 T^{5} + \cdots + 1161)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + 12 T^{5} + \cdots + 146764)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 24150403216 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 9910600704 \) Copy content Toggle raw display
$89$ \( (T^{6} - 22 T^{5} + \cdots + 106432)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 2035182769 \) Copy content Toggle raw display
show more
show less